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Associators

How to relate objects to each other
Create relations
Save relations

Use relations: Associators
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Relations between objects

• Which type of objects
– Any object: int, double, complex class, keyed/contained objects…
– Most interesting: two sets of contained objects

• What is a relation?

From set To set
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Types of relations

• One or two directional (1D / 2D)
– But reverse relations can always be retrieved from direct relations
– Hence, only 1D relations are made persistent
– Advice: create only 1D relations, unless both usages are frequent

• Normal relations
– Simple link between objects
– Not necessarily between all objects of each set
– Possibly several links from/to an object

• Weighted relations
– The link carries additional information (can be any class)

An ordering should be possible on the WEIGHT class
Example: int, double
But could be complex class with the == and < operators defined
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How to create relations
1. Instantiate the relation table (in the creation algorithm)

#include “MyAssociator.h”
. . . .
new Table* table;   // The type “Table” is defined in MyAssociator.h

2. Usually one loops on all objects in the FROM set
for( from_iterator frIt=from.begin(); from.end()!=frIt; frIt++) {

3. For each object, decide which objects of the TO set to link 
to, possibly which weight.
double weight = computeWeight( frIt, toIt );
if( weight > 0 ) {  // Example of how to decide

4. Establish the relation
table->relate( *frIt, *toIt [, weight]);



9.5 DaVinci Tutorial

How to save relations (1)

• Once the table is filled
• Optionally apply filters (if weighted)

FromObj* from;
ToObj* to;
Weight threshold;
table->filterFrom( from, threshold, {false,true});
// Keeps only relations with weight > (true) or > than a threshold

• Optionally remove some relations (all)
table->removeFrom( from );
table->removeTo( to );



9.6 DaVinci Tutorial

How to save relations (2)

• Declare the relations table in the transient store
StatusCode sc = 
eventSvc()->registerObject( outputData(), table);

// outputData() returns the location in TES
// it should be declared as a property of the algorithm

• If the table should be discarded (e.g. in case of error)
– Do not forget to 

delete table; // avoid memory leaks!
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How to use relations?

• In order to use relations, the user algorithm should use a 
Gaudi tool called an Associator

• Generic Associator tool available
• Guidelines for Associators

– Specialise the associator (for ease of use)
– New class derived from the class Associator
– For weighted Associators: class AssociatorWeighted

• Where does the tool look for the table?
– The tool looks in the TES
– If not found, it tries and get it from  the PES
– If not found, one can define a construction algorithm which should 

save the relations table in the TES (at the location they are expected!)
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Associators
• Naming conventions

– Type of the Associator tool
class FromObj2ToObjOtherInfoAsct : public 

Associator[Weighted]<FromObj,ToObj[,Weight]> { . . . };
OtherInfo is optional (should not reflect the method used but the content)

– If ToObj and FromObj can be “factorised”, do not repeat the common 
part in ToObj
class Particle2MCWeightedAsct;
class ITCluster2MCParticleAsct;

– Type for the relations table
FromObj2ToObjOtherInfoAsct::Table

– Type for the Associator tool interface
FromObj2ToObjOtherInfoAsct::IAsct
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Declaring an associator
• In MyAssociator.h (note that “Weighted” is only in case of weighted relations)

#include "Relations/AssociatorWeighted.h”
. . . . 
class Particle2MCWeightedAsct : 

public AssociatorWeighted<Particle,MCParticle,double>
{
public:

// Define data types
// Define the relations table, templated class
typedef RelationWeighted1D<Particle,MCParticle,double> Table;
// Defines the type of the base associator
typedef OwnType Asct;

. . . .
// Minimal constructor
Particle2MCWeightedAsct(const std::string& type, const std::string& name,

const IInterface* parent )
: Asct( type, name, parent) { };

}
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Declaring an associator (2)
• Declare types for retrieving ranges of objects

– When getting objects related to a given From (To) object, one gets a “range”
– A “range” can be seen as a list/vector of objects
– A “range” has an iterator, with the usual begin() and end() methods
– For ease of use, one can define meaning full types for ranges, e.g.

typedef Particle2MCWeightedAsct::FromRange      ParticlesToMC;
typedef Particle2MCWeightedAsct::FromIterator    ParticlesToMCIterator;
typedef Particle2MCWeightedAsct::ToRange          MCsFromParticle;
typedef Particle2MCWeightedAsct::ToIterator        MCsFromParticleIterator;

• DLL file for loading the tool
– MyAssociators_dll.cpp
#include "GaudiKernel/LoadFactoryEntries.h"
LOAD_FACTORY_ENTRIES(PhysAssociators)
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Declaring an Associator (3)

• A _load.cpp file must be defined to declare the necessary 
factories
– MyAssociators_load.cpp:

#include "DaVinciAssociators/Particle2MCWeightedAsct.h”
// Declare factory for the associator
DECLARE_TOOL_FACTORY( Particle2MCWeightedAsct );
// Declare factory for the relations table
DECLARE_OBJECT_FACTORY( Particle2MCWeightedTable );
. .
DECLARE_FACTORY_ENTRIES( PhysAssociators ) {

DECLARE_OBJECT( Particle2MCWeightedTable );  // Declare the Table object
DECLARE_TOOL( Particle2MCWeightedAsct );     // Declare the Associator tool
DECLARE_ALGORITHM( Particle2MCWeighted );    // Declare the construction algorithm

}
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Retrieving an Associator

• An instance of the tool should be created in the user 
algorithm
– Returns  a pointer to an Associator interface (type Iasct*):
Particle2MCWeightedAsct::IAsct* m_pAsctWithChi2; ///< Pointer to associator with chi2 

as weight
. . . . 
// This is the Particle2MCWeighted tool
sc = toolSvc()->retrieveTool( "Particle2MCWeightedAsct", 

m_pAsctWithChi2);

/// “Particle2MCWeightedAsct” is the type of the tool (as in _load)
/// m_pAsctWithChi2 is a pointer to the interface used later on

[“MyAssociator”,]

/// [“MyAssociator”,] is an optional private name to that tool
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Using an Associator
• Retrieve a range of ToObj given a FromObj

Particle* part = . . . ;
. . .
MCsfromParticle mcParts = m_pAsctWithChi2->rangeFrom( part );
MCsfromParticleIterator mcPartsIt;
for( mcPartIt = mcParts.begin(); mcParts.end() != mcPartIt; mcPartIt++) {
. . .

// CAUTION: *mcPartIt is not of type MCParticle!!!
MCParticle* mcPart = mcPartIt->to();
Weight weight = mcPartIt->weight();

}

• Similarly one can retrieve a range of FromObj given a ToObj
Particle* part = . . . ;
. . .
ParticlesToMC parts = m_pAsctWithChi2->rangeTo( mcPart );
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Using an Associator (2)
• Often, relations are one-to-one between the two sets

– Possibly no linked object, but never 2 or more
– Shortcut to directly access the object:

MCParticle* mcPartChi2;
double chi2;
mcPartChi2 = m_pAsctWithChi2->associatedFrom( *part[, chi2]);
if( mcPartChi2 ) {

// There was an associated MCParticle
} else {

// There was no associated MCParticle OR there was not relations table
}
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Using an Associator (3)
• Advanced usage of weighted associators

– One can retrieve relations which have a weight larger (smaller) than a 
threshold

Particle* part = . . . ;
. . . 
MCsfromParticleChi2 mcParts = 

m_pAsctWithChi2->rangeWithHighCutFrom( part, maxChi2 );
// This will return a range containing only associated MCParticles
// if the weight (I.e. the chi2) is smaller than maxChi2

– No one-to-one retrieval method with cut, but trivially
double chi2;
mcPartChi2 = m_pAsctWithChi2->associatedFrom( *part, chi2);
if( mcPartChi2 && chi2 < maxChi2) {

// There was an associated MCParticle with chi2 < maxChi2
}
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Using an Associator (4)

• Miscellaneous features
– Testing if the relations table is present
if( false == m_pAsctChi2->tableExists() ) {

// The table doesn’t exist
} else {

// One can retrieve information safely
}

– Getting a status code when retrieving a range
Range range;
StatusCode sc = m_pAsct->rangeFrom( from, range);
if( sc.isSuccess() ) {

// One can use range safely
}



9.17 DaVinci Tutorial

JobOptions for Associators
• Properties of the base class

– No default: to be defined in the constructor using 
set_property( name, value);

– Location of the relations table in the TES   
Toolsvc.Particle2MCWithChi2Asct.Location  =     "Phys/Relations/Particle2MCWithChi2";

– Convention for the location name:
Root: the TES branch of the “To” objects
/Relations
Leaf: name of the Associator

– Creation algorithm
ToolSvc.Particle2MCWithChi2Asct.AlgorithmType = "Particle2MCWithChi2";
ToolSvc.Particle2MCWithChi2Asct.AlgorithmName = "Particle2MCWithChi2";

– Note: one can give an alternate name to the Associator and/or to the 
algorithm… The same Associator can be used twice with different 
settings
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JobOptions for Associators (2)

• Example of dual usage of a single associator
– In the code, retrieve the same tool with two different names

// First the WithChi2 associator (of type Particle2MCWeightedAsct)
sc = toolSvc()->retrieveTool( “Particle2MCWeightedAsct”, “WithChi2Asct”, m_pAsctWithChi2);
// This is another type of Particle2MC tool, differentiated by jobOptions
sc = toolSvc()->retrieveTool(“Particle2MCWeightedAsct”, "LinkAsct", m_pAsctLinks);

– In the JobOptions file, declare different locations and algorithms
// first associator using chi2 as weight
Toolsvc.WithChi2Asct.Location      = "Phys/Relations/Particle2MCWithChi2";
ToolSvc.WithChi2Asct.AlgorithmType = "Particle2MCWithChi2";
ToolSvc.WithChi2Asct.AlgorithmName = "Particle2MCWithChi2";
// alternate associator using stored links
Toolsvc.LinkAsct.Location = "Phys/Relations/Particle2MCLinks";
ToolSvc.LinkAsct.AlgorithmType = "Particle2MCLinks";
ToolSvc.LinkAsct.AlgorithmName = "Particle2MCLinks";
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Further features

• Location of the table
– Advise: 

Use as for containers a static const definition in the .h file
static const std::string& Particle2MCAsctLocation = "Phys/Relations/Particle2MC";

Define the Associator property (in the Associator constructor)
setProperty( location, Particle2MCAsctLocation );

Use for registering in the TES OutputTable as property of the algorithm
declareProperty( "OutputTable", m_outputTable = Particle2MCAsctLocation );
. . . 
StatusCode sc = eventSvc()->registerObject( outputTable(), table);

The associator automatically sets the OutputTable property of the 
algorithm
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DaVinci Associators

• Package Phys/DaVinciAssociators
• Many associators defined, with various creation algorithms

UserAlgo

Particle2MCWeightedAsct

ProtoParticle2MCAsct

Particle2MCWithChi2

ChargedPP2MC

Particle2MCLinks

TES

/Phys/…/Particles

/Phys/Relations/Particle2MCLinks

/Phys/Relations/ProtoParticle2MC

/Phys/Relations/Particle2MCWithChi2



9.21 DaVinci Tutorial

DaVinciAssociators 2

• Algorithm properties
– Particle2MCWithChi2.opts

Particle2MCWithChi2.InputData ={"Phys/Production/Particles”};
Particle2MCWithChi2.OutputTable = "Phys/Relations/Particle2MCWithChi2";
Particle2MCWithChi2.FillHistos = true;

– Particle2MCChi2.opts
Particle2MCChi2.InputData  = {"Phys/Production/Particles”};
Particle2MCChi2.OutputTable = "Phys/Relations/Particle2MC";
Particle2MCChi2.Chi2Cut = 100.;

– Particle2MCLinks.opts
Particle2MCLinks.InputData  = {"Phys/Production/Particles”};
Particle2MCLinks.OutputTable = "Phys/Relations/Particle2MCLinks";
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Summary

• Associators and relations tables are very powerful means 
for linking indirectly objects
– No explicit link in the data model
– Relations are external and can be serialized or re-created
– Exemples:

Particle to MCParticle
Clusters to MCParticle
Vertex to Particles (not implemented that way, but could be)

• A generic tool exists, could be used as such
• For physics studies, we suggest to follow guidelines 

described in this presentation
• Other users could follow them as well…
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