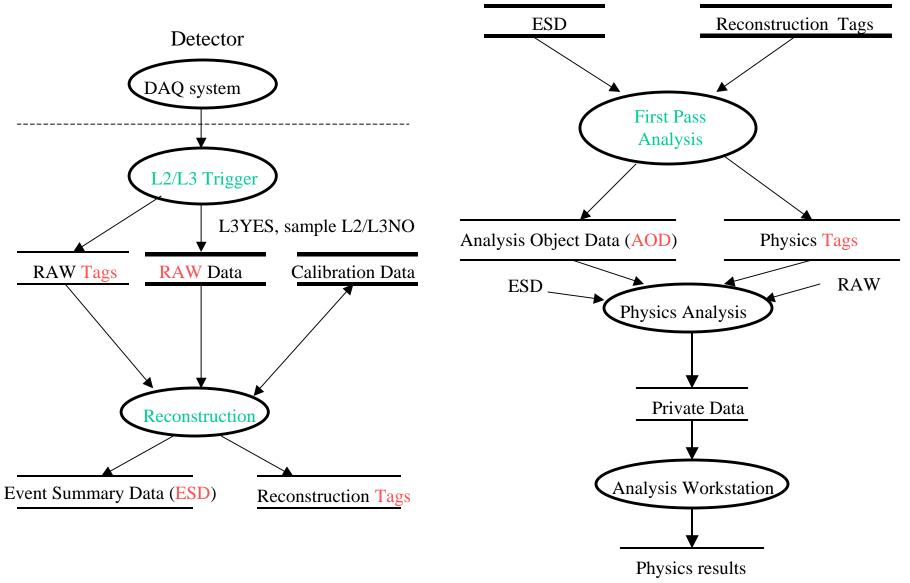
LHCb Computing Model and updated requirements

John Harvey

□ Three technical review panels

- ➤ World wide analysis
- ➤ Software
- ➤ Management and resources
- □ First meeting of each panel took place end March
- LHCb presentations available on web
 - http://lhcb.cern.ch/computing/Steering/Reviews/Hommann-2000/default.htm
- □ Draft LHCb Technical Notes being prepared (see web)
 - ➤ Baseline Computing model
 - ➤ Answers to SPP questions
- Invite feedback
- □ Next meetings April 14th (Panel 3), May 12th (Panels 1,3)


LHC Panel 1 : World-wide analysis

- Give a description of baseline computing model, indicating how it differs from MONARC generic model.
- What is the current tentative distribution of the different regional centres?
- □ Give a tentative assessment for data storage and management and for processing power required at the different centres (now and at the different stages towards LHC start-up).
- Explain your current understanding of your policy regarding magnetic tapes versus disks.
- Given the current status of the implementation of the above model, is the experiment involved/interested in the current GRI D test activities?
- Do you plan Mock Data Challenges or equivalent test-beds to validate your model and provide intermediate services between now and LHC start-up?
- □ What are the resources available/planned for the implementation of the above model (again staggered between now and LHC start-up)?

LHCS Panel 3 : Management and Resources

- Compare computing needs in terms of hardware, software, organization, and manpower, to produce a plan to be presented to the funding agencies.
- Produce an "Interim version of the Memorandum of Understanding " indicating responsibilities of institutions
 - ➤ Include responsibilities for writing and maintenance of the software as has been done for construction of the detector.
- □ First meeting focused on first 6 months of data-taking:
 - Prepare a description of the computing systems needed to calibrate the subdetectors and the related strategy to get from raw data to first "simple" physics analysis.
- □ "world wide physics analysis" left to a following meeting.

Real Data Storage Requirements

Length of period	120 days	10 ⁷ secs	
LHC duty cycle	50%		
Event rate stored	200 Hz	10 ⁷ per day	10 ⁹ per year
RAW data size	100 kB/event	1 TB/day	100 TB/yr
ESD data size	100 kB/event	1 TB/day	100 TB/yr
AOD data size	20 kB/event	0.2 TB/day	20 TB/yr
TAG data size	1 kB/event	0.01 TB/day	1 TB/yr

KHCP Real Data CPU Requirements

L2 trigger CPU	0.25 SI 95sec/event	@40 kHz	10,000 SI 95
L3 trigger CPU	5 SI 95sec/event	@5 kHz	25,000 SI 95
Reconstruction CPU	250 SI 95sec/event	@200 Hz	50,000 SI 95
First Pass Analysis	5 SI 95/event	2.10 ⁸ in 2 days	5000 SI 95
User analysis at RC	20 SI 95/event		10,000 SI 95
User analysis CERN	20 SI 95/event		20,000 SI 95

$\Box 1 \text{ SI95} = 40 \text{ MIPS}$

□ Today 1 PC ~ 10 SI95

□ By 2005 130 SI95/cpu (low cost), 250 SI95 (high end servers)

LHCS User Analysis Requirements

- Assume that physicist performs a production analysis and requires a response time of 4 hours
- □ The ~10⁷ events tagged by first pass analysis are scanned and candidates selected (0.25 SI 95 /event)
- The selected candidates are subjected to analysis algorithm (20 SI 95 / event)
- □ Total installed cpu power needed calculated assuming:
 - ➤ ~140 physicists actively doing analysis
 - >> each submits 1 job / day (NB. many short jobs as well)
 - > analysis distributed over a number of regional centres (~5) and assume ~20 physicists at each Regional Centre, ~40 at CERN
 - > Assume 0.3 x 10^7 events selected for algorithm on average
 - > 10,000 SI 95 at each Regional Centre, 20,000 SI 95 at CERN

Luck Simulation Requirements - Signal Events

\Box CPU power to simulate 10⁷ B -> D* π events in 1 year

- \gg assume need to simulate 10 times real data sample (10⁶)
- ➤ installed capacity needed is 100,000 SI 95

Step	Number of	Cpu time/evt	Total cpu power
	events		
Generator	10 ¹⁰	200 SI 95sec	2. 10 ¹² SI 95sec
GEANT	10 ⁹	1000 SI 95sec	10 ¹² SI 95sec
tracking			
Digitisation	10 [°]	100 SI 95sec	10 ¹¹ SI 95sec
Trigger	10 ⁹	100 SI 95sec	10 ¹¹ SI 95sec
Reconstruction	10 ⁸	250 SI 95sec	2.5 10 ¹⁰ SI 95sec
First Pass	10 ⁷	20 SI 95sec	2. 10 ⁸ SI 95sec
analysis			

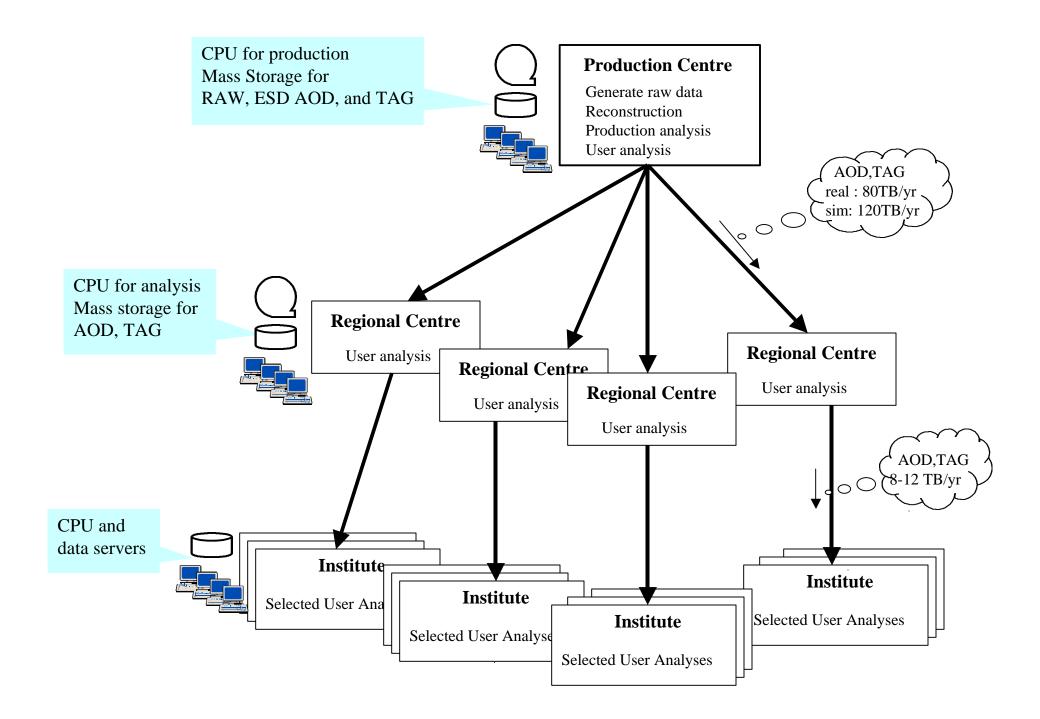
Luck Simulation Requirements - Background

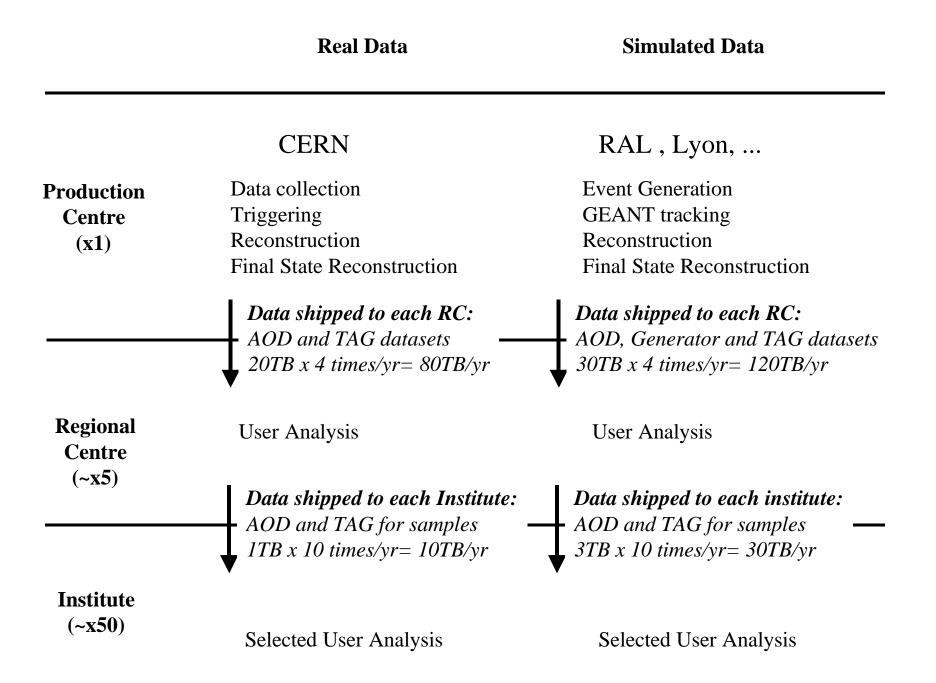
- □ 10⁵ bb inclusive events in detector every second
- □ ~100 Hz are recorded in real data

➤ trigger efficiency 10⁻³

If need as many to be simulated then need to generate, track, digitise and trigger 10¹² bb inclusive events/yr and 10⁹ will have to be reconstructed

➤ corresponds to 3. 10¹⁴ SI 95 sec/yr i.e.10,000,000 SI 95


- □ Obviously need to study ways of optimising background simulation
 - > store and reuse data produced at generator level (storage!)
 - > optimise generation step without biasing physics
 - Focus on background particularly dangerous for a specific physics channel
 - >> aim to reduce requirements by > 1 order of magnitude

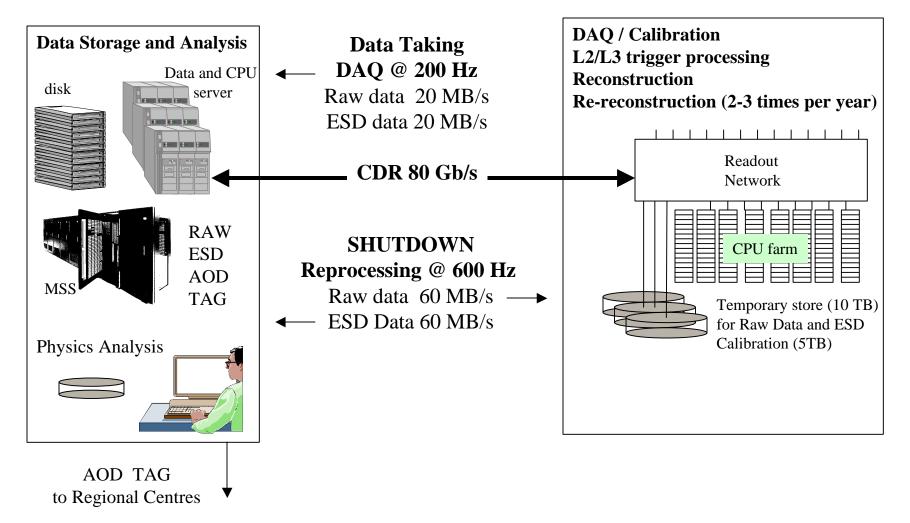

□ Assume 400,000 SI 95 required

Luce Simulation Requirements - Summary

RAWmc data size	200 kB/event	200 TB/10 ⁹ events
Generator data size	12 kB/event	12 TB/10 ⁹ events
ESD data size	100 kB	100 TB/10 ⁹ events
AOD data size	20 kB/event	20TB/10 ⁹ events
TAG data size	1 kB/event	1 TB/10 ⁹ events
CPU power	~100,000 SI 95	~400,000 SI 95
	signal events	background events

□ For comparison the experiments quote
> ALICE (2,000,000), ATLAS/CMS (1,500,000)

LHCP Computing at CERN


- Run high level triggers and reconstruction on same cpu farm located at LHCb pit
- Send RAW and ESD data over the CDR link (80 Gbps) to computer centre for archive, and first pass analysis
- ❑ Maintain local storage at pit in case CDR down >> accumulate 2 TB/day, therefore need >10 TB
- □ Dispatch AOD and TAG etc to regional centres
- During shutdowns, down periods do re-processing of RAW data on the farm in the pit
 - ➤ read RAW back from computer centre
 - ➤ send new ESD from pit to computer centre
 - ➤ full farm available so proceeds at twice the rate
 - ➤ allows 2-3 reprocessings of complete year's data
- □ Flexible, efficient and maintainable solution

LHCb Computing model and updated requirements

CERN Computer Centre

Experiment - LHC Pit 8

CPU Farm	~100,000 SI 95
Disk storage event buffer	> 10 TB
Disk storage calibration and secondary data	> 5TB
CDR link capacity (80 Gb/s)	1 Gb/s

LHCS CERN Computer Centre Requirements

RAW data storage	100 TB/yr
Copy RAW data storage	100 TB/yr
ESD data storage	100 TB/yr
AOD data storage	4 x 20 TB/yr
TAG data storage	1 TB/yr
AODmc, Generator storage	120 TB (30 TB imported 4 times/yr)
TAGmc data storage	4 TB (1 TB imported 4 times/yr)
Total data storage	~500 TB / yr
CPU for First Pass analysis	2000 SI 95
CPU for user analysis	20,000 SI 95
WAN for AOD TAG export	80 TB/yr
WAN for AOD TAG import	124 TB/yr

LHCS Simulation requirements 2000-2005

2000-2001

 $> 10^7$ simulated events/yr for detector optimisation studies

>> prepare TDRs

Q 2002-2003

> 2. 10⁷ events/yr for high level trigger studies

Q 2004 - 2005

- ➤ start to install and commission large scale facilities
- start to produce large samples of background events with the final detector description
- \gg ~10⁸ simulated events/yr

□ >2001

➤ use simulation and MDC to test computing model

> contribute to HEP Application WP of EU grid proposal

KHCS Sizing Estimate for Regional Centre

	2000-2001	2002-2003	2004-2005	>2005
AOD TAG				80TB/yr
AODmc TAGmc imported	2TB/yr	5TB/yr	20TB/yr	120 TB/yr
CPU analysis	3000 SI 95	5000 SI 95	10000 SI 95	10000 SI 95
RAWmc, ESDmc AODmc TAGmc generated	5TB/yr	10TB/yr	33TB/yr	333TB
CPU mc production	20000 SI 95	40000 SI 95	60000 SI 95	100000 SI 95

- Understood in LHCb institutes building subdetectors also take responsibility for development and maintenance of software
- □ The detector TDRs are in preparation now
- MOU after TDRs

- How will our computing needs evolve between now and 2005?
- What regional centres will LHCb use for satisfying these needs? (RAL, CCI N2P3/Lyon, ++...)
- What resources (cpu, storage) will be available for satisfying our simulation needs?
- □ What is our attitude towards making an MOU for computing? Including software? What timescale?
- What level of engagement should we take in Grid Projects?

LHCB GRID LHCb WP Physics Study

- □ The total sample of $B > J\Psi/K_s$ simulated events needed is ~10 times the number produced in the real data.
- □ In one year of datataking we expect to collect and fully reconstruct 10⁵ events, therefore need 10 ⁶simulated events.
- □ The number of events that have to be generated, stored and reconstructed to produce this sample is 10⁻⁷.
- □ 10% of the ESD data copied for systematic studies (~100 GB).
- □ The total amount of data generated in this production would be :

RAW data	200 kB/event	x 10 ⁷	= 2.0 TB
Generator data	12 kB/event	x 10 ⁷	= 0.12 TB
ESD data	100 kB/event	x 10 ⁷	= 1.0 TB
AOD data	20 kB/event	x 10 ⁷	= 0.2 TB
TAG data	1 kB/event	x 10 ⁷	= 0.01 TB

LHCD Grid LHCb WP - Grid Testbed

- MAP farm at Liverpool has 300 processors, would take 4 months to generate the full sample of events
- All data generated (~3TB) would be transferred to RAL for archive (UK regional facility).
- All AOD and TAG datasets dispatched from RAL to other regional centres, such as Lyon and CERN.
- Physicists run jobs at the regional centre or ship AOD and TAG data to local institute and run jobs there. Also copy ESD for a fraction (~10%) of events for systematic studies (~100 GB).
- The resulting data volumes to be shipped between facilities over 4 months would be as follows :

Liverpool to RAL	3 TB (RAW ESD AOD and TAG)
RAL to LYON/CERN/	0.3 TB (AOD and TAG)
LYON to LHCb institute	0.3 TB (AOD and TAG)
RAL to LHCb institute	100 GB (ESD for systematic studies)