

8 Utility Tools

8.1 Debug tool

Debug tool

Goal: Provide user friendly dump of the event

- Work on both reconstructed and MC data.
- Side by side print out of reconstructed and MC data.
- Informations can be selected by the user.
- Flat or Tree display.

8.1-1 DaVinci Tutorial

Debug tool usage

Getting the tool

Get the definition #include "DaVinciMCTools/IDebugTool.h"

Declare your instance IDebugTool *m_debug

Get your instance toolSvc()->retrieveTool("DebugTool", m_debug)

Using the tool

Event as trees m_debug->printEventAsTree(mcparts [, assoc])

Particle decay as tree m_debug->printTree(part [, depth])

Event as a flat list m_debug->printEventAsList(parts [, assoc])

Ancestors m_debug->printAncestor(mcpart)

8

8.1-2 DaVinci Tutorial

Debug tool output

<			MCParti	icle			>
	Name	Е	M	P	Pt	phi	Vz
		GeV	GeV	GeV	GeV	mrad	Cm
B0		29.828	5.279	29.358	7.666	-29.331	-1.780
+>J/psi(1S)		29.119	3.097	28.954	7.707	4.943	-1.450
+>mu+		23.835	0.106	23.835	7.396	69.765	-1.450
+>mu-		5.284	0.106	5.283	0.580	-967.540	-1.450
+>nu_e		0.046	-0.000	0.046	0.041	58.550	1932.276
+>e-		0.039	0.001	0.039	0.038 -	2650.137	1932.276
+>nu_e		0.021	-0.000	0.021	0.017	1996.055	1932.276
+>KS0		0.710	0.498	0.506	0.267 -	1736.262	-1.450
+>pi+		0.280	0.140	0.243	0.167	2955.913	-0.167
+>mu+		0.110	0.106	0.030	0.019 -	1545.998	234.307
+>nu_e		0.017	0.000	0.017	0.007	2418.076	234.307
+>e+		0.036	0.001	0.036	0.030	2629.653	234.307
+>nu_e		0.052	-0.000	0.052	0.037	-554.517	234.307
+>nu_e		0.030	0.000	0.030	0.019	1595.595	234.307
+>pi-		0.429	0.140	0.406	0.317 -	1182.472	-0.167

8.1-3 DaVinci Tutorial

Debug tool side by side output

<	MCParticle			><	Par	ticle	>
	Name	P	Pt	5	Name	P	Pt
		GeV	Ge/	I		GeV	GeV
B0	29.	358	7.666	No	associated	particle	
+>J/psi(1S)	28.	954	7.707	No	associated	particle	
+>mu+	23.	.835	7.396	No	${\tt associated}$	particle	
+>mu-	5.	283	0.580	mu-	į	5.272	0.578
+>nu_e	0.	.046	0.041	No	${\tt associated}$	${\tt particle}$	
+>e-	0.	.039	0.038	No	${\tt associated}$	${\tt particle}$	
+>nu_e	0.	021	0.017	No	${\tt associated}$	${\tt particle}$	
+>KS0	0.	506	0.267	No	${\tt associated}$	${\tt particle}$	
+>pi+	0.	243	0.167	No	${\tt associated}$	${\tt particle}$	
+>mu+	0.	.030	0.019	No	${\tt associated}$	${\tt particle}$	
+>nu_e	0.	017	0.007	No	${\tt associated}$	${\tt particle}$	
+>e+	0.	.036	0.030	No	${\tt associated}$	${\tt particle}$	
+>nu_e	0.	.052	0.037	No	${\tt associated}$	${\tt particle}$	
+>nu_e	0.	.030	0.019	No	${\tt associated}$	${\tt particle}$	
+>pi-	0.	406	0.317	No	${\tt associated}$	particle	

8.1-4 DaVinci Tutorial

Debug tool List and Ancestors output

Flat list

<	- Particle -		>
Name	e Vz	Vz	Vz
	Cm	Cm	Cm
pi+	0.645	0.537	64.9
pi-	0.385	-0.729	28.9
e-	-0.735	7.2	484
pi+	0.393	0.728	28.9
mu-	5.97	15.5	487
pi+	6.01	15.2	488
pi-	-0.293	0.899	15.4
e-	-3.85	-6.23	232
mu-	0.664	-0.854	7.93
gamma	-205	-295	1.26e+03

Ancestors

pi0 -> gamma -> e+

8.1-5 DaVinci Tutorial

Debug tool configuration

In the jobOption file:

- User can select the informations to dump.
- Width of the columns can be adjusted.
- Numerical precision can also be tuned.
- Tree depth can be limited in general.

Available informations are:

Name
E
The particle name (plus the tree drawing)
E
The energy
The mass
P, Pt, Px, Py, Pz
The momentum
Vx, Vy, Vz
The position of the first measured point
theta, phi
The spherical angles

theta, phi The spherical angles
eta The pseudo-rapidity

8

8.1-6 DaVinci Tutorial

Debug tool example jobOption

```
// Defaults for DebugTool
MyToolOwner.DebugTool.PrintDepth = 999;
MyToolOwner.DebugTool.TreeWidth = 20;
MyToolOwner.DebugTool.FieldWidth = 10;
MyToolOwner.DebugTool.FieldPrecision = 3;
MyToolOwner.DebugTool.Informations = "Name E M P Pt phi Vz";
```


8.1-7 DaVinci Tutorial

8.2 (MC)DecayFinder

(MC)DecayFinder

Goal: Find any inclusive or exclusive decay in an event

- Work at the particle ID level.
- Work on both reconstructed and MC data.
- Find multiple instances of the decay.
- Use a simple description of the decay.

8.2-1 DaVinci Tutorial

(MC)DecayFinder usage Getting the tool

Get the definition #include "DaVinciMCTools/I(MC)DecayFinder.h"

Declare your instance I(MC)DecayFinder *m_finder

Using the tool

```
const (MC)Particle *result = NULL;
while( m_finder->findDecay( (mc)parts, result ) )
{
  // The decay has been found
  m_debug->printTree( result );
}
```

Or to simply test for the presence of the decay

bool found = m_finder->hasDecay((mc)parts)

8.2-2 DaVinci Tutorial

(MC)DecayFinder configuration

Only two parameters exists:

Decay The decay we are looking for. Must be set in the jobOption file.

ResonanceThreshold The lifetime under which a particle is considered a resonance. Default provided.

8.2-3 DaVinci Tutorial

(MC)DecayFinder decay grammar

A decay is a

mother

or

Use => instead of -> if you want to skip the resonances.

A mother is either

- a particle name or !name or ?
- (name)
- [name] os
- $[name_1, name_2] cc$
- {mother₁, mother₂,...}
- pp

A daughter is either

- a particle name or !name or ?
- (decay)
- [name₁, name₂] cc
- { $mother_1$, $mother_2$,...}
- {(decay₁), (decay₂),...}
- . . .

8.2-4 DaVinci Tutorial

(MC)DecayFinder grammar examples

```
any B^0
B0
                                                     any stable B^0
(B0)
                                                     any stable \pi^+
(pi+)
                                                     any stable J\Psi
J/psi(1S)
                                              any \pi^0 decay to 2 \gamma
pi0 -> gamma gamma
                                            any B^0, \bar{B}^0, B^+ or B^-
[B0,B+]cc
pp => [K-]cc
BO \rightarrow (J/psi(1S) \rightarrow mu + mu - ) (KSO \rightarrow pi - pi + )
BO -> (J/psi(1S) -> mu+ mu- {gamma,}) (KSO -> pi- pi+)
BO => mu + mu - gamma (KSO -> pi + pi -)
```

8.2-5 DaVinci Tutorial

8.3 Gaudi utilities: a reminder

Printing

To print out informations use the *MessageService* and not cout. Because:

- It works like cout.
- It adds a severity tag to your message.
- It tells the user from where the message is coming.
- It can be filtered based on severity.

8.3-1 DaVinci Tutorial

Printing How-To

- Get the definition of this facility.

 #include "GaudiKernel/MsgStream.h"
- Create a stream.

 MsgStream log(msgSvc(), name())
- Print!

```
log << MSG::DEBUG << "Hello World!" << endreq</pre>
```


8.3-2 DaVinci Tutorial

Severity & Notes

The available severity levels are (in increasing order):

• MSG::DEBUG

• MSG::INFO

• MSG::WARNING

• MSG::ERROR

• MSG::FATAL

One *request* to the Message Service can be split. You just need to start it with a severity tag and end it with a endreq.

 $\label{log} $$\log << MSG::INFO << "Momentum along x: " << mypart->momentum().px()/GeV << endl; $$ double ptx = sqrt(pow(mypart->momentum().py(),2)+pow(mypart->momentum().pz(),2)); $$ log << "Momentum in yz plane: " << ptx/GeV << endreq; $$$

8.3-3 DaVinci Tutorial

Ntuple

To use a Ntuple you have to

- 1. Declare the variables of your ntuple.
- 2. Create the ntuple.
- 3. Register the ntuple.
- 4. Register your variables to your ntuple.
- 5. Fill the variables & commit.
- 6. Adjust the NtupleSvc.Output in your jobOption file.

Note that step 2. could fail if the ntuple already exists.

8.3-4 DaVinci Tutorial

Ntuple variables declaration

First get the definition of what kind of items can be put in the ntuple.

#include "GaudiKernel/NTupleItems.h"

Than declare your variables with the appropriate type.

```
NTuple::Item<long> m_nPart;
```

NTuple::Array<float> m_px, m_py, m_pz;

NTuple::Matrix<float> m_trackEnds_x, m_trackEnds_y, m_trackEnds_z;

Array and Matrix can only be used with a column wise ntuple.

8.3-5 DaVinci Tutorial

Ntuple creation & booking

First check if your ntuple has already been registered.

```
NTuplePtr MyNtuple(ntupleSvc(), "MyFileKey/MyDirectory/MyID");
```

If not (MyNtuple == 0) then create and book your ntuple.

Here it was created in *MyDirectory* as *MyID* in the file associated to *MyFileKey*.

8.3-6 DaVinci Tutorial

Ntuple setup

Attach the variables to the ntuple.

```
status = nt->addItem ("NParts", m_nPart, 0, 5000);
if( status.isSuccess() )
  status = nt->addIndexedItem ("px", m_nPart, m_px);
if( status.isSuccess() )
  status = nt->addIndexedItem ("vx", m_nPart, 2, m_trackEnds_x);
```

Or if it already exists, reattach the variables.

```
status = nt->item ("NParts", m_nPart);
if( status.isSuccess() )  status = nt->item ("px", m_px);
if( status.isSuccess() )  status = nt->item ("vx", m_trackEnds_x);
...
```

8.3-7 DaVinci Tutorial

Ntuple filling

Use the variables you associated to the ntuple as usual. When you are ready to write the row of the ntuple out, simply call the write method.

ntuple->write()

After that call, all the variables will be reset to zero.

8.3-8 DaVinci Tutorial

Ntuple jobOption settings

Be sure to have the NTuple service loaded (it is by default in DaVinci).

ApplicationMgr.ExtSvc += { "NTupleSvc" };

Then to have your ntuple saved to disk you need to say what kind of persistence format you want.

For the traditional HBOOK format:

NTupleSvc.Output={"MyFileKey DATAFILE='MyFileName.hbook' TYP='HBOOK' OPT='NEW'"};

For the more recent ROOT format:

NTupleSvc.Output={"MyFileKey DATAFILE='MyOtherFileName.rt' TYP='ROOT' OPT='NEW'"};

8.3-9 DaVinci Tutorial

Histogram

To use the histogram facility you have to

- 1. Select the kind of persistence you want (Hbook or Root).
- 2. Adjust the jobOption file.
- 3. Create & register your histograms.
- 4. Fill them.

7

8.3-10 DaVinci Tutorial

Histogram persistence

Histogram persistence can be achieved with either Hbook or Root.

To change the default of Hbook to Root you must change the requirement file of DaVinci to

#use HbookCnv v12r0 use RootHistCnv v6r0

You also need to change the jobOption file to

```
\\#include "$STDOPTS/Hbook.opts"
\\HistogramPersistencySvc.OutputFile = "Histos.hbook";
#include "$STDOPTS/RootHist.opts"
HistogramPersistencySvc.OutputFile = "Histos.rt";
```


8.3-11 DaVinci Tutorial

Histogram creation

Get the headers defining the histograms.

```
#include "GaudiKernel/IHistogramSvc.h"
#include "AIDA/IHistogram1D.h"
```

Declare the variable which will contain your histogram.

IHistogram1D *m_hB0Mass

Create and book your histogram.

8.3-12

DaVinci Tutorial

Histogram filling is straightforward.

m_hBOMass->fill(candB0.mass()/GeV, 1.)

Always divide the value by the unit so you don't have to remember the default units.

8.3-13 DaVinci Tutorial