
Discussion on Physics Event Model - November 13, 2001

Present:
O.Callot, M.Cattaneo, Ph.Charpentier, G.Corti, M.Frank, P.Mato, E.deOliveira,
O.Schneider

The discussion concentrated on the Relationship/History of particles: essentially how
to represent the tree that particles build. The main question was if we want to store all
info about the “tree particle” together with the relationship or not.

• Some questions to guide discussion on Relationship/history

a. in the class or in the container
b. is the tree a container or a navigator
c. which if the container that owns new particles when in transient

store
d. persistency of the relationships
e. dropping of intermediate steps
f. overlapping of trees (for parallel analysis)
g. how easy is for user to work with a tree: creation/retrieval

Babar has opted for storing the relationship history in the classes itself, something
similar but with always vertices has been proposed by OlivierS., Delphi has opted for
having the relationship completely external to the classes and putting particle and
vertices in a tree/graph container. Attached are the transparencies illustrating the 2
approaches + variation.

BaBar approach: history relationship in Particle class

Olivier variation: relationship is through Vertex class

Idea’s approach: relationship is in container

• Dropping of intermediate stages is mostly a MC issue and should be solved by
the algorithms that drops the information keeping consistency from a physics
point of view. Both approaches of storing the relationship have the problem.

• The first step main goal of a physics analysis will be to “reconstruct” a decay

tree � to build and navigate a tree must be as easy as possible.

• The construction of the tree starts from the base by combining Particles
“selected” from ProtoParticle to make a new Particle: for example starting
from muons to make J/Psi. The J/Psi “belongs” already to a tree structure: its
own. Head of these simple trees are then combined to make a more complex
tree: J/Psi and Ks for example to make B0. Only this final tree with all its
particles could/should be saved. There are about ~ 10 particles in a final
tree.

• ProtoParticles are in a flat structure and are produced as last stage of

Reconstrutcion. There are ~ 70 ProtoParticles/event. Each ProtoParticle has
all possible particleID hypotheses. A “pre-processing” stage in an analysis
will be to make a flat list of Particles (assigning a particular particleID) from
ProtoParticles.

• Intermediate stages should be seen as separate trees. Copies of the particles
should be made when putting a head of a tree as a leaf of a new tree.

• The transient store should not be inflated with various strings for all possible

trees

• Each analysis will have its own context to which all partial trees will belong.
If a final tree needs to be saved (transient or persistent store), a copy of the
tree can be saved.

• Different particles can have SmartRef to the same ProtoPart. Only when using

the head of a tree made with this “reconstructed” Particles as a leaf of a new
tree the Particles can be checked to be exclusive: particle operator that
combines the particles should check for a tree to be self-exclusive. This is
delaying the check at the end.

• Considering all of this navigation issues it seems to be easier to have the

history relationship in the classes. In this case there are various options for
where to put the relationship and connect Particle and Vertices.

Option 1

Option 2

Option 3

• A vertex should not always be internal to a Particle (Opt.1): ProtoParticles
will not have decay Vertices

• Particle with zero lifetimes would not intuitively described by Option 2 but
more by option 3. One the other hand Option 2 is “simpler”. Particle with zero
lifetime could be taken care of by the particle having a zero lifetime flag for
which the particle used to make the tree have to be taken. Vertexers should
then check this flag. Option2 while in some sense equivalent to Option1 is
more flexible.

.

