
Volumes

Vanya Belyaev∗

ITEP, Moscow

February 27, 2000

Contents

1 General features of geometry tree 1

2 Logical Volumes 2
2.1 ILVolume interface . 2
2.2 class LVolume . 4

3 Physical Volumes 5
3.1 IPVolume interface . 5
3.2 class PVolume . 6

1 General features of geometry tree

The construction of geometry tree withon GAUDI framework is based on the fol-
lowing postulates:

• The geometry tree is constructed from Logical Volumes and Physical Volumes.

• There is no ”up-links” in the geometry tree. It means that each node have no
information about the ”up” (or ”parent”, ”mother”) node.

• Each Logical Volume has an information about its ”down” (”children”) nodes,
represented by Physical Volumes

• Each Logical Volume has information about its shape and dimensions (”solid”).

• Each Logical Volume has an access to the information about the material
content.

• Neither Logical Volumes nor Physical Volumes have no any information about
its absolute position in the space.

• Logical Volumes have no any information about its own position relative to
other Logical Volumes.

• Each Physical Volume has an information about the its position inside the
mother (”parent”) Logical Volume. It is the only available geometry informa-
tion in the whole tree.

∗E-mail:Ivan.Belyaev@itep.ru

1

• All boolean operations on the level of Logical Volumes and Physical Volumes
are strickly forbidden1. If one need to perform boolean operations, one should
rely on boolean operations on the level of Solids. It is one of the most essential
postulates of adopted geometry structure.

The geometry tree which fulfills all these postulates represent a very effective,
simple and convinient tool for description of the geometry. Such tree is easily
formalized. This tree have many features which are similar to the features of the
geometry tree used within Geant4 toolkit and it could be easily transformed to the
Geant4 geometry description.

There exist several general sequences derived from these base postulates:

• According to this schema the top-level Logical Volume (presumably the ex-
perimetal hall, or cave, or the whole LHCb detector) defines the absolute
coordinate reference system. Frankly speaking the null-point (0,0,0) in the
so called ”Global Reference System” is just the center of the top ”Logical
Volume”.

• All geometry calculations, computations, inputs and outputs, performed with
the usage of the Logical Volume are in the local reference system of this Logical
Volume.

• All geometry calculations, computations, inputs and outputs, performed with
the usage of the Physical Volume are in the local reference system of its parent
Logical Volume.

Sometimes one needs to get more effective way of extraction information from the
geometry tree or to perform unique location of the point in the geometry tree. For
these purposes a simplified detector description tree is introduced into the GAUDI
framework2.

2 Logical Volumes

2.1 ILVolume interface

This abstract interface is designed to fulfill the postulates of the geometry tree.
Here the main features and methods of logical volume interface ILVolume are

described:

• const ISolid* solid () const ;
return the solid, associated with the Logical Volume

• const std::string& materialName() const ;
return the material(by name) , associated with the Logical Volume

• const Material* material () ;
return the C++ pointer to the material, associated with the Logical Volume

• ILVolume::ReplicaType noPVolumes () const ;
return number of Physical(positioned) Volumes inside given Logical Volume

• Access to the contained physical volumes
1It is equivalent to the absence of ’MANY’ flag in GEANT3 toolkit
2Within Geant4 toolkit there exists 2 approaches for solving the same problem: Read-Out-

Geometry Tree and Navigator. Our approach is quite close to the combined usage of both.

2

– IPVolume* operator[](const ILVolume::ReplicaType& index);
return C++ pointer to the daughter Physical Volume by index (replica
number)

– IPVolume* operator[](const std::string& name) const;
return C++ pointer to the daughter Physical Volume by it’s name

• More conventional access to the daughter Physical Volumes:

– IPVolume* pvolume(const ILVolume::ReplicaType& index) ;
return C++ pointer to the daughter Physical Volume by index (replica
number)

– IPVolume* pvolume(const std::string& name) const;
return C++ pointer to the daughter Physical Volume by it’s name

• Access via iterators (very useful and practical in conjunction with STL algo-
rithms):

– ILVolume::PVolumes::iterator pvBegin() ;

– ILVolume::PVolumes::const_iterator pvBegin() const ;

– ILVolume::PVolumes::iterator pvEnd () ;

– ILVolume::PVolumes::const_iterator pvEnd () const ;

• Traverse the down-links and transfrom the sequence of replica numbers to the
sequence of C++ pointers to Physical Volumes. These methods are indeed
primary methods for unique locations of points withis geometry tree.

– StatusCode traverse(ReplicaPath::const_iterator pathBegin,
ReplicaPath::const_iterator pathEnd ,

PVolumePath& volumePath);

– StatusCode traverse(const ReplicaPath& replicaPath,
PVolumePath& volumePath) ;

• bool isInside (const HepPoint3D& LocalPoint) const;
return true if the LocalPoint in the local reference system of the Logical
volume is inside the Logical Volume.

• Try to localize the LocalPoint in the local reference system inside the daughter
volumes. Methods returns either the sequence of C++ pointers to the daugh-
ter Physical Volumes or the sequence of the replica numbers . Both methods
are recursive and therefore could be very slow for complicated multi-level
geometry. Sometimes the such very detailed information is not nesessary and
therefore to speedup the method one should choose the appropriate level of
deepth of the tree to be traversed.

– StatusCode belongsTo(const HepPoint3D& localPoint ,
const int level ,
PVolumePath& volumePath);

– StatusCode belongsTo(const HepPoint3D& localPoint ,
const int level ,
ReplicaPath& replicaPath);

• Overloaded print function to std::ostream

• const ILVolume* reset() const ;
This methos performs the full reset to the initial state of the Logical Volume.
All temporary values are cleared. It also triggers the reset() method for all
daughter Physical Volumes and for its own Solid.

3

• Intersection of the Logical Volume with the line. Line is to be parametrized
in the local reference system of the Logical Volume by initial point on the
line and direction vector: �x(t) = �p + �v × t, where t is a parameter. Both
methods fill the output container with intervals of parameter values associated
with the material. Both methods return the size of this outpout container.
Both methods are recursive and therefore could be very slow for multilevel
complicated geometry. To speed-up the methods one could use the appropriate
value of threshold parameter Threshold. If the estimated contribution of the
some volume from the chain to the total radiation thickness (in the units of
radiation length) is less then value of parameter Threshold this volume do
not contribute to the output container. For the second method only values of
line parametrization parameter t from the region tickMin ≤ t ≤ tickMax are
considered.

– /* initial point at the line */
unsigned int intersectLine(const HepPoint3D& Point ,

/* direction vector of the line */
const Hep3Vector& Vector ,
/* output container */

Intersections & intersections ,
/* threshold value */

const double threshold) ;

– /* initial point at the line */
unsigned int intersectLine(const HepPoint3D& Point ,

/* direction vector of the line */
const Hep3Vector& Vector ,
/* output container */

Intersections & intersections ,
/* minimum value of Tick */

ISolid::Tick tickMin ,
/* maximal value of Tick *.

ISolid::Tick tickMax ,
/* threshold value */

const double Threshold) ;

These methods are essential for estimation of the distance in the units of the
radiation length between 2 points.

2.2 class LVolume

The notion of the Logical Volume is implemented within GAUDI framework via
the class LVolume. The essential features of this object are:

• LVolume represents an identifiable object. It inherits from class DataObject,
and therefore it is identified within GAUDI Transiend Store by unique name
(”path”).

• It implements an abstract interface ILVolume.

• It also implements an abstract interface IValidity (not mentioned above).

• Some methods of LVolume class could throw the exception via LVolumeEx-
ception, SolidException and/or PVolumeException classes.

• class LVolume has three constructors:

4

– The default constructor as a quite fragil is declared to be private. It could
be invoked only from methods of appropriate friend class. Currently
class LVolume has only one friend - class XmlLVolumeCnv.

– Public constructors are safe. They require the C++ pointer to ISolid to
ve valid, overwise they throw LVolumeException. class LVolume takes
the fullresposibility for its own Solid. The deletion of Solid is in the
destructor of class LVolume.

LVolume(const std::string& name ,
ISolid* Solid ,

const std::string& material ,
const ITime& validSince ,
const ITime& validTill ,
IDataProviderSvc* dataService = 0 ,
IMessageSvc* messService = 0);

///
LVolume(const std::string& name ,
ISolid* Solid ,

const std::string& material ,
IDataProviderSvc* dataService = 0 ,
IMessageSvc* messService = 0);

• class LVolume take a full responsibility for creation and deletion of the Physical
Volume.

IPVolume* createPVolume(const std::string& PVname ,
const std::string& LVnameForPV);
IPVolume* createPVolume(const std::string& PVname ,

const std::string& LVnameForPV ,
/* position of PVolume inside LVolume */
const HepPoint3D& position);

IPVolume* createPVolume(const std::string& PVname ,
const std::string& LVnameForPV ,

/* position of PVolume inside LVolume */
const HepPoint3D& position,

/* rotation to be applied */
const HepRotation& rotation);

3 Physical Volumes

The notion of the Physical Volume within the adopted geometry schema is extrem-
ply primitive - it is just Logical Volume which is positioned inside its mother Logical
Volume. Frankly speaking it is just a pair of name of the Logical Volume to be
positioned inside the mother Logical Volume and the corresponding transforma-
tion matrix from the local reference system of mother Logical Volume to the local
reference system Logical Volume to be positioned.

3.1 IPVolume interface

This abstract interface is designed to fulfill the postulates of the geometry tree. The
essential methods provided via this interface are:

• const std::string& name() const ;
return the name of the Physical Volume. This name should be unique inside

5

the given mother Logical Volume. The same name can be used inside different
mother Logical Volumes. This name is used in navigation of DetectorElement
(”name-path”).

• const std::string& lvolumeName() const ;
return the name of associated Logical Volume.

• ILVolume* lvolume () const;
return C++ pointer to the associated Logical Volume.

• const HepTransform3D& matrix() const ;
return the transformation matrix from local reference system of mother Logical
Volume to the local reference system of the Logical Volume, associated with
given Physical Volume.

• const HepTransform3D& matrixInv() const ;
return the transformation matrix from local reference system of the Logical
Volume associated with given Physical Volume to the local reference system
of the mother Logical Volume.

• HepPoint3D toLocal (const HepPoint3D& PointInMother) const ;
transform point from reference system of the mother Logical Volume to the
reference system of the Logical Volume, associated with given Physical Volume

• HepPoint3D toMother (const HepPoint3D& PointInLocal) const ;
transform point from local reference system of the Logical Volume associated
with given Physical Volume to the reference system of the mother Logical
Volume,

• bool isInside(const HepPoint3D& PointInMother) const ;
return true if the point in the reference system of mother Logical Volume is
inside the Logical Volume, associated with given Physical Volume.

• Overloaded print-functions and stream operators to std::ostream.

• const IPVolume* reset() const ;
this methos performs the reset of the Physical Volume to the initial state.
All temporaries are cleared. It triggers the reset() method for the associated
Logical Volume.

• Intersection with the line in the space. There exist two methods, which are
identical to the methods in the ILVolume interface, and they just provide the
delegation to the associated Logical Volume.

3.2 class PVolume

The notion of the Physical Volume is implemented within GAUDI framework via
the class PVolume. The essential features of this object are:

• PVolume is not identifiable object.

• It implements an abstract interface IPVolume.

• Some methods of PVolume class could throw the exception via PVolumeEx-
ception, LVolumeException and/or SolidException classes.

• class PVolume has no public constructors. Creation and destroy of objects
are under the constrol of the friend class LVolume.

6

PVolume(const std::string& PhysVol_name ,
const std::string& LogVol_name ,

/* position in Mother Reference Frame!*/
const HepPoint3D& Position ,

/* rotation with respect to Mother Reference Frame*/
const HepRotation& Rotation = HepRotation() ,
IDataProviderSvc* dataService = 0 ,
IMessageSvc* messageService = 0);

7

