Appendix A. Front-End Multiplexing R&D Studies

A.1 FPGA-Based FEM/RU (Hans M.)

A.2 Network Processor-Based FEM/RU (Niko)

The NP based readout unit is a fully programmable 8-port switch as described in [6]. It contains two NP4GS3 chips, together with associated memories and MACs. The R&D work started in November 2000, triggered by presentation of the NP given by IBM at CERN. IBM courteously provided the basic development software, including a simulator, assembler and debugger. Access to several confidential documents detailing the assembly language; the hardware etc. was also provided.
The basic technical problem for the RU/FEM application is the concatenation of incoming frames in the correct order. Also data and (transport-)error blocks should be concatenated separately. Although the NP is designed to support frame-alteration, concatenation and hence correlation of frames have not really been a design goal, because this is not usually done in commercial routers. After understanding the usage of the tools the first task was therefore to establish the feasibility of efficient frame merging.
A closer inspection of the actual data-flow - shown in Figure 30 - revealed two possible places. Frames can be merged in the ingress stage ("ingress event building") and in the output stage ("egress event building"). The data structures in the two stores are very different, resulting in two different approaches to the problem. More details for both algorithms can be found in [6].

[image: image1.emf]Ingress Event BuildingEgress Event Building

DASLDASL

Access to frame dataAccess to frame data

Ingress Event BuildingEgress Event Building

DASLDASL

Access to frame dataAccess to frame data

Ingress Event BuildingEgress Event Building

DASLDASL

Access to frame dataAccess to frame data

Ingress Event BuildingEgress Event Building

DASLDASL

Access to frame dataAccess to frame data

Figure 1 Main components of the NP4GS3 together with an indication of the standard data-flow paths. Data can be accessed and modified at the input/ingress and output/egress stage, leading to two different event-building algorithms. One of the two DASL interfaces is always wrapped, so that each NP can send to itself. Also indicated are the various external memories.

Ingress Event Building

Ingress event building works with frames stored in the ingress store, which consists of 2048 cells of 64 bytes of on-chip memory. The frame is described by a descriptor, which contains a linked list of pointers to buffers in this memory. All cells but the last one must be filled completely. Therefore, the simplest and most efficient algorithm consists in simply allocating new cells and copying everything together using the string copy coprocessor of the NP4GS3, devised for fast, efficient, asynchronous memory copying.
Since there are only 128 kB of memory and at most 2048 frames, this algorithm is best suited for a situation where fragments from incoming events have a small spread over time, so that the frame can be built quickly and the memory released. Since all memory is on chip, however the algorithm is very fast once it runs.
Egress Event Building

Egress event building works with frames stored in the egress store, i.e. frame which have already been forwarded over the DASL from the ingress store. The memory is organised in twin-buffers of 2 times 64 bytes, out of which the respective first 6 bytes are reserved for frame status and link information. These 2 times 6 bytes cannot be used for data
but are used to concatenate twin-buffers to form complete frames. It is also possible to set an offset into the next twin in a chain. The algorithm proceeds by taking twin-buffers from the source frames in order and concatenates, setting the offsets correctly. In doing so headers must be stripped off and sometimes it becomes necessary to do some copying of data.
The memory in the output buffer is 64 MB of external RAM, which is 128 bit wide. This allows for large spreads in the arrival times of the incoming fragments. The access to the data is slower, however on average one profits from the fact that one need only to set the link-pointers correctly. The bookkeeping is somewhat more involved than in the ingress case. Figure 31 shows that the performance is sufficient to accept incoming frames at a rate of up to 250 kHz provided they are on average at least 100 bytes long.

[image: image2.emf]0

50

100

150

200

250

300

350

0100200300400500600

Average Fragment Size [Bytes]

Maximum Allowed Fragment Rate [kHz]

Limit imposed by NP Processing Power

Limit imposed by single Gb Output Link

Range of possible L1 Trigger Rate Values

Figure 2 Performance of the Egress Event Building as a function of the average input fragment size. The green area shows the range of possible L1 trigger rates.

Benchmarking

After the correctness of the algorithms had been extensively tested using simulation and dedicated test-case generators, we turned to the benchmarking of the algorithms. The simulator software provided by IBM [13] has the facility to provided a cycle-precise timing
. The simulator takes also into account contention between threads. It also provides detailed information about the reason for stall cycles. We have written a dedicated software package, which allows the final evaluation to any detail using MS-Excel. Figure 31 was also obtained using these programs.
Simulation showed convincingly that the performance is largely sufficient for the FEM/RU application. In fact, for almost any average size of the incoming fragment, the algorithms are faster than data can be sent out over a single link. As has already been discussed in section 4.6.2, it is planned to load the links only to ~ 66 % initially.
Measurements with the Reference Platform

The simulation results indicating that the performance of an NP based board would easily fulfil the requirements; the next step was to establish the reliability of these results with real hardware. Since a fully integrated board is not yet available, we turned to the IBM PowerNP Reference Platform [15]. This platform consists of 2 Network Processors, each with 4 Gigabit Ethernet ports, a control processor connected via PCI to the NPs, and (optionally) a switching fabric. The network processor picocode can be loaded either via PCI from the control processor, a PowerPC based Compact PCI computer, or via IBM's RISCWatch probe. The RISCWatch allows to remotely connecting via Ethernet to JTAG probe connected in our case directly to one of the Network Processor. The probe allows direct hardware debugging, single stepping, downloading of code, inspection and editing of registers and so on.
It is a very powerful tool in as much a code change can be run through the simulator, verified and then immediately downloaded into the hardware and run again, now on the hardware, with almost the same debugging capabilities. Our test set-up needed also traffic sources and sinks. As traffic generators we used the programmable NICs described in section B.3 with a dedicated program to extract the timing information. In this mode, we connected four NICs to the Reference Platform. Unfortunately the Reference Platform at our disposal at the time of the tests, did not have the revision of the NP, the code was developed for. It lacks the elaborate semaphore handling mechanism, which is essential in our applications, which need to correlate frames. The tests had to be adapted somewhat. This has not been done by changing the code, but rather by tuning the traffic pattern somewhat to avoid synchronisation problems.
The timing used the internal clock of the NICs, because they have 1 (s resolution whereas the clock on the NPs has only 1 ms. The intrinsic time resolution of the set-up, that is the round-trip time of a packet from NIC to NIC through the NP without any treatment is 1.7 us. While this determined the intrinsic resolution, it is also an overhead added to any result. This time is evidently not included in the simulation of the NP. Moreover, the system is highly pipe-lined (32 threads) so time intervals which are shorter than the overhead are not measurable.
The results for 3 different configurations are shown in Table 15. All results are for the ingress event building case, which is more demanding in terms of speed, because it would typically be used for very small frames. The results agree well with the simulation.

Table 1 Comparison of measurements with simulation results. The handling time per fragment is shown in microseconds. The measurement times are shown once raw as measured, and second corrected, with the round-trip and handling time in the NICs subtracted.

	
	Measurement
[μs/fragment]
	Simulation
[μs/fragment]

	1 source
1 thread
	6.6(4.9)
	4.9

	4 sources
1 thread
	4.5(2.8)
	3.2

	1 source
16 threads
	1.7 (0.0)
	0.5

� This is a RISC architecture, so all instructions of the pico-engine can in principle be executed in one cycle.

Page

