Bender v7r0 as your analysis environment

Vanya BELYAEV
References

- **Bender Pages** and **Bender pages** by *Lena Mayatskaya*
- **Bender mailing list**
- **Bender Savannah portal** (news, bugs, tasks, ...)
- **Bender Tutorial**: slides & instructions
- **Bender Examples**
 - including nice scripts from *Diego* for $B_s \rightarrow \mu \mu$ background studies
 - getpack Ex/BenderExample v7r0
- “**Bender-helpdesk@lhcb.cern.ch**”
 - **1-R-010** at CERN
 - +41 (0) 22 767 89 28
When use Bender

- Python: perfect for prototyping
 - e.g. develop the cuts for preselection/stripping
- **Interactive**: perfect for “short” (“supervising”) tasks
 - resolutions
 - spectra
 - “reflections”
- **Flexible & Friendly**:
 - good for “the final” analysis of small data sets
 - combine with Root, Panoramix, RooFit, …
When no Bender

• Stripping does not support Bender.
• Reasons?
 • 😞 *Some CPU penalty* for Bender selections vs LoKi selections is unavoidable (Python vs C++)
 • could be visible/sizeable for “minimal” job
 • mainly comes from the explicit loops, ntuples and explicit manipulations with dictionaries:
 \[\text{sqrt}(p.px() * p.px() + p.py() * p.py()) \]
 • could be very small for realistic selection
 • And of course for well-coded lines
 Negligible with patterns (C++) 😊
Bender v7r0

• The most fresh version of Bender, based on DaVinci v19r1 - official DC06 stripping version

• The tutorial slides are attached to the agenda
 • Here only some highlights:
 • It is already slide #5, and I have only 30 minutes

• *If somebody needs, I would be happy to organize “hands-on” Bender tutorial similar to tutorials in Beijin & Dortmund or semiprivate tutorial for HLT guys.*
from bendermodule import *

gaudi.config(files = ['MyOptionsFile.opt'])

gaudi.run(10)

gaudi.exit()

Well, It is not Bender, it is GaudiPython

Take care about input data!!

../solution/Minimalistic_0.py
Minimal **Bender** module

```python
from bendermodule import *

def configure() :
    gaudi.config( files =
                 [‘MyOptionsFile.opts’])
    return SUCCESS

if __name__ == ‘__main__’ :
    configure()
    gaudi.run(100)

../solutions/Minimalistic.py
```

Application and Components Configuration

Job steering
Scripts vs modules

- Dilemma in Python: scripts vs modules
- Scripts are a bit more intuitive and a bit easier to write
 - Problems with reusing 😊
- Modules require some discipline & conventions 😞
 - full power of OO, including classes & extensions
 - Easy to import and reuse 😊
 - the only way to assemble “large” application from pieces
- Be friendly: code modules
 - loose nothing
 - gain a lot
Scripts versus modules

• Script above:

 import myscript

 Will execute everything out of control

• Module above:

 import mymodule
 mymodule.config()
 gaudi.run(100)
"Hello, World!" (I)

- The simplest possible BENDER "algorithm"
- Follow LoKi's style:
 - *inherit the algorithm from useful base class*
 - (re)implement the "analyse" method

```python
class HelloWorld(Algo) :
    def analyse( self ) :
        print 'Hello, World!'
    return SUCCESS

../solutions/HelloWorld.py
```
"Hello, World!" (II)

- One needs to instantiate the algorithm
 \[
 \text{alg} = \text{HelloWorld}(\text{'Hello'})
 \]

- Add it to the list of 'active' algorithms
 \[
 \text{gaudi.addAlgorithm(alg)}
 \]

- Execute 😊
 \[
 \text{gaudi.run(10)}
 \]

../solutions/HelloWorld.py

Part of job steering block
Access to the data (LoKi’s style)

- **C++: GaudiAlgorithm/LoKi**

```cpp
const MCParticles* mcps = get<MCParticles>("MC/Particles");
```

- **Python: Bender**

```python
mcps = self.get('MC/Particles')
```

Semantics to be improved

../solutions/DataAccess.py
Access to the data using service

• Inside the algorithm

```python
dataSvc = self.evtSvc()
hdr     = dataSvc['Header']
print 'Event #', hdr.evtNum()
```

• Outside the algorithms

```python
dataSvc = gaudi.evtSvc()
hdr     = dataSvc['Header']
print 'Run #', hdr.runNum()
```
Attributes and (python) loops

for mcp in mcps:
 print 'ID=', nameFromPID(mcp.particleID())
 print 'PX=', mcp.momentum().px()
 print 'PY=', mcp.momentum().py()

• To know the available attributes:

 help(obj)
 help(type(obj))
 dir(gbl)

• ON-LINE help for ALL Python/Bender functions/classes, sometimes it is VERY useful

 ../solutions/DataAccess.py
Lets start with physics analysis

- >95% of LoKi’s idioms are in Bender
- The semantic is VERY similar
 - In spite of different languages
 - few ‘obvious’ exceptions
- In the game:
 - All Functions/Cuts
 - a bit more round braces are required
 - All (v,mc,mcv) select methods
 - loops , plots
 - for N-Tuples the functionality is a bit limited
 - A lack of template methods,
 - ‘farray’ need to be validated

Start from MC-truth (requires no special configurations)
MCselect statement

- **Selection of MCParticles which satisfy the certain criteria:**

 \[
 \text{mcmu} = \text{self.mcselect}(\text{`mcmu' ,} , \\
 \text{`mu+' == MCABSID})
 \]

 \[
 \text{beauty} = \text{self.mcselect(}`beauty' , BEAUTY)
 \]

- **Refine criteria:**

 \[
 \text{muFromB} = \text{self.mcselect (`muFromC' ,} \\
 \text{mcmu ,} \\
 \text{FROMMCTREE(beauty))}
 \]

 \[
 \text{muPT} = \text{self.mcselect(`withPT' ,} \\
 \text{muFromB ,} \\
 \text{(MCPT > 1000))}
 \]

 Select $\mu^+ \text{ & } \mu^-$

 Everything which has b or \bar{b}

 Everything from "decay" trees (incl. decay-on-flight)

-LUG, Tab. 13.4, p.84

-..solutions/MCmuons.py
Change input data

• Get and configure EventSelector

```python
evtSel = gaudi.evtSel()
evtSel.open( "file"
```

OR

```python
evtSel.open( [ "file1", "file2"]
```

• e.g.

```python
evtSel.open ( 'LFN:/lhcb/production/DC04/v1/DST/00000543_00000017_5.dst')
```
Find MC-tree (IMCDecayFinder)

Brilliant tool from O.Dormond

- find the MC-decay trees:

\[
\text{mc} = \text{self.mcFinder()}
\]
\[
\text{trees} = \text{mc.find(}
' [B_s0 \rightarrow (J/\psi(1S) \rightarrow \mu^+ \mu^-) \phi(1020)]cc'
\text{)}
\]

- find MC-decay tree components:

\[
\text{phis} = \text{mc.find(}
' \phi(1020) : [B_s0 \rightarrow (J/\psi(1S) \rightarrow \mu^+ \mu^-) \phi(1020)]cc'
\text{)}
\]

- extract ‘marked’ MC-decay tree components:

\[
\text{mus} = \text{mc.find(}
' [B_s0 \rightarrow (J/\psi(1S) \rightarrow \mu^+ \mu^-) \phi(1020)]cc'
\text{)}
\]

../solutions/MCTrees.py
Add simple histos!

for mu in mus:
 self.plot(MCPT(mu)/1000, 'PT of muon from J/psi', 0, 10)

The default values: bins = 100, weight = 1

• Configuration for HBOOK histograms:
 gaudi.HistogramPersistency = 'HBOOK'
 hsvc = gaudi.service('HistogramPersistencySvc')
 hsvc.OutputFile = 'myhistos.hbook'

../solutions/MCTrees.py
Add the simple N-Tuple

tup = self.nTuple(‘My N-Tuple’)
zOrig = MCVXFUN(MCVZ)
for mu in mus :
 tup.column(‘PT’, MCPT (mu))
 tup.column(‘P’, MCP (mu))
 tup.column(‘Z’, zOrig (mu))
tup.write()

Configuration:

myAlg = g.algorithm(‘McTree’)
myAlg.NTupleLUN = ‘MC’
ntsvc = g.service(‘NTupleSvc’)
ntsvc.Output =
[“MC DATAFILE=‘tuples.hbook’ TYP=‘HBOOK’ OPT=‘NEW’ ”]

../solutions/MCTrees.py

To be improved

Vanya BELYAEV
Component Properties

Algorithms

```python
alg = gaudi.algorithm('MyAlg')
alg.NTupleLUN = 'LUNIT'
```

Services

```python
hsvc = gaudi.service('HistogramPersistencySvc')
hsvc.OutputFile = 'histo.file'
```

Tools

```python
MyAlg.PhysDesktop.InputLocations = ['Phys/StdLooseKaons']
```

1st June’2k+7 LBD group meeting

Vanya BELYAEV
The algorithm itself

```python
class MCSTrees(AlgoMC):
    """The algorithm itself""

    ## the main analysis method
    def analyze(self):
        """the main analysis method""

        # get the MDDecayFinder wrapper
        self.MDDecayFinder = self.MDDecayFinder()

        # find all NC trees of interest
        self.finder = self.finder()
        for (E, p, theta) in self.decays:
            self.finder.find()

        print('found NCtrees/Phis/5s: %s' % len(self.decays))

        # fill the histogram
        self.plot(self, self.decays, self.decays, self.decays, self.decays)
```

```python
# configure the job
def configure():
    """configure the job""

gaudi.config()  
```
Go from MC to RC data

• At this moment one knows how to:
 • Deal with MC trees, decays, particles
 • Perform simple (python) loops
 • Deal with the histograms & N-Tuples
 • Some knowledge of ‘configuration’

• For RC data one must perform non-trivial algorithm configuration to be able to run
 • Input for RC particles (or ParticleMaker)
 • Dependency on ‘other’ algorithms (‘PreLoad’)

1st June'2k+7 LBD group meeting
Vanya BELYAEV
Algorithm configuration

desktop = gaudi.property('MyAlg.PhysDesktop')
desktop.InputLocations = ['Phys/StdLooseKaons']

* Similar semantic in configuration (* .opts) files:
 MyAlg.PhysDesktop.InputLocations={"Phys/StdLooseKaons"}

../solutions/RCSelect.py
select/loop statements

muons = self.select ('mu',
 ('mu+'== ABSID) & (PT > (1*GeV))
)
kaons = self.select ('K',
 ('K+'== ABSID) & (PIDK > 0)
)

• Loops:
 pxis=self.loop('mu mu', 'J/psi(1S)')
 phis=self.loop('K K', 'phi(1020)')

..solutions/RCSelect.py
Inside the loops (I)

dmcut = ADMASS(‘J/psi(1S)’) < 50
for psi in psis :
 if not 2500 < psi.mass(1,2) <3500 : continue
 if not 0 == SUMQ(psi) : continue
 if not 0 <= VCHI2(psi) < 49 : continue
 self.plot (M(psi)/1000 ,
 “ di-muon invariant mass” ,
 2.5 , 3.5)
 if not dmcut(psi) : continue
 psi.save(‘psi’)

psis = self.selected(‘psi’)
print ‘# of selected J/psi candidates:‘, psis.size()
Inside the loops (II)

dmcut = ADMASS('phi(1020') < 12
for phi in phis :
 if not phi.mass(1,2) < 1050 : continue
 if not 0 == SUMQ(phi) : continue
 if not 0 <= VCHI2(phi) < 49 : continue
 self.plot (M(phi) / 1000 ,
 " di-kaon invariant mass" ,
 1.0 , 1.050)
 if not dmcut(phi) : continue
 phi.save('phi')

phis = self.selected('phi')
print '# of selected phi candidates:', phis.size()
Inside the loops (III)

dmc cut = ADMI ASS('B_s0') < 100
bs = self. loop ('psi phi', 'B_s0')
for B in bs :
 if not 4500 < B.mass(1,2) < 6500 : continue
 if not 0 <= VCHI2(B) < 49 : continue
 self.plot (M(B) / GeV ,
 " J/psi phi invariant mass" ,
 5.0 , 6.0)
 if not dmc cut(B) : continue
 B.save('Bs')

Bs = self. selected('Bs')
print "# of selected Bs candidates: ", Bs.size()
if not Bs.empty() : self.setFilterPassed (TRUE)

../solutions/RCSelect.py
The last step: MC-truth match

- The simplest case: check if RC particle originates from the certain MC-(sub)tree
 - The most frequent case
 - Check for efficiencies
 - Resolution
- The opposite task: what MC particle “corresponds” to RC particle
 - similar (MC\text{TRUTH} \to \text{RC\text{TRUTH}})
- NB: LoKi (and Bender) uses own concept of MC “loose” matching
 - LUG, chapter 15
MC-truth match

finder = self.mctruth('some name')

* Select MC-particles

mcBs = finder.find(
 ` B_s0 -> (J/psi(1S) -> mu+ mu-) phi(1020)]cc ' `)

mcPhi = finder.find(
 ` phi(1020) : [B_s0 -> (J/psi(1S) -> mu+ mu-) phi(1020)]cc ' `)

mcPsi = finder.find(
 ` J/psi(1S) : [B_s0 -> (J/psi(1S) -> mu+ mu-) phi(1020)]cc ' `)

* Prepare 'MC-Truth cuts'

match = self.mcTruth('some name')

mcCutBs = MCTRUTH (match , mcBs)

mcCutPhi = MCTRUTH (match , mcPhi)

mcCutPsi = MCTRUTH (match , mcPsi)

../solutions/RCMCSelect.py
The last step: MC-truth match

for psi in psis :
 if not mcCutPsi (psi) : continue
...
for phi in phis :
 if not mcCutPhi (phi) : continue
...
for B in bs :
 if not mcCutBs (B) : continue

• Alternatively :

for B in bs :
 psi = B(1)
 phi = B(2)
...
 tup.column ('mcpsi' , mcCutPsi(psi))
 tup.column ('mcphi' , mcCutPhi(phi))
 tup.column ('mc' , mcCutBs (B))
 tup.write()

../solutions/RCMCSelect.py
1st June'2k+7 LBD group meeting

Vanya BELYAEV

```python
# neutral combination:
if not 0 <= B mass ( psi1 ) : continue
## check the chi2 of the vertex fit
if not 0 <= VCHI2 ( psi1 ) : continue
self.plot (H[psi1] / 1000 ,
    " dimuon invariant mass ",
    2.5 , 1.5 )
if not dmPhi( psi1 ) : continue
psi1.save( psi1 )
## save J/psi
## delta mass cut for phi
dmPsi1 = ADEMASS ( psi1(1020) ) < 20
## prepare the loop over dimuons
phi1 = self.loop ( 'K' , 'phi(1020)' )
for phi in phi1 :
    ## use ONLY* Monte-Carlo cuts
    if not mcCutPhi( phi ) : continue
    ## ATTENTION: only true phi
    if phi.mass( 1,2 ) > 1050 : continue
    # neutral combination ?
    if not 0 <= B mass ( phi ) : continue
    if not 0 <= VCHI2 ( phi ) : continue
    self.plot ( H[phi] / 1000 ,
        " dimuon invariant mass ",
        1.0 , 1.050 )
    if not dmPhi( phi ) : continue
    phi.save( phi )
## delta mass cut for Bc
dmPsi2 = ADEMASS ( Bc ) < 100
## prepare the loop over psi1+phi1 combinations
hs = self.loop ( 'psi1 phi' , 'Bc' )
for h in hs :
    ## use ONLY* Monte-Carlo cuts
    if not mcCutBc ( h ) : continue
    ## ATTENTION: only true Bc
    if 0 <= Bc.mass( 1,2 ) / 1000
    if not 4.5 < m : continue
    if not 0 < VCHI2 ( Bc ) : continue
    self.plot ( H[Bc] / 1000 ,
        " psi1 phi1 invariant mass ",
        5.0 , 5.0 )
    if not dmBc ( h ) : continue
    Bc.save( Bc )
# check selected particles:
Bc = self.selected( 'Bc' )
if not Bc.empty() : self.setFilterPassed [ True ] ) # FILTER PASSED
```

1st June'2k+7 LBD group meeting
• Algorithm: 81 lines
 • 55% - comments
• Configuration & steering: 44 lines
 • 40% comments
• Select true “reconstructed” Bs with loose cuts: fine for cuts investigation
Other features, out of scope

- Nice printout of trees, particles, events
- Various “extractors” and metafunctions
- HepMC + HepMCParticleMaker
- Jets, Jets maker, LoKi-kt-Jet
- Tools for background origin studies
- Patterns
- “Hybrid”: now also for MCParticles
 - “IFilterCriterion” in python
 - “IMCParticleSelector” in python
- and much much more...

As concerns the functionality needed for analysis, Bender is full scale application, widely used for physics studies
References again...

- **Bender Pages** and **Bender pages** by *Lena Mayatskaya*
- **Bender mailing list**
- **Bender Savannah portal** (news, bugs, tasks, …)
- **Bender Tutorial**: slides & instructions
- **Bender HyperNews**, TWiki, FAQ, User Guide and Manual: 😞 not yet. still in the bottle of inc
- **Bender Examples**
 - including nice scripts from *Diego Martitez Santos* for $B_s \rightarrow \mu \mu$
 - background studies
 - getpack Ex/BenderExample v7r0
- "**Bender-helpdesk@lhcb.cern.ch**"
- **1-R-010 at CERN**
- +41 (0) 22 767 89 28