
Gaudi Object Description v2r0 - Documentation

Stefan Roiser

January 17, 2002

Contents

1 Introduction 4

2 The Structure 5

3 Using Gaudi Object Description 6
3.1 Introduction to XML . 6
3.2 Invoking Gaudi Object Description tools 7

3.2.1 Changes to the requirements file 7
3.3 Some general comments about the Gaudi Object Description syntax 8

3.3.1 Elements . 8
3.3.2 Attributes . 8

3.4 Detailed Gaudi Object Description syntax 9
3.4.1 Element <GDD> . 9
3.4.2 Element <IMPORT> . 9
3.4.3 Element <PACKAGE> 10
3.4.4 Element <CLASS> . 10
3.4.5 Element <DESC> . 12
3.4.6 Element <BASE> . 12
3.4.7 Element <CONSTRUCTOR> 13
3.4.8 Element <DESTRUCTOR> 14
3.4.9 Element <METHOD> . 14
3.4.10 Element <ARG> . 16
3.4.11 Element <RETURN> . 17
3.4.12 Element <CODE> . 18
3.4.13 Element <ATTRIBUTE> 18
3.4.14 Element <RELATION> 20

4 Tips & Tricks 23
4.1 Editing and producing xml-files 23
4.2 Escaping of characters . 23
4.3 Additional information . 24

A The Syntax 25
A.1 The elements . 25
A.2 The attributes . 26

2

CONTENTS 3

B Usage statements 29
B.1 GODWriteCppHeader.exe . 29
B.2 GODWriteCppDict.exe . 30

Chapter 1

Introduction

Gaudi Object Description is a set of tools for the description of the transient
event data in the Gaudi framework. For this purpose the data will be described
with XML-files that can be compiled into many different representations (e.g.
C++, Python, Java, . . .).

This XML-description can also be used to produce some information so that
the data-objects described can be investigated from an external point with an
introspection tool (see Gaudi Introspection package1).

Other advantages of using Gaudi Object Description are:

• Uniform layout The files produced with Gaudi Object Description will all
have the same behavior and layout.

• No redundancies Normally one has to type e.g. in a C++-header-file
many times the same information about an object (e.g. for the set- and
get-functions, etc.). In Gaudi Object Description from one piece of infor-
mation a lot of redundant information can be produced, which will lead
to a shorter description of the objects.

• Coding conventions The files produced by Gaudi Object Description com-
ply to the C++ coding conventions[1].

• Documentation From the object-descriptions it is also possible to produce
source-code-documentation with tools like doxygen2.

1http://lhcb-comp.web.cern.ch/lhcb-comp/Frameworks/DataDictionary/default.htm
2http://www.doxygen.org

4

Chapter 2

The Structure

The structure of Gaudi Object Description can be seen in Figure 2.1. The
source for all the stuff that can be produced is a XML-file, which can be seen at
the top of the figure. Together with some generic rules, this file will be parsed
by a XML-parser and feeds an internal C++ meta-model.

The information stored in this internal meta-model will be enough to produce
any kind of desired output, like the different back-ends for different languages
or the information for the Run Time Type Information. Additionally to the
different back-ends special rules can be applied which have only a meaning in
conjunction with the language that will be produced by this special backend. For
the time being the back-ends for the C++-header-files and the meta-information
for runtime-type-information have been implemented. In the future there are
more back-ends to come, like converters or other languages.

xml-File

internal
C++-model

DictionaryC++ Java

dict-filesC++
header-files

java-files
converter
files

Converter

LHCb-Rules

specific rules
header product.

doxygen

docu

make dll

Introspection
M odel

Figure 2.1: Overview of Gaudi Object Description

5

Chapter 3

Using Gaudi Object
Description

3.1 Introduction to XML

The Gaudi Object Description language is based on XML. The main parts
that are used for the description of Gaudi Objects with XML are elements and
attributes. The elements define the syntactical order of the document, each
element can have 0 or more attributes. Table 3.1 shows an element called
<GAUDI> with an attribute ’version’ which has the value ’1.0’.

<GAUDI version=’1.0’/>

Table 3.1: A simple XML-example

Table 3.1 also shows that the value of an attribute has to be assigned to it
by ’=’. The value itself has to be enclosed either by single quotes (’) or double
quotes (”). We encourage people to use single quotes because the XML-files will
be also used to produce C++-code and this will lead to less confusion, because
most times one wants to use double quotes inside a C++ sequence.

The XML-example of table 3.1 is closed at the end with ’/>’. But XML-
elements can also embed other elements or text. Table 3.2 shows an example of
an XML-element <GAUDI> which contains another element called <LHCB>,
which contains some text. Note that the <GAUDI>-element is closed after the
child-element with </GAUDI>.

<GAUDI version=’1.0’>
<LHCB> These are just a few characters </LHCB>

</GAUDI>

Table 3.2: A second simple XML-example

6

3.2. INVOKING GAUDI OBJECT DESCRIPTION TOOLS 7

These two examples now show only well-formed XML, which means that
they conform to the rules setup for XML by the World Wide Web Consortium
(W3C)[2]. To achieve valid XML-documents the text has to conform some rules.
In our case these rules are provided by a DTD (Document Type Definition).
This DTD specifies the syntax of the XML-document.

The DTD used for Gaudi Object Description is called ’gdd.dtd’ and is stored
in ’xml files/gdd.dtd’ in the GaudiObjDesc-package. The DTD must reside in
the same directory as the xml-file with the object-descriptions. During a make
this copying will be done automatically. Only if one does not use make from the
start, the DTD-file has to be copied manually to the location of the xml-file.

3.2 Invoking Gaudi Object Description tools

For the time being there are two possibilities to invoke the tools of the Gaudi
Object Description package. One way is to call the tools from the command-line.
The other way is to execute the tools automatically with the make-command
inside a Gaudi-package. The second approach is most probably the more often
used one and if one wants to do that there are some changes which have to be
done inside the requirements-file of the package.

The usage-statements of the Gaudi Object Description tools can be found in
appendix B.

3.2.1 Changes to the requirements file

In order to compile a Gaudi-package with Gaudi Object Description, several
changes have to be done in the requirements-file (see table 3.3).

1 use GaudiObjDesc v2r*
2
3 document obj2doth <Package>Obj2Doth ../xml/<Package>.xml
4
5 document obj2dict <Package>Obj2Dict ../xml/<Package>.xml
6 library <Package>Dict ../dict/*.cpp
7 macro <Package>Dict_shlibflags "$(use_linkopts) $(libraryshr_linkopts)"

Table 3.3: Changes to the requirements-file

In the first line of table 3.3 you can see the use-statement for GaudiObjDesc.
The latest version for the moment is v2r0, but in order to also use backward-
compatible versions it is advised to use v2r* instead. Line 3 describes the call of
the fragment to produce the C++-header-files. This statement will be executed
at make-time only once, as long as the xml-source-file is not changed.

8 CHAPTER 3. USING GAUDI OBJECT DESCRIPTION

Lines 5 to 7 describe the statements which have to introduced in order to
produce the meta-information for GaudiIntrospection. Line 5 produces the cpp-
files which will be compiled to a dll in line 6. Line 7 introduces some flags for
the compilation.

In order to run one of these two tools, before executing the make-command,
one has also to execute the setup because the path to these tools has to be set.

It is also possible to pass any command-line-argument (see appendix B) to
the tools by setting the variable $(GODFLAGS) inside the requirements file.

3.3 Some general comments about the Gaudi
Object Description syntax

3.3.1 Elements

In section 3.4 one can find all the elements of the Gaudi Object Description
language. Each element comes with a short description and a list of possible
sub-elements, which can be placed between its opening- and closing-tag. The
elements itself are put between < and > and some have also special characters
attached which have been borrowed from the Backus Naur Form (BNF). Their
meanings are:
• () grouping of elements
• | or-relation
• ? zero or one occurance of the element
• * zero or more occurances of the element
• + one or more occurances of the element

3.3.2 Attributes

In section 3.4 one can also find the detailed explanation of all attributes
attached to an element. Every attribute has a table with at least three elements
(Required, Values, Default). Their meanings are:

• Required means that this attribute has to be provided when the parser
runs through the XML-document, otherwise it will complain. The only
exception when no value has to be provided is, when there is already a
default-value.

• Values desribes all possible values for this attribute, if values is set to
’any’ this means that any UTF-8 character (in our case ASCII-character)
can be used.

• Default means that there is already a default value for this attribute. If
one is happy with this value, it doesn’t need to be set explicitly in the
XML-file. The XML-parser will always look at the DTD and take this
default-value if no otherone is provided.

• If Fixed is set to yes this means that there is also a default-value and
this value will be taken by the XML-parser. Trying to set this attribute
to another value will cause a complaint by the parser.

3.4. DETAILED GAUDI OBJECT DESCRIPTION SYNTAX 9

3.4 Detailed Gaudi Object Description syntax

In this section all elements and their corresponding attributes will be declared
in depth.

3.4.1 Element <GDD>

• Subelements: (<IMPORT>* <PACKAGE>+) | (<IMPORT>* <CLASS>)

The XML-declaration defines, that there must not be more than one root-
element. The <GDD>-element is the root-element of all Gaudi Object De-
scription files. There are two possiblities of subelements. Either zero or more
imports followed by one or more packages, or zero or more imports followed by
one class.

Attribute — version

• Required: yes
• Values: any
• Default: 1.0

The version-attribute will be used in future versions of Gaudi Object Descrip-
tion to distinguish between different versions of files. For the moment it is set
to ’1.0’ and should not be changed.

3.4.2 Element <IMPORT>

• Subelements: none

The <IMPORT>-element denotes that some additional information has to
be included to the file. In the sense of C++ this would mean for example that
an #inlude-statement or a forward-declaration of a class will be added to the
file. In general you will not have to bother with import-statements because
the Gaudi Object Description tools will take care for this in many places (e.g.
non-simple types of attributes, arguments of methods, etc.). The import may
occur in three different places, which are inside <GDD>, <PACKAGE> or
<CLASS>. Depending on where the import-statements occurs, this scope will
be taken (e.g. an import under <PACKAGE> will occur in every class. For
the time being <GDD> and <PACKAGE> define the same scope).

Attribute — name

• Required: yes
• Values: any
• Default: none

The name of the file to be imported. If this file is inside the Gaudi-, LHCb- or
CLHEP-area, you will also not have to bother about the path to this file, because
it will be retrieved for you automatically. If you want to import a file which by
chance has the same name as a file which would be retrieved automatically and
you want to use the other one, you have to provide the full path to it.

10 CHAPTER 3. USING GAUDI OBJECT DESCRIPTION

Attribute — std

• Required: yes
• Values: TRUE, FALSE
• Default: FALSE

Std stands for ’standard import’. This means that in case of a language
where a difference between a normal import and an import of a standard im-
port can be made, this will be taken into account. (e.g. C++ will do an
’#import<filename>).

Attribute — soft

• Required: yes
• Values: TRUE, FALSE
• Default: FALSE

Soft import means that the file itself will not be included. Instead of that
the import will be made known to the compiler. In the case of C++ this would
result in a forward declaration.

3.4.3 Element <PACKAGE>

• Subelements: <IMPORT>* <CLASS>*

The <PACKAGE>-element is the container for all classes. Every Import
that is printed inside the package-element will again occur inside every class.

Attribute — name

• Required: yes
• Values: any
• Default: none

The name of the package.

3.4.4 Element <CLASS>

• Subelements: <DESC>? <BASE>* <IMPORT>* <CONSTRUCTOR>*
<DESTRUCTOR>* <METHOD>* <ATTRIBUTE>* <RELATION>*

The <CLASS>-element is the heart of the Gaudi Object Description lan-
guage. This is where all the essential class-information will be.

Attribute — name

• Required: yes
• Values: any
• Default: none

The name of the class.

3.4. DETAILED GAUDI OBJECT DESCRIPTION SYNTAX 11

Attribute — author

• Required: yes
• Values: any
• Default: none

The author of the class.

Attribute — desc

• Required: yes
• Values: any
• Default: none

This is a short description of the class, and should not exceed one sentence.
If more explanation is needed one can always put it inside the <DESC>-
subelement (see section 3.4.5).

Attribute — filename

• Required: no
• Values: any
• Default: none

Filename should not be used for the description of Gaudi objects. This at-
tribute was invented, because the same DTD is also used to build up a database
of all classes and their location in the Gaudi-framework.

Attribute — id

• Required: no
• Values: any
• Default: none

The id-attribute defines the Class-ID. If the id is set to a value, it will be
assumed that this class is an event-class which will have its representation in
the Gaudi-stores. Setting this attribute to a value also triggers the production
of a definition of this class-id inside the class and methods to retrieve it.

Attribute — templateVector

• Required: yes
• Values: TRUE, FALSE
• Default: TRUE

All event-classes derived from ContainedObject will have a templated vector
set up. If one does not want this, the value of templateVector has to be set to
FALSE.

12 CHAPTER 3. USING GAUDI OBJECT DESCRIPTION

Attribute — templateList

• Required: yes
• Values: TRUE, FALSE
• Default: TRUE

All event-classes derived from ContainedObject will have a templated list set
up. If one does not want this, the value of templateList has to be set to FALSE.

3.4.5 Element <DESC>

• Subelements: #PCDATA

The <DESC>-element is one of two elements, the other one is <CODE> (see
section 3.4.12), which allow simple text between the opening- and the closing-
tag. The text which is set between these two tags will be taken as is and put
into the comment which describes the event class at the top of the header-file.
Take care that necessary characters have to be escaped (see section 4.2).

Attribute — xml:space

• Required: yes
• Values: default, preserve
• Default: preserve
• Fixed : yes

The xml:space-attribute is set to Fixed, so any change to this attribute will
result in a complaint of the compiler. The reason for setting this attribute to
Fixed is that otherwise some XML-editors cannot cope with the preserving of
spaces and line-feeds.

3.4.6 Element <BASE>

• Subelements: none

The <BASE>-element describes the baseclass of the current object.

Attribute — name

• Required: yes
• Values: any
• Default: none

The name of the baseclass.

Attribute — virtual

• Required: yes
• Values: TRUE, FALSE
• Default: FALSE

3.4. DETAILED GAUDI OBJECT DESCRIPTION SYNTAX 13

Has to be set to TRUE if the class is derived virtually.

Attribute — access

• Required: yes
• Values: PUBLIC, PRIVATE, PROTECTED
• Default: PUBLIC

Defines the accessor to the baseclass.

3.4.7 Element <CONSTRUCTOR>

• Subelements: <ARG>* <CODE>?

If a special constructor is needed it can be done with this element. If this
special constructor takes no arguments it will replace the standard constructor
which would have been set up otherwise. The automatically produced standard
constructor sets all attributes to its default-values, which is the init-attribute
of the <ATTRIBUTE>-element (see section 3.4.13) or 0 resp. 0.0 for numbers
which do not have an init-attribute. The special constructor never uses default-
values and all initialization-values have to be set explicitly.

Attribute — desc

• Required: yes
• Values: any
• Default: none

A short description of the special constructor.

Attribute — argList

• Required: no
• Values: any
• Default: none

A list of arguments separated by commas (,), containing at least a pair of type
and name with a possible ’const’ in front of the type. The argList-argument is
one of two alternatives to describe the arguments of a constructor, destructor
or method. If the type is not a simple type (e.g. int, char) the argument will be
treated as ’const argument&’. If one wants to avoid that or have some special
treatment, the use of the <ARG>-subelement (see section 3.4.10) should be
considered.

Attribute — argInOut

• Required: no
• Values: any
• Default: none

14 CHAPTER 3. USING GAUDI OBJECT DESCRIPTION

Not used in this version of Gaudi Object Description and will be implemented
in a future release.

3.4.8 Element <DESTRUCTOR>

• Subelements: <ARG>* <CODE>?

Similarly to special constructors one can also specifiy special destructors,
which behave the same as special constructors. If no special destructor with
zero arguments is defined, one will be setup automatically. Like for the special
constructor the possible sub-elements are for arguments and code.

Attribute — desc

• Required: yes
• Values: any
• Default: none

A short description.

Attribute — argList

• Required: no
• Values: any
• Default: none

Argumentlist behaving the same as for the <CONSTRUCTOR>-element (see
section 3.4.7).

Attribute — argInOut

• Required: no
• Values: any
• Default: none

Not implemented yet.

3.4.9 Element <METHOD>

• Subelements: <ARG>* <RETURN>? <CODE>?

Most of the methods will be produced automatically (e.g. the set- and get-
methods for arguments, handling of classID, etc.). If there is the need to specify
special methods which are not covered by these automatic procedures one can
do that by using the <METHOD>-element. Special methods behave similarly
to special constructors and destructors. The main difference is, that one can
also define a return-value.

3.4. DETAILED GAUDI OBJECT DESCRIPTION SYNTAX 15

Attribute — name

• Required: yes
• Values: any
• Default: none

The name of the method.

Attribute — desc

• Required: yes
• Values: any
• Default: none

A short description.

Attribute — access

• Required: yes
• Values: PUBLIC, PROTECTED, PRIVATE
• Default: PUBLIC

The handling of this attribute is not yet implemented. In future releases the
access-attribute specifies where the method should be placed inside the class.
For the time being all methods will be put into the public area.

Attribute — const

• Required: yes
• Values: TRUE, FALSE
• Default: FALSE

Defines wether the method should be const or not.

Attribute — virtual

• Required: yes
• Values: TRUE, FALSE
• Default: FALSE

Defines wether the method should be virtual or not. For the time being pure
virtual methods are not supported.

Attribute — static

• Required: yes
• Values: TRUE, FALSE
• Default: FALSE

Defines wether the method is static.

16 CHAPTER 3. USING GAUDI OBJECT DESCRIPTION

Attribute — inline

• Required: yes
• Values: TRUE, FALSE
• Default: FALSE

Left-over from a previous version and should not be used anymore.

Attribute — friend

• Required: yes
• Values: TRUE, FALSE
• Default: FALSE

Defines wether this is a friend-method.

Attribute — type

• Required: yes
• Values: any
• Default: void

The type defines the return-type of the method. If no return-type is set
and there is also no <RETURN>-subelement (see section 3.4.11), ’void’ will be
assumed.

Attribute — argList

• Required: no
• Values: any
• Default: none

The argList behaves completely similar to the argList of the<CONSTRUCTOR>-
element (see section 3.4.7).

Attribute — argInOut

• Required: no
• Values: any
• Default: none

Not used in this version.

3.4.10 Element <ARG>

• Subelements: none

The <ARG>-element defines an argument of a special constructor, destructor
or method. The order of the <ARG>-elements will be taken from the XML-file.
In principal this element has only to be used when some special treatment of
the arguments is needed.

3.4. DETAILED GAUDI OBJECT DESCRIPTION SYNTAX 17

Attribute — type

• Required: yes
• Values: any
• Default: none

The type of the argument. If the argument is not a simple type it will be
treated as ’argument&’ to avoid unnecessary copying of objects in the code.

Attribute — name

• Required: yes
• Values: any
• Default: none

The name of the attribute.

Attribute — const

• Required: yes
• Values: TRUE, FALSE
• Default: FALSE

Defines wether the attribute is const.

Attribute — inout

• Required: yes
• Values: INPUT, BOTH
• Default: INPUT

The inout-argument will be in most cases the reason for using the <ARG>-
element instead of the argList-attribute. Setting this attribute to ’BOTH’ will
treat the argument as an input-output-argument, which means that the refer-
ence of argument will be taken.

3.4.11 Element <RETURN>

• Subelements: none

The <RETURN>-element has the same as meaning as the type-attribute of
<METHOD> (see section 3.4.9), which is the definition of the return-type of a
method.

Attribute — type

• Required: yes
• Values: any
• Default: none

Type of the return-value.

18 CHAPTER 3. USING GAUDI OBJECT DESCRIPTION

Attribute — const

• Required: yes
• Values: TRUE, FALSE
• Default: FALSE

Defines wether the return-value is const.

3.4.12 Element <CODE>

• Subelements: #PCDATA

The <CODE>-element is one of two elements which allow normal text be-
tween the opening- and the closing-tag. The text between these two tags will
be taken as is, except the escaping of characters (see section 4.2).

Attribute — xml:space

• Required: yes
• Values: default, preserve
• Default: preserve
• Fixed : yes

The xml:space-attribute is set to Fixed, so any change to this attribute will
result in a complaint of the compiler. The reason for setting this attribute to
Fixed is that otherwise some XML-editors cannot cope with the preserving of
spaces and line-feeds.

3.4.13 Element <ATTRIBUTE>

• Subelements: none

<ATTRIBUTE>-elements are beside the <RELATION>-elements (see sec-
tion 3.4.14) the meat of the Gaudi Object Descriptions. From these elements
most of the automatic code will be produced.

Attribute — type

• Required: yes
• Values: any
• Default: none

The type of the attribute. If the type is not a simple one, Gaudi Object
Description will try to import automatically a description of this type so the
compiler can deal with it.

Attribute — name

• Required: yes
• Values: any
• Default: none

3.4. DETAILED GAUDI OBJECT DESCRIPTION SYNTAX 19

The name of the attribute. Although the Gaudi C++ coding conventions[1]
define members of classes to be defined with a preceding ’m ’, this is not nec-
essary in Gaudi Object Description, as these letters will be added to the string
whenever necessary.

Attribute — desc

• Required: yes
• Values: any
• Default: none

A short description of the member.

Attribute — init

• Required: no
• Values: any
• Default: 0, 0.0 for numbers, none otherwise

The init-attribute defines the initial value of the member. The default for
numbers (e.g. int, float), will be set to 0 respectively 0.0. If another value is
specified it will be taken. The init-attribute can also be used to specify initial
values for non-numbers (e.g. char, std::string). Take care that the init-values
will only be used for the default-constructor that is setup automatically by
Gaudi Object Description, for special constructors all the values have to be set
by hand.

Attribute — access

• Required: yes
• Values: PUBLIC, PROTECTED, PRIVATE
• Default: PRIVATE

The handling of this attribute is not yet implemented. In future releases
the area inside the class where the member resides will be specified with the
access-attribute. For the time being all class-members will be put in the private
area.

Attribute — setMeth

• Required: yes
• Values: TRUE, FALSE
• Default: TRUE

Defines wether a setter-method for this member should be created
(e.g. ’void setOscillationFlag(bool value);’). The implementation will also be
inline.

20 CHAPTER 3. USING GAUDI OBJECT DESCRIPTION

Attribute — getMeth

• Required: yes
• Values: TRUE, FALSE
• Default: TRUE

Defines wether a getter-method for this member should be created
(e.g.’bool oscillationFlag() const;’). The implementation will also be inline.

3.4.14 Element <RELATION>

• Subelements: none

Besides the <ATTRIBUTE>-element (see section 3.4.13) the <RELATION>
is also a very important element. <RELATION>-elements handle the connec-
tion to other objects in the Gaudi stores. For this purpose the concept of
SmartRef and SmartRefVector will be used.

Attribute — type

• Required: yes
• Values: any
• Default: none

The type of the relation. Only the type of the relation is needed. The
SmartRef resp. SmartRevVector will be added whenever necessary.

Attribute — name

• Required: yes
• Values: any
• Default: none

The name of the relation. The string ’m ’ (conforming to the Gaudi C++
Coding Conventions[1]) will be inserted whenever necessary.

Attribute — desc

• Required: yes
• Values: any
• Default: none

A short description of the relation.

Attribute — access

• Required: yes
• Values: PUBLIC, PROTECTED, PRIVATE
• Default: PRIVATE

3.4. DETAILED GAUDI OBJECT DESCRIPTION SYNTAX 21

The handling of this attribute is not yet implemented. In future releases
the area inside the class where the relation resides will be specified with the
access-attribute. For the time being all class-members will be put in the private
area.

Attribute — multiplicity

• Required: yes
• Values: 1, M, m, N, n
• Default: 1

The multiplicity-attribute is specific to the <RELATION>-element. It de-
fines the relation to the other object. The default is ’1’ which will set a
’SmartRef’. All the other possible values ’M,m,N,n’ are equal and define a
one-to-many-relation which will end up in a SmarRefVector. There is also a
difference in the amount of methods produced for the relation. While a one-to-
one-relation produces the setter-, getter- and clear-method, for a one-to-many-
relation also the addTo- and removeFrom-method will be created if desired.

Attribute — setMeth

• Required: yes
• Values: TRUE, FALSE
• Default: TRUE

Defines wether a set-method should be created
(e.g. ’void setDecayMCVertices(const SmartRefVector<MCVertex>& value);’).
The implementation will also be inline.

Attribute — getMeth

• Required: yes
• Values: TRUE, FALSE
• Default: TRUE

Defines wether a get-method should be created
(e.g. ’const SmartRefVector<MCVertex>& decayMCVertices() const;’). The
implementation will also be inline.

Attribute — addMeth

• Required: yes
• Values: TRUE, FALSE
• Default: TRUE

Defines wether addTo-methods should be created
(e.g. ’void addToDecayMCVertices(MCVertex* value);’ and
’void addToDecayMCVertices(SmartRef<MCVertex>& value);). The imple-
mentation will also be inline.

22 CHAPTER 3. USING GAUDI OBJECT DESCRIPTION

Attribute — remMeth

• Required: yes
• Values: TRUE, FALSE
• Default: TRUE

Defines wether removeFrom-methods should be created
(e.g. ’void removeFromDecayMCVertices(MCVertex* value);’ and
’void removeFromDecayMCVertices(SmartRef<MCVertex>&value);’). The im-
plementation will also be inline.

Attribute — clrMeth

• Required: yes
• Values: TRUE, FALSE
• Default: TRUE

Defines wether a clear-method should be created
(e.g. ’void clearDecayMCVertices();’). The implementation will also be inline.

Chapter 4

Tips & Tricks

4.1 Editing and producing xml-files

Although the xml-files can also be written with a normal text-editor, it is
highly recommended that a xml-editor should be used for producing and editing
the xml-files.

One of these Xml-Editors, written by Sebastien Ponce, is also available as
a package from the LHCb-cvs-server. The package is called ’Det/XmlEditor’
and the current release is v4r2. The advantage of this xml-editor is that it is
specially tailored to the handling of Gaudi objects.

4.2 Escaping of characters

In some special cases the text cannot be put into the XML-file as is, because
special characters, which are reserved for the steering of XML, need to be es-
caped. These characters and their escaping can be found in table 4.1. With
some XML-editors this escaping of characters will be done automatically, so the
user does not have to bother with it.

XML-character Escape-sequence
& &
< <
> >
’ '
” "

Table 4.1: XML-characters to be escaped

The first three characters (<, > and &) have to be escaped no matter where
in the XML-document. If not, a complaint from the XML-parser will be the
result. The two latter ones (’ and ”) only have to be escaped if they are used
as a value for an argument, and only if they both are used at the same time.

23

24 CHAPTER 4. TIPS & TRICKS

Arguments of XML-elements have to be surrounded by either ’ or ”. So if the
other character is used inside the value it has to be escaped.

4.3 Additional information

General information about the Gaudi-framework can be found at:

http://lhcb-comp.web.cern.ch/lhcb-comp/Frameworks/Gaudi/

Additional information about the Gaudi Object Description package can be
found at:

http://lhcb-comp.web.cern.ch/lhcb-comp/Frameworks/DataDictionary/default.htm

Appendix A

The Syntax

A.1 The elements

The syntactical tree of the Gaudi data definition language can be found in
Table A.1. The corresponding arguments for each element in this tree are shown
in Table A.2. A more precise explanation of the elements and their attributes
can be found in section 3.4

The <DESC>- and<CODE>-element are the only two elements in the Gaudi
Object Description language which can contain normal text between their open-
ing and closing tag.

<GDD> := (<IMPORT>* <PACKAGE>+) | (<IMPORT>* <CLASS>)
<PACKAGE> := <IMPORT>* <CLASS>*
<CLASS> := <DESC>? <BASE>* <IMPORT>* <CONSTRUCTOR>*

<DESTRUCTOR>* <METHOD>* <ATTRIBUTE>*
<RELATION>*

<DESC> := #PCDATA
<CONSTRUCTOR> := <ARG>* <CODE>?
<DESTRUCTOR> := <ARG>* <CODE>?
<METHOD> := <ARG>* <RETURN>? <CODE>?
<CODE> := #PCDATA

Table A.1: Syntax of Gaudi Object Description

25

26 APPENDIX A. THE SYNTAX

A
.2

T
h
e
a
tt
ri
b
u
te
s

El
em
en
t

At
tr
ib
ut
e

Va
lu
e

R
eq
ui
re
d

D
ef
au
lt

D
es
cr
ip
tio
n

G
D
D

ve
rs
io
n

te
xt

ye
s

1.
0

ve
rs
io
n
of
th
e
xm
l-
fil
e

IM
P
O
R
T

na
m
e

te
xt

ye
s

-
na
m
e
of
im
po
rt
-fi
le

st
d

T
R
U
E
,
FA
L
SE

ye
s

FA
L
SE

de
fin
e
st
an
da
rd
im
po
rt

so
ft

T
R
U
E
,
FA
L
SE

ye
s

FA
L
SE

de
fin
e
so
ft
-i
m
po
rt

PA
C
K
A
G
E

na
m
e

te
xt

ye
s

-
na
m
e
of
pa
ck
ag
e

C
L
A
SS

na
m
e

te
xt

ye
s

-
cl
as
s-
na
m
e

au
th
or

te
xt

ye
s

-
cl
as
s-
au
th
or

de
sc

te
xt

ye
s

-
sh
or
t
de
sc
ri
pt
io
n

fil
en
am
e

te
xt

no
-

fil
en
am
e
of
cl
as
s1

id
te
xt

no
-

cl
as
s-
id

te
m
pl
at
eV
ec
to
r

T
R
U
E
,
FA
L
SE

ye
s

T
R
U
E

ve
ct
or
of
cl
as
s

te
m
pl
at
eL
is
t

T
R
U
E
,
FA
L
SE

ye
s

T
R
U
E

lis
t
of
cl
as
s

D
E
SC

xm
l:s
pa
ce

de
fa
ul
t,
pr
es
er
ve

ye
s

pr
es
er
ve

fix
ed
,
ca
n’
t
be
ch
an
ge
d

B
A
SE

na
m
e

te
xt

ye
s

-
na
m
e
of
ba
se
-c
la
ss

vi
rt
ua
l

T
R
U
E
,
FA
L
SE

ye
s

FA
L
SE

de
ri
ve
d
vi
rt
ua
lly

ac
ce
ss

P
U
B
L
IC
,
P
R
O
T
E
C
T
E
D
,P
R
IV
A
T
E

ye
s

P
U
B
L
IC

ac
ce
ss
or
to
ba
se
-c
la
ss

C
O
N
ST
R
U
C
T
O
R

de
sc

te
xt

ye
s

-
de
sc
ri
pt
io
n
of
co
ns
tr
uc
to
r

ar
gL
is
t

te
xt

no
-

op
ti
on
al
ar
gu
m
en
t-
lis
t

ar
gI
nO
ut

te
xt

no
-

no
t
us
ed
in
th
is
ve
rs
io
n

1
Is

u
se

d
to

se
tu

p
th

e
d
a
ta

b
a
se

o
f
p
a
ck

a
g
es

,
sh

o
u
ld

n
o
t
b
e

u
se

d
in

n
o
rm

a
l
x
m

l-
fi
le
s

A
.2

.
T

H
E

A
T

T
R

IB
U

T
E

S
27

El
em
en
t

At
tr
ib
ut
e

Va
lu
e

R
eq
ui
re
d

D
ef
au
lt

D
es
cr
ip
tio
n

DESTRUCTOR desc text yes - description of constructor
argList text no - optional argument-list
argInOut text no - not used in this version

METHOD name text yes - method-name
desc text yes - method-description
access PUBLIC, PROTECTED, PRIVATE yes PUBLIC accessiblity
const TRUE, FALSE yes FALSE const-method
virtual TRUE, FALSE yes FALSE virtual-method
static TRUE, FALSE yes FALSE static-method
inline TRUE, FALSE yes FALSE inline-method (obsolete)
friend TRUE, FALSE yes FALSE friend-method
type text yes void return-type of method
argList text no - optional argument-list
argInOut text no - not used in this version

ARG type text yes - argument-type
name text yes - argument-name
const TRUE, FALSE yes FALSE const-argument
inout INPUT, BOTH yes INPUT input- or input-output-argument

RETURN type text yes - return-type
const TRUE, FALSE yes FALSE const-type

CODE xml:space default, preserve yes preserve fixed, can’t be changed

28
A

P
P

E
N

D
IX

A
.

T
H

E
S
Y

N
T
A

X

El
em
en
t

At
tr
ib
ut
e

Va
lu
e

R
eq
ui
re
d

D
ef
au
lt

D
es
cr
ip
tio
n

ATTRIBUTE type text yes - attribute-type
name text yes - attribute-name
desc text yes - attribute-description
init text no - initial value of attribute
access PUBLIC, PROTECTED, PRIVATE yes PRIVATE accessiblity
setMeth TRUE, FALSE yes TRUE create set-method
getMeth TRUE, FALSE yes TRUE create get-method

RELATION type text yes - relation-type
name text yes - relation-name
desc text yes - relation-description
access PUBLIC, PROTECTED, PRIVATE yes PRIVATE accessiblity
multiplicity 1, M, m, N, n yes 1 relation to other class2

setMeth TRUE, FALSE yes TRUE create set-method
getMeth TRUE, FALSE yes TRUE create get-method
addMeth TRUE, FALSE yes TRUE create addTo-method
remMeth TRUE, FALSE yes TRUE create removeFrom-method
clrMeth TRUE, FALSE yes TRUE create clear-method

Table A.2: Arguments for Gaudi Object Description

2(M ≡ m ≡ N ≡ n)

Appendix B

Usage statements

The following two sections show the usage statements for the two tools which
are currently implemented in the Gaudi Object Description package. In order to
use the tools inside a cmt-requirements-file the environement variable $(GAU-
DIOBJDESCROOT) should be set to the directory which defines the version of
the package. Normally this variable is set when ’setup.bat’ or ’source setup.csh’
is executed.

Care has to be taken that all xml-files have the extension ’.xml’ and all di-
rectories that are passed as arguments end with a slash or back-slash.

B.1 GODWriteCppHeader.exe

Usage: GODWriteCppHeader.exe [-h] [-v] [-i] [-o [path]] [-x [path]] xml-file(s)
Produce .h-files out of xml-files

-h display this help and exit
-v display version information and exit
-i add additional file-package-information from ’./AddImports.txt’
-o [path] define possible output-destination with following precedence

-o path use ’path’
-o use environment-variable ’GODDOTHOUT’
default use local directory

-x [path] define location of ’GaudiCppExport.xml’ which holds information
about include-file<->package dependencies, with this precedence

-x path use ’path’
-x use environment-variable ’GODXMLDB’
default use ’$(GAUDIOBJDESCROOT)/xml_files’

xml-file(s) xml-file(s) to be parsed (must have extension ’.xml’)

29

30 APPENDIX B. USAGE STATEMENTS

B.2 GODWriteCppDict.exe

Usage: GODWriteCppDict.exe [-h] [-v] [-o [path]] [-x [path]] xml-file(s)
Produce .cpp-files for the Gaudi Dictionary

-h display this help and exit
-v display version information and exit
-i add additional file-package-information from ’./AddImports.txt’
-o [path] define possible output-destination with following precedence

-o path use ’path’
-o use environment-variable ’GODDICTOUT’
default use local directory

-x [path] define location of ’GaudiCppExport.xml’ which holds information
about include-file<->package dependencies, with this precedence

-x path use ’path’
-x use environment-variable ’GODXMLDB’
default use ’$(GAUDIOBJDESCROOT)/xml_files’

xml-file(s) xml-file(s) to be parsed (must have extension ’.xml’)

List of Tables

3.1 A simple XML-example . 6
3.2 A second simple XML-example 6
3.3 Changes to the requirements-file 7

4.1 XML-characters to be escaped 23

A.1 Syntax of Gaudi Object Description 25
A.2 Arguments for Gaudi Object Description 28

31

List of Figures

2.1 Overview of Gaudi Object Description 5

32

Bibliography

[1] Callot O.; Revised C++ coding conventions; 30 April 2001;
http://weblib.cern.ch/format/showfull?uid=1301345 1951&base=LHBLHB&sysnb=000041

[2] Bray T., Paoli J., Sperberg-McQueen C.M., Maler E.; Extensible Markup
Language (XML) 1.0 (Second Edition); W3C Recommendation 6 October
2000; http://www.w3.org/TR/2000/REC-xml-20001006

33

