
Comments on Olivier’s physics event model

I think it would be nicer if all reconstructed particles, simple and composite,
are of the same base type, eg. ReconstructedParticle.
Why must there be 2 types, ProtoPart and Particle for Brunel and DaVinci?
Surely Brunel will produce some composite particles, eg. V0, π0.

Similarly, I think all vertices, including primary, should be of the same base
class, ReconstructeVertex.

In Olivier’s design the identity of a ReconstructedParticle is given by its
concrete class type.
I think the identity of a ReconstructedParticle should be given by a data
member of the class and not by the concrete class type.
The identity of a ReconstructedParticle may not be defined, and when
defined it should be easy to change, eg. after application of an alternative
ParticleID algorithm.

I think the kinematics and the identity of a ReconstructedParticle should be
independent, and implemented as two contained objects, eg of abstract type
ReconstructedKinematics and ReconstructedIdentity.

Naming

The MC produces MCParticle and MCVertex objects.

Therefore, I think it would be nice if the Reconstruction (Brunel and DaVinci)
produced ReconstructedParticle and ReconstructedVertex objects.

ReconstructedParticle

ReconstructedIdentity
Creator ID
Particle ID (eg. if any hypothesis>95%)
list of particle hypothesis Likelyhoods
pointer to data used to make hypoth.

ReconstructedKinematics
Creator ID
4−momentum and error matrix
position where 4−mom. measured

1 0...n

Top Level Class Diagram

Main design ideas : to seperate the Kinematics from the Identity
 to encapsulate the Kinematics and the Identity into 2 classes
 the following slides describe one possible implementation
Each ReconstructedParticle can have 0, 1 or more reconstructed identity objects
from different ParticleID algorithms.

A ReconstructedParticle is completely defined by
its kinematics and its identity.
The kinematics and identity are
orthogonal/independent and complete.
Kinematics are determined by VELO, Tracking and
Calorimetry.
Identity is determined by RICH, Calorimetry and
Muon.
The ReconstructedKinematics are created when the
ReconstructedParticle is created.
In general, the ReconstructedIdentity is created
afterwards by particleID algorithms.

ReconstructedKinematics

ReconstructedChargedTrack ReconstructedECALCluster

ReconstructedComposite
ptr to ReconstructedVertex

ReconstructedHCALCluster

 The different types of concrete ReconstructedKinematic
 objects are created by different reconstruction
 algorithms either in Brunel or DaVinci.

A ReconstructedComposite object could be created by a V0 finder in Brunel, or user analysis
code in DaVinci (eg. B0 to pipi).

The kinematical variables (E, p) could be implemented as methods which take the
hypothesized id (within the ReconstructedIdentity) as input.

ReconstructedKinematics Class Inheritance structure

ReconstructedPi0Candidate
ptrs to two
ReconstructedParticles

Energy and 3−momentum can be implemented as
methods of the ReconstructedKinematics class
which takes the hypothesized identity
(from ReconstructedIdentity) as input from
the containing ReconstructedParticle.
eg. E is a function of p and pid for charged tracks.
 P is a function of E and pid for neutrals.
The Kinematics are defined by the fitted track
parameters or calorimeter cluster info, or by the decay
ReconstructedVertex if a ReconstructedComposite.
The mother−daughter relationship is independent of
the particle ids. It is defined purely by the decay
kinematics.

ReconstructedIdentity

ReconstructedUserIdentity
eg. B0, B+

ReconstructedGlobalIdentity
eg. e, mu, pi, K, etc.

ReconstructedHCALIdentity
eg. KL

ReconstructedECALIdentity
eg. gamma, unresolved pi0

ReconstructedMuonIdentity
eg. mu

ReconstructedRICHIdentity
eg. K, pi,proton, mu, e

The different types of concrete ReconstructedIdentity objects are created by different
particle ID algorithms either in Brunel or DaVinci. A ReconstructedParticle can have
0...n different ReconstructedIdentities.
The first should be of type ReconstructedGlobalIdentity if it exists.

ReconstructedPi0Candidate
Identity
eg. resolved pi0

ReconstructedV0Identity
eg. KS, ?

ReconstructedIdentity Class Inheritance structure

The ReconstructedIdentity is created by a ParticleID algorithm
when given an unidentified RecoParticle.
Exceptions : eg. pi0 ReconstructedParticle objects are created by
a Brunel or DaVinci pi0 finder. The pi0 finder creates both the
ReconstructedKinematics and and the ReconstructedIdentity
based on default cuts. The hypothesis should be easy to change in
case one wants to tighten pi0 cuts for example. For this reason the
ReconstructedIdentity object of a pi0 candidate should have
concrete type ReconstructedPi0CandidateIdentity. Its actual
identity, pi0 or not, is given by the value of the ParticleID data
member.
A ReconstructedParticle can contain more than 1
ReconstructedIdentity object, corresponding to the results of
different ParticleID algorithms.
For a composite particle, the ReconstructedIdentity could be
used to store a hypotheses, eg B0.

ReconstructedParticle

ReconstructedHCALIdentity
particleID=KL

ReconstructedHCALClusterReconstructedChargedTrack

ReconstructedParticleReconstructedParticle

ReconstructedVertex
NumberDaughters=2

ReconstructedUserIdentity
particleID = B0

ReconstructedComposite

ReconstructedGlobalIdentity
particleID=pi0

ReconstructedRICHIdentity
particleID=pi0

eg. Object Diagram for B to pi+ KL (only concrete instantiated objects)

Pointer

Pointer

