
9
Associators

How to relate objects to each other
Create relations
Save relations

Use relations: Associators

9.2 DaVinci Tutorial

Relations between objects

• Which type of objects
– Any object: int, double, complex class, keyed/contained objects…
– Most interesting: two sets of contained objects

• What is a relation?

From set To set

9.3 DaVinci Tutorial

Types of relations

• One or two directional (1D / 2D)
– But reverse relations can always be retrieved from direct relations
– Hence, only 1D relations are made persistent
– Advice: create only 1D relations, unless both usages are frequent

• Normal relations
– Simple link between objects
– Not necessarily between all objects of each set
– Possibly several links from/to an object

• Weighted relations
– The link carries additional information (can be any class)

An ordering should be possible on the WEIGHT class
Example: int, double
But could be complex class with the == and < operators defined

9.4 DaVinci Tutorial

How to create relations
1. Instantiate the relation table (in the creation algorithm)

#include “MyAssociator.h”
. . . .
new Table* table; // The type “Table” is defined in MyAssociator.h

2. Usually one loops on all objects in the FROM set
for(from_iterator frIt=from.begin(); from.end()!=frIt; frIt++) {

3. For each object, decide which objects of the TO set to link
to, possibly which weight.
double weight = computeWeight(frIt, toIt);
if(weight > 0) { // Example of how to decide

4. Establish the relation
table->relate(*frIt, *toIt [, weight]);

9.5 DaVinci Tutorial

How to save relations (1)

• Once the table is filled
• Optionally apply filters (if weighted)

FromObj* from;
ToObj* to;
Weight threshold;
table->filterFrom(from, threshold, {false,true});
// Keeps only relations with weight > (true) or > than a threshold

• Optionally remove some relations (all)
table->removeFrom(from);
table->removeTo(to);

9.6 DaVinci Tutorial

How to save relations (2)

• Declare the relations table in the transient store
StatusCode sc =
eventSvc()->registerObject(outputData(), table);

// outputData() returns the location in TES
// it should be declared as a property of the algorithm

• If the table should be discarded (e.g. in case of error)
– Do not forget to

delete table; // avoid memory leaks!

9.7 DaVinci Tutorial

How to use relations?

• In order to use relations, the user algorithm should use a
Gaudi tool called an Associator

• Generic Associator tool available
• Guidelines for Associators

– Specialise the associator (for ease of use)
– New class derived from the class Associator
– For weighted Associators: class AssociatorWeighted

• Where does the tool look for the table?
– The tool looks in the TES
– If not found, it tries and get it from the PES
– If not found, one can define a construction algorithm which should

save the relations table in the TES (at the location they are expected!)

9.8 DaVinci Tutorial

Associators
• Naming conventions

– Type of the Associator tool
class FromObj2ToObjOtherInfoAsct : public

Associator[Weighted]<FromObj,ToObj[,Weight]> { . . . };
OtherInfo is optional (should not reflect the method used but the content)

– If ToObj and FromObj can be “factorised”, do not repeat the common
part in ToObj
class Particle2MCWeightedAsct;
class ITCluster2MCParticleAsct;

– Type for the relations table
FromObj2ToObjOtherInfoAsct::Table

– Type for the Associator tool interface
FromObj2ToObjOtherInfoAsct::IAsct

9.9 DaVinci Tutorial

Declaring an associator
• In MyAssociator.h (note that “Weighted” is only in case of weighted relations)

#include "Relations/AssociatorWeighted.h”
. . . .
class Particle2MCWeightedAsct :

public AssociatorWeighted<Particle,MCParticle,double>
{
public:

// Define data types
// Define the relations table, templated class
typedef RelationWeighted1D<Particle,MCParticle,double> Table;
// Defines the type of the base associator
typedef OwnType Asct;

. . . .
// Minimal constructor
Particle2MCWeightedAsct(const std::string& type, const std::string& name,

const IInterface* parent)
: Asct(type, name, parent) { };

}

9.10 DaVinci Tutorial

Declaring an associator (2)
• Declare types for retrieving ranges of objects

– When getting objects related to a given From (To) object, one gets a “range”
– A “range” can be seen as a list/vector of objects
– A “range” has an iterator, with the usual begin() and end() methods
– For ease of use, one can define meaning full types for ranges, e.g.

typedef Particle2MCWeightedAsct::FromRange ParticlesToMC;
typedef Particle2MCWeightedAsct::FromIterator ParticlesToMCIterator;
typedef Particle2MCWeightedAsct::ToRange MCsFromParticle;
typedef Particle2MCWeightedAsct::ToIterator MCsFromParticleIterator;

• DLL file for loading the tool
– MyAssociators_dll.cpp
#include "GaudiKernel/LoadFactoryEntries.h"
LOAD_FACTORY_ENTRIES(PhysAssociators)

9.11 DaVinci Tutorial

Declaring an Associator (3)

• A _load.cpp file must be defined to declare the necessary
factories
– MyAssociators_load.cpp:

#include "DaVinciAssociators/Particle2MCWeightedAsct.h”
// Declare factory for the associator
DECLARE_TOOL_FACTORY(Particle2MCWeightedAsct);
// Declare factory for the relations table
DECLARE_OBJECT_FACTORY(Particle2MCWeightedTable);
. .
DECLARE_FACTORY_ENTRIES(PhysAssociators) {

DECLARE_OBJECT(Particle2MCWeightedTable); // Declare the Table object
DECLARE_TOOL(Particle2MCWeightedAsct); // Declare the Associator tool
DECLARE_ALGORITHM(Particle2MCWeighted); // Declare the construction algorithm

}

9.12 DaVinci Tutorial

Retrieving an Associator

• An instance of the tool should be created in the user
algorithm
– Returns a pointer to an Associator interface (type Iasct*):
Particle2MCWeightedAsct::IAsct* m_pAsctWithChi2; ///< Pointer to associator with chi2

as weight
. . . .
// This is the Particle2MCWeighted tool
sc = toolSvc()->retrieveTool("Particle2MCWeightedAsct",

m_pAsctWithChi2);

/// “Particle2MCWeightedAsct” is the type of the tool (as in _load)
/// m_pAsctWithChi2 is a pointer to the interface used later on

[“MyAssociator”,]

/// [“MyAssociator”,] is an optional private name to that tool

9.13 DaVinci Tutorial

Using an Associator
• Retrieve a range of ToObj given a FromObj

Particle* part = . . . ;
. . .
MCsfromParticle mcParts = m_pAsctWithChi2->rangeFrom(part);
MCsfromParticleIterator mcPartsIt;
for(mcPartIt = mcParts.begin(); mcParts.end() != mcPartIt; mcPartIt++) {
. . .

// CAUTION: *mcPartIt is not of type MCParticle!!!
MCParticle* mcPart = mcPartIt->to();
Weight weight = mcPartIt->weight();

}

• Similarly one can retrieve a range of FromObj given a ToObj
Particle* part = . . . ;
. . .
ParticlesToMC parts = m_pAsctWithChi2->rangeTo(mcPart);

9.14 DaVinci Tutorial

Using an Associator (2)
• Often, relations are one-to-one between the two sets

– Possibly no linked object, but never 2 or more
– Shortcut to directly access the object:

MCParticle* mcPartChi2;
double chi2;
mcPartChi2 = m_pAsctWithChi2->associatedFrom(*part[, chi2]);
if(mcPartChi2) {

// There was an associated MCParticle
} else {

// There was no associated MCParticle OR there was not relations table
}

9.15 DaVinci Tutorial

Using an Associator (3)
• Advanced usage of weighted associators

– One can retrieve relations which have a weight larger (smaller) than a
threshold

Particle* part = . . . ;
. . .
MCsfromParticleChi2 mcParts =

m_pAsctWithChi2->rangeWithHighCutFrom(part, maxChi2);
// This will return a range containing only associated MCParticles
// if the weight (I.e. the chi2) is smaller than maxChi2

– No one-to-one retrieval method with cut, but trivially
double chi2;
mcPartChi2 = m_pAsctWithChi2->associatedFrom(*part, chi2);
if(mcPartChi2 && chi2 < maxChi2) {

// There was an associated MCParticle with chi2 < maxChi2
}

9.16 DaVinci Tutorial

Using an Associator (4)

• Miscellaneous features
– Testing if the relations table is present
if(false == m_pAsctChi2->tableExists()) {

// The table doesn’t exist
} else {

// One can retrieve information safely
}

– Getting a status code when retrieving a range
Range range;
StatusCode sc = m_pAsct->rangeFrom(from, range);
if(sc.isSuccess()) {

// One can use range safely
}

9.17 DaVinci Tutorial

JobOptions for Associators
• Properties of the base class

– No default: to be defined in the constructor using
set_property(name, value);

– Location of the relations table in the TES
Toolsvc.Particle2MCWithChi2Asct.Location = "Phys/Relations/Particle2MCWithChi2";

– Convention for the location name:
Root: the TES branch of the “To” objects
/Relations
Leaf: name of the Associator

– Creation algorithm
ToolSvc.Particle2MCWithChi2Asct.AlgorithmType = "Particle2MCWithChi2";
ToolSvc.Particle2MCWithChi2Asct.AlgorithmName = "Particle2MCWithChi2";

– Note: one can give an alternate name to the Associator and/or to the
algorithm… The same Associator can be used twice with different
settings

9.18 DaVinci Tutorial

JobOptions for Associators (2)

• Example of dual usage of a single associator
– In the code, retrieve the same tool with two different names

// First the WithChi2 associator (of type Particle2MCWeightedAsct)
sc = toolSvc()->retrieveTool(“Particle2MCWeightedAsct”, “WithChi2Asct”, m_pAsctWithChi2);
// This is another type of Particle2MC tool, differentiated by jobOptions
sc = toolSvc()->retrieveTool(“Particle2MCWeightedAsct”, "LinkAsct", m_pAsctLinks);

– In the JobOptions file, declare different locations and algorithms
// first associator using chi2 as weight
Toolsvc.WithChi2Asct.Location = "Phys/Relations/Particle2MCWithChi2";
ToolSvc.WithChi2Asct.AlgorithmType = "Particle2MCWithChi2";
ToolSvc.WithChi2Asct.AlgorithmName = "Particle2MCWithChi2";
// alternate associator using stored links
Toolsvc.LinkAsct.Location = "Phys/Relations/Particle2MCLinks";
ToolSvc.LinkAsct.AlgorithmType = "Particle2MCLinks";
ToolSvc.LinkAsct.AlgorithmName = "Particle2MCLinks";

9.19 DaVinci Tutorial

Further features

• Location of the table
– Advise:

Use as for containers a static const definition in the .h file
static const std::string& Particle2MCAsctLocation = "Phys/Relations/Particle2MC";

Define the Associator property (in the Associator constructor)
setProperty(location, Particle2MCAsctLocation);

Use for registering in the TES OutputTable as property of the algorithm
declareProperty("OutputTable", m_outputTable = Particle2MCAsctLocation);
. . .
StatusCode sc = eventSvc()->registerObject(outputTable(), table);

The associator automatically sets the OutputTable property of the
algorithm

9.20 DaVinci Tutorial

DaVinci Associators

• Package Phys/DaVinciAssociators
• Many associators defined, with various creation algorithms

UserAlgo

Particle2MCWeightedAsct

ProtoParticle2MCAsct

Particle2MCWithChi2

ChargedPP2MC

Particle2MCLinks

TES

/Phys/…/Particles

/Phys/Relations/Particle2MCLinks

/Phys/Relations/ProtoParticle2MC

/Phys/Relations/Particle2MCWithChi2

9.21 DaVinci Tutorial

DaVinciAssociators 2

• Algorithm properties
– Particle2MCWithChi2.opts

Particle2MCWithChi2.InputData ={"Phys/Production/Particles”};
Particle2MCWithChi2.OutputTable = "Phys/Relations/Particle2MCWithChi2";
Particle2MCWithChi2.FillHistos = true;

– Particle2MCChi2.opts
Particle2MCChi2.InputData = {"Phys/Production/Particles”};
Particle2MCChi2.OutputTable = "Phys/Relations/Particle2MC";
Particle2MCChi2.Chi2Cut = 100.;

– Particle2MCLinks.opts
Particle2MCLinks.InputData = {"Phys/Production/Particles”};
Particle2MCLinks.OutputTable = "Phys/Relations/Particle2MCLinks";

9.22 DaVinci Tutorial

Summary

• Associators and relations tables are very powerful means
for linking indirectly objects
– No explicit link in the data model
– Relations are external and can be serialized or re-created
– Exemples:

Particle to MCParticle
Clusters to MCParticle
Vertex to Particles (not implemented that way, but could be)

• A generic tool exists, could be used as such
• For physics studies, we suggest to follow guidelines

described in this presentation
• Other users could follow them as well…

	9Associators
	Relations between objects
	Types of relations
	How to create relations
	How to save relations (1)
	How to save relations (2)
	How to use relations?
	Associators
	Declaring an associator
	Declaring an associator (2)
	Declaring an Associator (3)
	Retrieving an Associator
	Using an Associator
	Using an Associator (2)
	Using an Associator (3)
	Using an Associator (4)
	JobOptions for Associators
	JobOptions for Associators (2)
	Further features
	DaVinci Associators
	DaVinciAssociators 2
	Summary

