

6.

Manipulating data: Vertexing

Geometrical Vertex Fitter

Performs an unconstrained fit of a vertex given any number of particles. If any of the input particles is a resonance, it uses the daughters.
Interface: IVertexFitter
StatusCode fitVertex (const ParticleVector\&, Vertex\&); StatusCode fitVertex (Particle\&, Particle\&, Vertex\&); StatusCode fitVertex(Particle\&, Particle\&, Particle\&, Vertex\&) ;
Concrete Class: UnconstVertexFitter Equations in LHC-B/TN/95-01.
The Vertex type is set to "Decay". Number of degrees of freedom is $2 \mathrm{~N}-3$.

Geometrical Vertex Fitter (cont)

Usage:

(iMuMinus and iMuPlus are ParticleVector::iterator objects.)
Vertex MuMuVertex;
StatusCode scMuMuVertex = vertexFitter()->
fitVertex (* (*iMuMinus) , *(*iMuPlus) , MuMuVertex) ;
Or put all the input particles in one ParticleVector:
ParticleVector vMuComb;
vMuComb. push_back(*iMuMinus);
vMuComb. push_back(*iMuPlus) ;
Vertex MuMuVertex;
StatusCode scMuMuVertex = vertexFitter()->
fitVertex (vMuComb, MuMuVertex) ;

Particle Stuffer

Fills a (composite) Particle object given a particle ID and a vertex that has been previously filled by following the links to the particles that originated the vertex.
Interface - IParticleStuffer
StatusCode fillParticle(const Vertex\&, Particle\&, const ParticleID\&);
Concrete Class - ParticleStuffer calculates the mother particle attributes by combining the ones from the products of the vertex.

- four-momentum \rightarrow sum of the daughter's four-momentum
- mass() (and its error) \rightarrow obtained from the four-momentum.
- particle ID \rightarrow given as input
- PointOnTrack() (and its error) \rightarrow vertex position.
- four-momentum - point correlation error \rightarrow zero for the moment.
- isResonance() \rightarrow set to $\mathbf{1}$ if $\tau<10^{-15}$ s

Usage:

Assuming that MuMuVertex is a Vertex object that has already been filled
Particle candJpsi;
ParticleProperty* partProp = ppSvc->find("J/psi(1S)");
m_jpsiID = (*partProp).jetsetID();
ParticleID jpsiPID(m_jpsiID);
StatusCode scStuff = particleStuffer()->
fillParticle(MuMuVertex, candJpsi, jpsiPID);

Mass constrained Vertex Fitter

Particles are constrained to cross one point in space and their invariant mass is constrained to the PDG value of a given decaying particle.
Interface: IMassVertexFitter
StatusCode fitWithMass (const std::string\&, const ParticleVector\&, Vertex\&, Particle\&);
StatusCode fitWithMass(const std::string\&,

> Particle\&, Particle\&, Vertex\&, Particle\&);

StatusCode fitWithMass(const std::string\&,
Particle\&, Particle\&, Particle\&, Vertex\&, Particle\&);
An object Vertex and an object Particle are returned with all their parameters set.

Mass constrained Vertex Fitter (cont)

Concrete Class: LagrangeMassVertexFitter Equations in LHCb Phys Note 98-051. Fits up to four particles. If any input particle is a resonance with $\Gamma<1 \mathrm{MeV}$, it uses the daughters to fit.

- composite particle's 4-momentum \rightarrow sum of the modified daughter particles
- mass() method \rightarrow PDG value.
- The original parameters of the daughter particles are not modified.
- The Vertex type \rightarrow "DecayWithMass"
- Number of degrees of freedom $\rightarrow \mathrm{N}$

Mass constrained Vertex Fitter (cont)

Usage:

StatusCode scLagFit = massVertexFitter()->
fitWithMass("J/psi(1S)", *(*iMuMinus),*(*iMuPlus), jpsiVtx, jpsi);
Or put all the input particles in one ParticleVector as in the Geometrical Vertex Fitter

