

1 Introduction

Layout of tutorial Where to find documentation

Outline

- 1. Getting started
- 2. Beginning to write a physics selection algorithm
- 3. Basic tools for selection algorithms
- 4. Utility tools
- 5. Connection to MonteCarlo truth

Aim of the tutorial

- To make you more familiar with some DaVinci specific terminology
- Explain the reason behind some choices
- To show you which are and how to use the available tools you would want to use

..... Help you to start to write a physics selection

Assumptions

- It is assumed that you know the way the LHCb software is structured
 - cmt packages
 - conventions
- It is assumed that your are familiar with the Gaudi architecture
 - algorithms, algtools, services, data stores...
- It is assumed that you have either followed the Gaudi tutorial or have learned to use Gaudi by yourself

Some reminder will be made when relevant

Methodology

- Topical presentations on the various point with example code
 - Each tool will be presented one at the time (with related tools one after the other)
- At the same time we will show the use of the tool in a concrete selection algorithm: SelectJPsi2mumu
- After each topic in each presentation we will stop for questions

DaVinci Documentation

DaVinci web page

http://lhcb-comp.web.cern.ch/lhcb-comp/Analysis/

DaVinci working group mailing list

Ihcb-davinci@cern.ch

ANY question related to physics software!

This tutorial

Has a link from the DaVinci web page

- DaVinci related discussions as necessary
 - Topics related to technical issues in Computing Meeting
 - on Mondays afternoons at 14:00 (with conference calls)
 - Topics related to contents in Light Meetings
 - on Tuesdays afternoons at 14:00 (with video and conference calls)

Agenda available on the web and announcement of special interest topic in DaVinci mailing list

Core software Documentation

 All LHCb software documentation is available from the Computing web page

http://lhcb-comp.web.cern.ch/lhcb-comp/

- Gaudi Documentation
 - Web page
 http://lhcb-comp.web.cern.ch/lhcb-comp/Frameworks/Gaudi/
 - User Guide on the web
 - Tutorial on the web
- All LHCb Gaudi-based software has automatically generated documentation

External Documentation

CLHEP

http://wwwinfo.cern.ch/asd/lhc++/clhep/

STL

http://www.sgi.com/tech/stl/

Tentative Schedule

10 min	1 Introduction	G.Corti
30 min	2 Getting started	G.Corti
20 min	3 Beginning to write a selection algorithm	G.Corti for S.Amato
60 min	4. How to load and save data	G.Corti
Break		
30 min	5. Manipulating data: ParticleFilter and Criteria	Ph.Charpentier for S.Amato
30 min	6. Manipulating data: Vertexing	Ph.Charpentier for S.Amato
10 min	7. Manipulating data: Geometrical tool	Ph.Charpentier for M.Gandelman
40 min	8. UtilityTools	O.Dormond
40 min	9. Particles 2MC Associators	Ph.Charpentier

Credits

S.Amato, Ph.Charpentier, G.Corti, O.Dormond, J.deMello, E.deOliveira, M.Gandelman, J.H.Lopes, C.Nunes, C.Padilla

