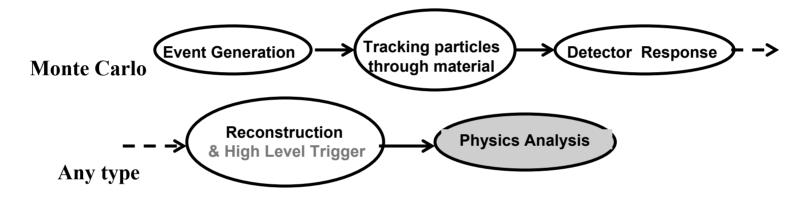


DaVinci

The LHCb Physics Analysis Application

ATLAS Software Workshop September 24th 2003 G. Corti / CERN

Outline

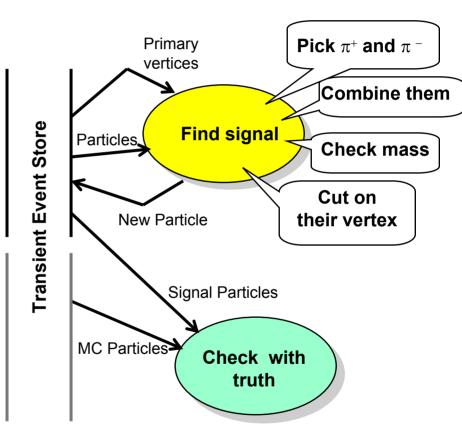

- > Scope of DaVinci
- > DaVinci architecture
 - □ A framework "on top" of Gaudi and LHCb core software
 - □ Relationship with Brunel, the reconstruction application
- > DaVinci specific features and functionalities
 - Main components
 - The Physics Event Model
 - Relationship with reconstruction data
 - Basic and High Level tools
 - □ Analysis of Monte Carlo data
 - Input(s) & Output(s)
 - DST, stripped DSTs, Event tag collections, AODs, n-tuples
- > Experience and conclusions

Scope of DaVinci

In LHCb typical phases of Particle Physics software processing are "encapsulated" in various applications

□ Each is a producer and/or consumer of data for other stages

Group and individual analysis proceeds from the output of the reconstruction. The framework for selections of events and physics analysis is called DaVinci


- □ Provides common basis for writing physics analysis code
- An application bringing together different libraries from Gaudi, LHCb Core software and providing physics analysis specific code

An LHCb physics analysis job

- LHCb primary goal is to make precision measurement of CP violating decays in the B system
 - Many different b decay modes with small BR
- > In a typical analysis (ex: $B^0 \rightarrow \pi^+\pi^-$) the first step is to find interesting signal events by applying cuts on the characteristics of the decay
 - ParticleID, vertices, mass of combinations, topologies

Compare with the truth for Monte Carlo data

DaVinci and Gaudi

DaVinci (as all LHCb applications) is based on the Gaudi framework

□ It follows the Gaudi design choices and evolution

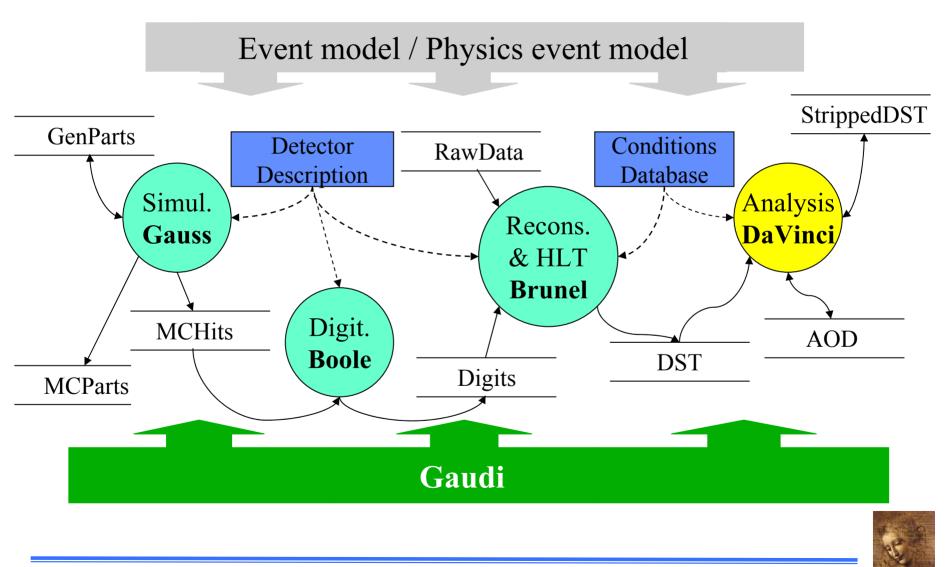
- Separation between "data" and "algorithms"
- Separation between "transient" and "persistent" representations of data
- "End-user" writes in few specific places (Algorithms, Tools)
- Well defined component "interfaces" ("Physics tools")
- Uses common services that it needs to provide a "generic" application functionality
 - JobOptions Service
 - Message Service
 - Persistency Services

Particle Properties Service Event Data Service

- Histogram Service
- N-tuple Service

DaVinci takes care of data reading and integration of packages that are of common use.

. . .


5

DaVinci and LHCb core software

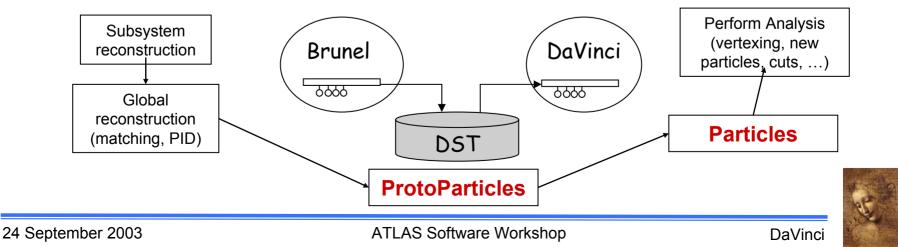
- > All the LHCb Event Data Model and Detector Description are shared with the other applications
 - □ Both common "infrastructures" and detector specific
 - □ All data for the different stages of the processing are available directly (same file) or indirectly (via references)
 - Detailed understanding of reconstruction
 - Comparison with Monte Carlo truth
 - Algorithms providing functionality specific to different tasks can be shared, moved from / to DaVinci
 - HLT are being developed in DaVinci (easier to work on DSTs) to be moved to Brunel
 - New tuning of particle ID in DaVinci after better understanding of DST data

Relationships between Applications

24 September 2003

ATLAS Software Workshop

DaVinci


Interface with Brunel

> Brunel writes a OODST file

- □ Sub-system specific simple objects
 - Tracks, Calorimeter clusters, Muon system and RICH particle ID objects
- **Global reconstruction objects (ProtoParticles)**
 - All available reconstructed information for a "physical" measurement

DaVinci reads the OODST

- Makes the "almost standard" reconstruction objects that were not done in the reconstruction, rerun with latest tuning (learnt from last Data Production)
- Particles" are produced from reconstruction objects with a specified particle ID hypothesis, interesting decays are "built" via selection and specific combination of particles

Common

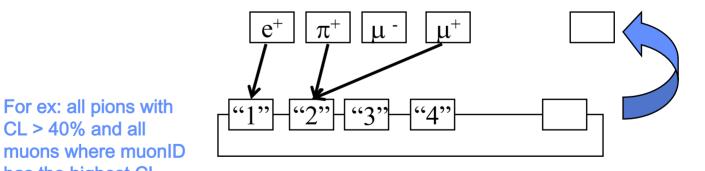
DaVinci specific features

- Two main common aspects specific to DaVinci
 The Physics Event Model
 - How to represent Particles, Vertices and their relationships
 - How to connect to the Reconstruction data objects
 - How to connect to the Monte Carlo data
 - Follow the LHCb Event Model conventions
 - Use utility classes and services
 - Gaudi Object Description
 - Programming language independent (XML based)
 - Automatic code generation of header files, serialisers and dictionary
 - □ Tools of general utilities are provided
 - "Basic" tools shared by all (most) physics analysis algorithms
 - For vertexing and manipulating the data
 - "High-level" tools and algorithms
 - Primary Vertex finder
 - Flavour tagging
 - Physics (Pre-)selections
 - Based on the Gaudi AlgTool and Algorithm classes

Physics Event Model

- > A Physics analysis algorithm interacts mainly with two type of objects: Particles & Vertices
 - □ Particle:
 - contains the physical information about a "particle" and can be made starting from a ProtoParticle object or combining other Particle objects via composition tools
 - detector independent
 - □ Vertex:
 - contain the physical information for a vertex and can be made via vertexing tools as well as the links to the Particles used to make it
- Decay trees are represented through the relationship between particles and vertices

Relationship with reconstruction data

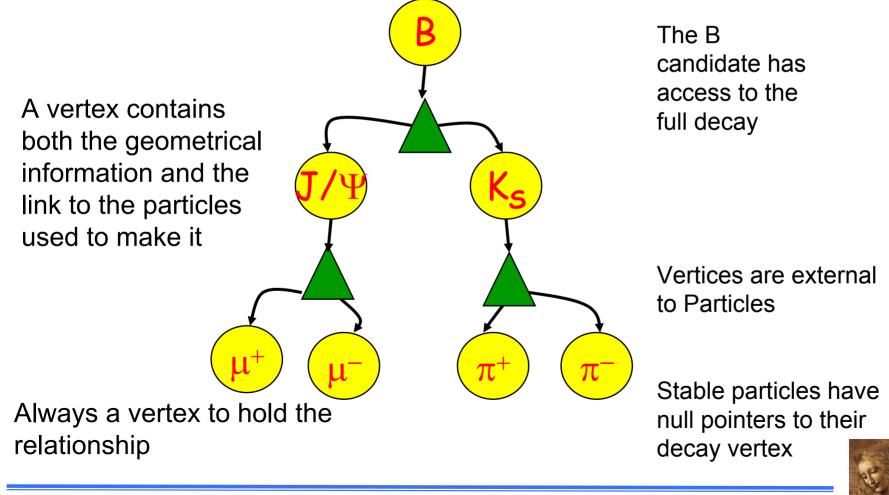

Particles & ProtoParticles $\mathbf{>}$

- □ A ProtoParticle represent what the detector measured with all possible hypothesis which will help in deciding the nature of a particle
 - Combines all sub-systems available information
 - End product of the reconstruction

CL > 40% and all

has the highest CL

- A Particle can be made starting from a ProtoParticle choosing **ONE** of the possible particleID hypothesis
 - Different particles can originate from the same ProtoParticle


ProtoParticles are the bridge between Physics analysis and Reconstruction

24 September 2003

ATLAS Software Workshop

Represent Decay tree through Particle(parent)-Vertex(decay)-Particles(products) relationship

"Basic" Physics analysis tools

> DaVinci provides different category of "basic" tools, performing specific simple tasks as self contained as possible

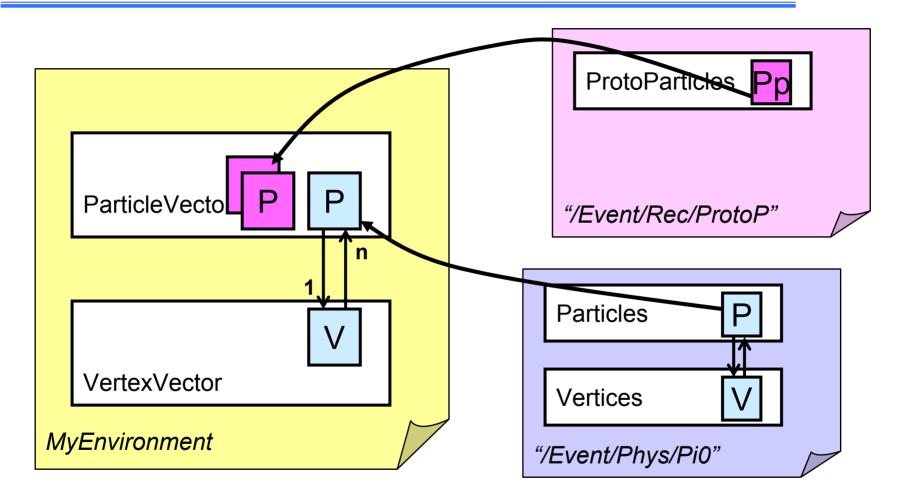
□ Tools related to Particle "management"

- *PhysDesktop* to shield the end-user from interacting with the Transient Event Store in retrieving "old" Particles, making new ones and saving them
- ParticleMakers to make Particles from ProtoParticles based for example on Combined ParticleIDs
- ParticleFilter to organize Particles in containers based on various picking criteria
- ...

Vertexing and topological tools

- Geometrical and mass constrained vertex fitters
- Tools to calculate geometrical information (Impact Parameters, Distance of closest approach)
- Pointing constraints
- Tools to transport a Particle to a given position
- ...

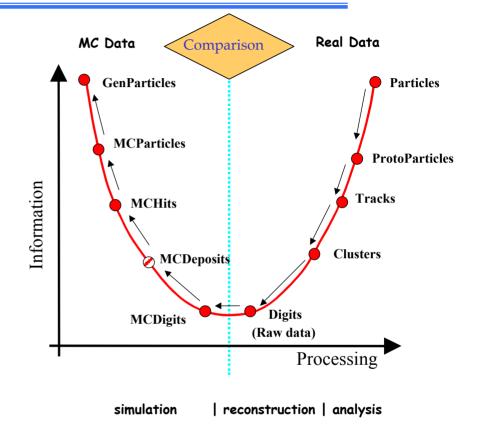
□ They are "all" necessary to have a complete physics analysis


Management of Physics data in the event store

- The PhysDesktop hides the complexity of interacting with the Transient Event Store, of converting ProtoParticles to Particles and maintains the working environment
 - □ Particles are specific to an analysis
 - Not all selection need all type of Particles
 - □ Simple Particles are "picked" from ProtoParticles as needed
 - Delegates to a ParticleMaker that "knows" how to transform from the different type of objects with various criteria (ex. CombinedPIDParticleMaker)
 - □ Particles can be available from previously run algorithms
 - Ks, pi0, J/Psi, D+,
 - They are in different locations in TES
 - **Given Series and Series (and Vertices) should be collected together**
 - The PhysDesktop gets the initial Particles&Vertices in local containers with all identified Particles (from ProtoParticles or from previous processing) and eventual Vertices
 - □ New Particles and Vertices are produced
 - Only "good candidates" will be saved for further processing
 - Has a set of methods for saving the whole or parts of the working environement

□ Both the PhysDesktop and the ParticleMakers are configured via Job Options

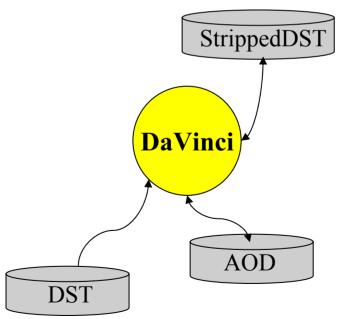
The PhysDesktop



Analysis of Monte Carlo data

- In the Analysis of Monte Carlo events necessary to compare what is reconstructed with the generated Monte Carlo ("the truth")
 - Keep the two worlds as separate as possible
 - Associator tools to connect Particles with MCParticles
 - Chi square agreement on kinematics
 - Following links to originating objects and their association
- > Utility tools
 - □ MCDecayFinder
 - Finds an MCParticle decaying as specified in a string in jobOptions

J/psi(1S) \rightarrow mu+ mu- {gamma,} (optional gamma)



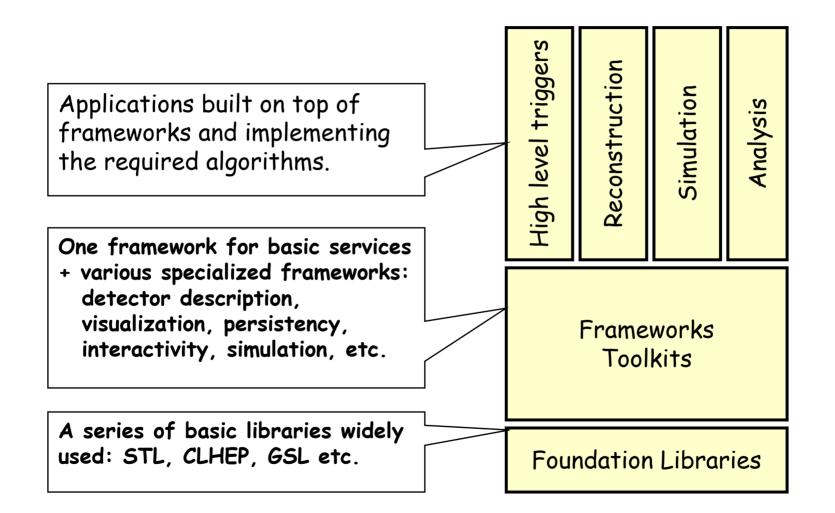
 Debugging tool
 to print a tree, a single particle, the whole event both for MCParticles/MCVertices and Particles/Vertices

Input(s) & Output(s)

- > DaVinci can be (is) used for various types of analysis jobs with different inputs and producing different outputs
 - □ The first stage of the analysis uses DST as input
 - Production of stripped DSTs (containing selected events) are made with pre-selections algorithm integrated in DaVinci
 - □ Some end-user (depending on their needs and taste) write
 - AOD
 - AOD+DST of selected events
 - Event tag collections
 - N-tuples (HBOOK, ROOT)
 - Histograms (HBOOK, ROOT)

Experience and conclusions

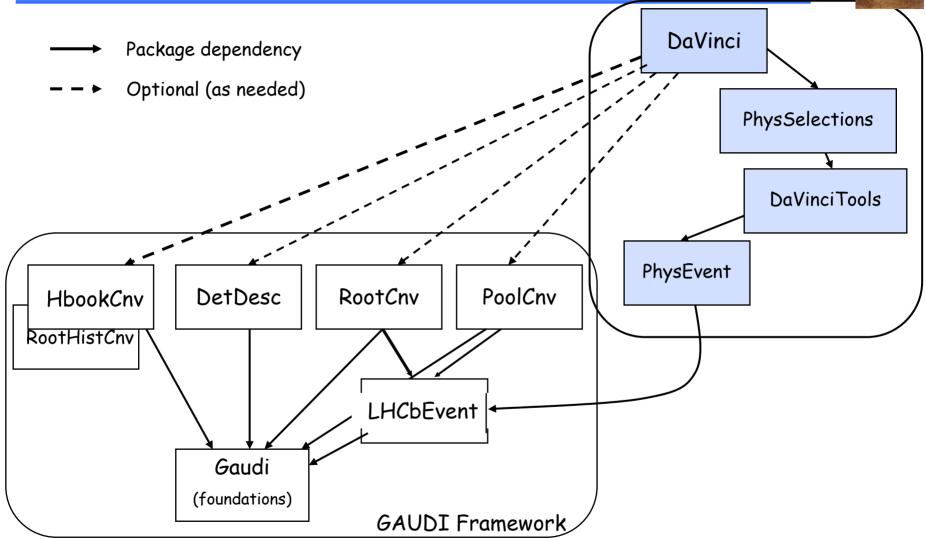
- DaVinci used for Physics studies since July 2002
 First version completely OO
- > Extensively used
 - Provide feed-back to Brunel and production
 - ... to understand the data and how further process them
 - Develop new tools and algorithms (physics analysis, HLT)
 - ... as long as using data on OO-DST
- All selection studies for Re-optimization and Trigger TDRs performed with DaVinci
 - Provides a "complete" suite of physics tools for selections and evaluation of the results
 - □ About 20 physics selections mostly developed by Ph.D. students
 - Repository of (Pre)-selection algorithms for use by the all collaboration
 - □ Pre-selection production on 10M generic b events


DaVinc

18

Experience and conclusions

- Most users interact with this application. First exposure to LHCb software
 - □ Must be easy to use and with easy to understand nomenclature
 - **U** Tutorials provided
 - A sorry point is very little documentation available (DoxyGen), mostly people use examples
- DaVinci (both the basic tools and the physics event model) are separated and independent from the LHCb reconstruction
 Only one connection
- Extensions to the (basic) tools and to the physics event model can be easily accomodated
- Review of DaVinci before end of the year after the extensive use for the TDRs studies
 - Revaluate choices made, maintain software but also go back to the drawing board if necessary



General structure

