
Abstract—LHCb is an experiment being constructed at
CERN’s LHC accelerator for the purpose of studying
precisely the CP violation parameters in the B-B meson
system. Triggering poses special problems since the interesting
events containing B-mesons are immersed in a large
background of inelastic p-p reactions. Therefore, a 4 level
triggering scheme (Level-0 to Level-3) has been implemented.
Full event building is performed between Level-1 and Level-2.

Powerful embedded processors, used in modern intelligent
Network Interface Cards, are attractive to use to handle the
event building protocol in the high-speed data acquisition
system. The implementation of an event building algorithm
developed for a specific Gigabit Ethernet NIC is presented,
and results from performance measurements are discussed.

I. INTRODUCTION
HCb is one of the four experiments being constructed
at CERN’s LHC accelerator. It is a special purpose

experiment designed to precisely study the CP violation
parameters in B-meson decays by detecting many final
states. The LHCb detector is a forward single dipole
spectrometer, consisting of a micro-vertex detector, a
tracking system, aerogel and gas RICH detectors,
electromagnetic and hadron calorimeters, and a muon
detector. The experiment is described in [1].

The expected b-quark production cross-section
(500 µbarn, at a luminosity of 1.5× 1032 cm-2s-1) leads to a
rate of about 75 kHz of B-meson events which is immersed
in a total inelastic rate of some 15 MHz. Typical branching
ratios for the interesting final states of B-meson events lie
between 10-5 and 10-4 leading to a rate of interesting events
of ~5 Hz. For rare decay modes the branching ratios are as
low as 10-9.

After the selection done by the Level-0 and Level-1
triggers, implemented in hardware, the role of the Event
Builder (EVB) system is to collect the data from the Front-
end electronics, and assemble complete events in a
"commodity processor" for further data reduction by the
Level-2 and Level-3 software triggers.

The EVB system will be built around a switching
network and will have to deal with a high rate (~40 kHz) of
relatively small data packets (typically ~ 200-300 bytes).
We are presently evaluating the use of Gigabit Ethernet as a
possible technology for the implementation of this EVB
system.

We present here a new solution for the implementation
of the event building protocol, which takes advantage of the
recent emergence of a new generation of Network Interface

 Manuscript received November 5th, 2000.
J-P. Dufey, B. Jost, N. Neufeld and M. Zuin
EP Division, CERN, CH-1211 Geneva, Switzerland
(Phone: +00 41 22 767 2130, e-mail: Niko.Neufeld@cern.ch).

Controller (NIC) boards that include powerful
programmable RISC processors. A simple event building
protocol has been developed and implemented in the
processor of a specific Gigabit Ethernet NIC card from
Alteon [5]. The performance has been measured and a
comparison with the more traditional implementation on a
host computer is presented.

II. TRIGGER AND DATA ACQUISITION SYSTEM OVERVIEW
A four-level trigger scheme has been adopted. Level-0

and Level-1 triggers are implemented in hardware and
reduce the event rate from 40 MHz down to 40 kHz.
Level-0 rejects events on the basis of calorimeter and muon
detector information while Level-1 uses data from the
tracker to find indications for B decay vertices. The data
stored during the fixed latency of those triggers are then
zero-suppressed and undergo a first aggregation in the front
end electronics. At this stage, the data are delivered over
some 500 links in the form of relatively small (typically
200-300 bytes) data packets.

The task of the Event Building system is to transfer, for
each event, the whole of data into a processor where 2
levels of software trigger are executed: the Level-2 trigger
algorithms, using the track vertex guidance from Level-1,
are expected to reduce the rate to some 5 kHz by using part
of the event data. The Level-3 algorithms, based on full
event reconstruction and applying physics cuts appropriate
to the CP violation channels will deliver some 100-200 Hz
of events that will be stored permanently.

More details on the LHCb data acquisition system can be
found in [1]-[3].

III. ARCHITECTURE OF THE EVENT BUILDER
The requirements imposed to the Event Building system

are to collect, for each event, some 500 small (200-300
bytes) data packets produced at a rate of 40 kHz, and to
deliver a complete event (100-150 Kbytes) to one processor
in a large farm of some 4000 processors of 1000 MIPS. The
aggregate data throughput is ~6 GB/s. A large switching
network is required to cope with those requirements.

The Event Building system is composed of: (Fig. 1)
• The Readout Units (RUs) that interface the Front-end

links with the Readout Network (RN). Each RU
aggregates the data from several front-end links (up to
4) in order to adapt the data throughput to the capacity
of a switching network port. Each event fragment built
by the RU is shipped to the destination selected for
each event (destination assignment function).

• The Readout Network, which provides support for
event building by routing all fragments belonging to an

Event Building in an Intelligent Network
Interface Card for the LHCb DAQ System

J-P. Dufey, B. Jost, N. Neufeld and M. Zuin

L

event to a particular destination port. The size of the
switching network is approximately 125 X 125.

• The Sub-Farm Controllers (SFCs), which interface
each output port of the RN with a local farm of
processors that will run the higher-level triggers
(Level-2 and Level-3). An SFC assembles the event
fragments into complete events and delivers them to a
selected processor, possibly controlling the load and
activity of each processor in the sub-farm. It must
handle the cases where event fragments are lost.

Read-out Network (RN)

RU RU RU

Control
&

Monitoring

Read-out units (RU)

Front End Links

SFC SFC Sub-Farm Controllers (SFC)

Th
ro

tt
le

LA
N

Timing
&

Fast
Control

Read-out Network (RN)

RU RU RU

Control
&

Monitoring

Read-out units (RU)

Front End Links

SFC SFC Sub-Farm Controllers (SFC)

Th
ro

tt
le

LA
N

Timing
&

Fast
Control

Read-out Network (RN)

RU RU RU

Control
&

Monitoring

Read-out units (RU)

Front End Links

SFC SFC Sub-Farm Controllers (SFC)

Th
ro

tt
le

LA
N

Timing
&

Fast
Control

Read-out Network (RN)

RU RU RU

Control
&

Monitoring

Read-out units (RU)

Front End Links

SFC SFC Sub-Farm Controllers (SFC)

Th
ro

tt
le

LA
N

Timing
&

Fast
Control

Fig. 1: Overall Architecture of the LHCb Event-Builder.

The event building architecture has been fixed as follows:

1. The full event data are transferred although Level-2
algorithms are based on partial data.

2. The readout protocol is a pure push-throughout
protocol, where each RU pushes data through the
Readout Network to a destination SFC, as soon as an
event fragment is available.

3. The destination assignment is static. The algorithm
governing the destination selection must be based on
the event number and must be identical in all RUs.

This scheme has several nice features:
• No central control to communicate with sources and

destinations on an event-by-event basis is needed. This
leads to perfect scalability.

• The functionality of the RU is very simple in that it
only has to multiplex the input links onto an output
link using a FIFO to de-randomize the input traffic.

• Simple functionality of the SFC: it assembles event
fragments arriving from RUs and sends complete
events to one of the trigger processors, taking care of
balancing the load.

The price to pay for the simplicity is:
• An elevated sustained bandwidth across the readout

network.
• No direct feedback between sources and destinations

of the RN. If anywhere in the system a buffer becomes
too occupied, a general throttle signal is issued to the
trigger to disable the flow of events.

• Overall performance is determined by the lowest
performing sub-farm, hence some balancing of the
processing power is required.

IV. IMPLEMENTATION OF THE EVENT BUILDING SYSTEM
A Readout Unit (RU) must handle up to 4 front-end

links, each one delivering data packets of some 200 to 300
bytes at a rate of 40 kHz. The total rate of incoming packets
can then reach 160 kHz. The RU aggregates those packets
into an event fragment of up to typically 1200 bytes that is
submitted to the switching network at a rate of 40 kHz. The
resulting bandwidth is ~50 Mbytes/s or 400 Mbit/s.

As of today, the implementation of the aggregation of
front-end data packets in the RU is foreseen to be in
hardware in order to cope with a high rate up to 160 kHz.
At the output of the RU, a software implementation of the
event fragment delivery to the network is foreseen. This is
the upstream or source part of what we call the event
building protocol that will be executed by a processor in
the RU.

The number of RU ports is 125 if we assume 500 front-
end links and an aggregation of 4 links in each RU.

At the output of the switching network, the Sub-Farm
Controllers receive event fragments at a rate, which
depends on the relative numbers of SFCs and RUs. If the
numbers are equal, the rate of event fragments arrival is 40
kHz. It can be reduced if needed by increasing the number
of SFC ports. The number of SFCs also determines the rate
of complete events produced by each SFC. This rate is
320 Hz for a "square" network (125 SFCs).

The software controlling the assembly of event
fragments in the SFCs, for several events concurrently, and
taking into account possible fragment losses, constitutes the
downstream or destination part of the event building
protocol.

As yet, no choice of technology has been made for the
switching network. A likely candidate is Gigabit Ethernet.
This paper presents a development carried out under the
assumption that this technology is adopted.

Assuming switching network ports with 1 Gbit/s link
speed, 4 front-end links per RU, and a uniform distribution
of data on the front-end links, then the load factor per
switch port would be ~25%. In reality the distribution of
data will not be uniform so we shall at least impose an
upper limit to the maximum load (e.g. 50%).

V. EVENT BUILDING PROTOCOLS
The source protocol (implemented in the RU) performs

only the fragment labelling and the destination assignment
based, in its simplest form, on the event number.

The destination protocol and algorithm must be capable
of handling several events concurrently since the random
latencies of the event fragments (in the RUs and across the
network) are not correlated.

Several event-building algorithms have been studied [4]
implementing various strategies for fragment loss detection
and recovery by the SFC. A simple detection of fragment
loss can be implemented using a timeout based on the event
number that can act as a clock. The arrival of a fragment
belonging to an event not yet seen triggers an “ageing” of
all events already in the process of being built. Normally,
an event is complete as soon as the expected number of
fragments has arrived. An event can run into “time-out”
when its "age" exceeds some limit, in which case the

algorithm considers the missing fragments as lost and ships
the incomplete event, with a suitable warning to a
processor. Late fragments are simply discarded. The upper
limit for the maximum "age" is determined by the amount
of buffer-space available.

The event building protocol comes on top of other
standard network protocols that may include a transport
protocol such as TCP/IP (Transmission Control Protocol
over Internet Protocol) or UDP/IP (User Datagram Protocol
over IP). TCP/IP guarantees the delivery of data packets
whereas UDP does not. However it is well known that
those protocols have a cost in terms of processing overhead
and, consequently, lead to lower bandwidth utilisation. For
packets with a transfer time smaller than the overhead, the
frequency is limited to the inverse of the overhead time.

VI. IMPLEMENTATION OF THE EVENT BUILDING PROTOCOL
High rates of small data packets is the most challenging

problem in the implementation of the event building
protocols as the overheads due to their execution, both in
the RUs and in te SFCs, will determine the performance of
the whole system.

It has been mentioned that the transport protocol TCP/IP,
while guaranteeing packet transmission, has a high cost in
terms of overheads. It turns out that TCP/IP, and even
UDP, in their current implementation, are not compatible
with the requirements that we have to fulfil. Consequently
we have decided to bypass those transport protocols,
relying only on the "raw Ethernet" format. Considering the
low load on the switching network and the fact that event
building is the only (mostly 1-directional) traffic, we
estimate that the probability to lose packets should be
minimal. Investigations are currently under way to clarify
this aspect of the problem.

The advent of Gigabit technology to the desktop
necessitates a different approach from the hitherto per
packet interruption of the host by the Network Interface
Controller (NIC). For packets of the order of 500 bytes, at
full bandwidth utilisation, the host would need to be
interrupted every 4 µs, which, in addition to protocol
handling, can either be impossible or would consume an
unacceptable amount of system resources.

The industry has proposed a new concept of NICs to
remedy this situation by providing strong support for those
functionalities directly on the card: the interrupt rate in the
host may be reduced by allowing packets on the receiving
link (Rx) to be grouped when transferred to the host. This is
referred to as interrupt coalescence. Multipurpose CPUs or
ASICs are provided to calculate the layer 3/4 checksums
(TCP or UDP and IP). Examples of those products can be
found in [5] to [7].

NICs implementing multipurpose CPUs offer the
possibility to upload protocol functions, normally
performed by the operating system, to the NIC with the aim
to enhance the performance, security, etc. of the high
throughput links [8]. In our application, only one process
needs to communicate with the NIC. We then proposed to
upload to the NIC most of the event building protocol as
well.

We present the results from a research aimed at testing
this solution. We have chosen to implement the event

building protocols in the CPU of a NIC, directly over the
Ethernet protocol.

The protocols were first tested on PCs in order to
determine the software and standard protocol (UDP or
TCP) overheads. Then the code was adapted and ported to
run on the processor imbedded in the NIC card and the
performance has been measured. We present the NIC and
its embedded processors, as well as the modifications to the
firmware that we have implemented and give the results
from performance measurements. A comparison with an
implementation on the host computers is made.

The measurements were done over a point to point
connection. No attempt has been made so far to
interconnect the end nodes across a switch (which should
not affect our present measurements) nor to measure the
impact of parallel traffic in the switch.

A. The NIC architecture
We have selected a NIC based on the Alteon Tigon 2

ASIC [5]. Block diagrams of the NIC and Tigon are shown
in Fig. 2

Fig. 2: Block Diagram of the Alteon Tigon 2 NIC

The Tigon 2 implements two R4000 MIPS type CPUs

running at 88 MHz and two DMA engines which support
scatter/gather at any byte boundaries. In the standard
version of the firmware, one processor is devoted to
Ethernet traffic management, to and from the MAC, while
the second processor takes care of DMA (both directions)
between the host and the NIC. The external SRAM, is
accessed via a 64 bit wide memory bus. The Tigon is
connected to the host via a PCI interface which can operate
at 66 MHz, 64 bit wide. The chip incorporates an Ethernet
MAC (Media Access Control) interface that supports 2
media attachment interfaces: MII (Media Independent
Interface) for 10/100 Mbit/s and GMII (Gigabit Media
Independent Interface) for 1000 Mbit/s. For more details on
the physical interface, see [13].

The firmware provides an efficient API (Application
Programmer Interface) for Ethernet. It supports auto-
negotiation of link-speed at 10, 100 and 1000 Mbit/s and

8KB
Scratchpad

32-bit
RISC CPU

Checksum
Offload

1M
B

 S
yn

ch
. S

R
A

M

32-bit
RISC CPU

R
X

D
M
A

T
X

D
M
A

16KB
Scratchpad

Endian
SWAP

802.1q
VLAN

10/100/1000 MAC

SERDES

GMIIMII

64-bit

32/64 bit 33/66MHz PCI Interface

10-bit interface

1.25 GHz Signal

flow-control. It provides support for checksum calculations
required for IP and TCP. It also manages a rather large
buffer space, which can be used to collect several packets
before interrupting the hosts, thus lowering the frequency
of those interrupts.

There is no interrupt mechanism to interrupt the
processors. Communication with the hardware is by means
of event flags. It is the responsibility of the firmware to
respond to events in due time. Events can be disabled
and/or ignored.

The Tigon chip is implemented on the NICs produced by
several manufacturers such as Netgear [9] and 3Com [10].
Intel's NIC [6] implements a different CPU.

B. Test set-up and performance of the standard
firmware

A system has been set-up to test the performance of the
NIC cards and to measure the performance of the event
building code. It is shown in Fig. 3.

Fig. 3: Test set-up for Alteon NIC measurements

Two PCs, each one equipped with a Tigon 2 based NIC
(labelled GbE in the figure), are inter-connected by optical
links. The PCs run Linux and a dedicated device driver is
used to download the cross-compiled firmware into the
NIC. The driver also supports an interface to the GNU
debugger (gdb) operated as a remote debugger.

As a first test of the capabilities of the NIC processors
and the firmware development environment, a
measurement of the raw Ethernet throughput, as a function
of the packet size, has been done. The Ethernet packets are
generated in the NIC acting as sender and are discarded by
the receiver NIC, so no traffic goes over the host-NIC
interface. Ethernet packets with a size > 1500 bytes are
managed by means of the non-standard "jumbo frames"
technology.

The results are presented in Fig 4. The minimum frame
size is 64 bytes. A fit to the formula (1) for the effective
throughput y was performed, where x is the packet size, b
the nominal link bandwidth (125 MB/s) and a the overhead
time during which no data can be transferred:

bxa
xy

/+
= (1)

0

50

100

150

10 100 1000 10000

Framesize [Bytes]

T
h
ro
u
g
h
p
u
t
[M

e
g
a
b
y
te
s
/s
]

Raw Ethernet

throughput

UDP throughput

Fig. 4: Effective throughput using raw Ethernet frames and UDP, as a
function of packet size. Diamonds are throughput measurements obtained
for raw Ethernet frames. Stars show the throughput using UDP .

The fitted value for the overhead a is 0.2 µs. This overhead
consists mostly of the preamble, the Start-of-Frame
delimiter and the inter-frame gap, as described, for
example, in [12]. The maximum achievable frequency of
frame transfer is therefore approximately 1.4 MHz for the
minimum size packets. For frames of 1000 bytes, 97% of
the full bandwidth can be used.

Throughput has also been measured from host to host,
using the "light" UDP/IP transport protocol. The
throughput for packets of 1000 bytes does not exceed 40%
of the available bandwidth, due to the protocol overheads.
However it should be noted that the UDP performance
depends also on the operating system (in this case Linux
2.2.12), on the PC hardware and its setting (most
importantly the PCI bus, its setting and speed) and also on
the various tuning parameters available (buffer size, IRQ
coalescence etc.). No attempt was made to tune the UDP
parameters for the throughput measurements presented
here.

C. Implementation of the Event Building Protocol in the
NIC

In the event-building application the “infrastructure” part
of the firmware was only slightly modified, namely the
initialisation, event dispatching, auto-negotiation and auto-
sensing of link changes. The reception and transmit
handlers were replaced by the entry points for the traffic
generator in the sending node, and the event-builder in the
destination node.

The tasks assigned to the 2 processors are the same as in
the standard firmware, namely one taking care of the
Ethernet frames to and from the MAC and the other one
controlling the DMA with the host. It is recalled that in one
NIC the traffic is unidirectional: from host to network in a
RU's NIC and from network to host in a SFC's NIC.

Instead of the standard way of transmitting consecutive
Ethernet packets into pre-allocated buffers in the host we
execute, for each event, a chained DMA transaction, which
gathers the ordered sequence of event fragments in a
contiguous memory in the host. This avoids time-
consuming copying around of data during event building.

The process in the NIC is never interrupted, but it can
interrupt the host when new data are being transferred. The
input and output buffers are implemented as circular

PC/Linux

CPU

Mem

GbE
NIC

PC/Linux

CPU

Mem

GbE
NIC

PCI PCI

NIC NIC

CERN Network
PC/Linux

CPU

Mem

GbE
NIC

PC/Linux

CPU

Mem

GbE
NIC

PCI PCI

NICNIC NICNIC

CERN Network

buffers of descriptors and the relative position of consumer
and producer pointers allow to locate new data.

In order to optimise the performance of the event
building protocol, the most time critical parts of the code
and the administrative data structures have been moved into
the internal “scratch-pad” memory of the Tigon (Fig. 2)
which can be accessed at processor speed, without any wait
cycles.

D. Performance measurements in the NIC
For the evaluation of the event building protocol

embedded in the NIC cards, the test set-up described in
Fig. 3 was used. Event building is emulated on a point-to-
point connection. The sending node (NIC) emulates
multiple sources and the receiving node performs the event
building of the fragments received. Apart from the protocol
headers, the data contained in the packets is irrelevant. For
this measurement, no data transfer to the NIC's host occurs,
in particular, the complete events are discarded without
being transferred to the host. The reason for this restriction
is that we are interested in the measurement of the protocol
overhead due to the NIC's processor only, while the
transfer to (from) the host would distort the result.

This measurement has shown that the average overhead
time to handle one event fragment (independent of its size)
is ~9 µs in the receiver node. Considering that the NIC
processor can handle a fragment concurrently with the data
input of the next fragment, in the receiver, this value of
overhead means that fragments, up to ~ 1100 bytes, can be
received at a rate of more than 100 kHz. The performance
is well beyond the requirement of achieving 40 kHz for
1000 bytes event fragments.

Fig. 5: Measurement of the maximum number of events built per second
in one destination, as a function of the number of sources. The fragment
size is constant and equal to 1'500 bytes.

Fig. 5 shows a measurement, on the point to point

emulation of an N X N event builder, of the maximum rate
at which full events could be delivered at a destination, for
an event fragment size of ~1500 bytes, as a function of N.
This rate decreases as 1/N, from ~ 42000/s for 2 sources to
2600/s for 32 sources.

E. Performance measurements for the event building
protocol running on the host computers.

The same event building code, as used for the test of
embedded event building, has been run on the 2 host
processors of the test bed (233 MHz, running Linux). One
processor generates the event fragments, emulating a
variable number of sources, the other performs the event

building. The data transfer used TCP/IP sockets. In this
configuration we measured the pure software overhead, for
handling one fragment, to be 3.2 µs, (to be compared with
9 µs on the 88 MHz processor of the NIC). However, the
average total time to handle a minimal fragment (64 bytes),
including overheads coming from the TCP/IP protocol and
the operating system, is 9.3 µs, thus showing that the cost
of the transport protocol and processor interrupt is 6.2 µs
for the minimum size packets. It should be noted that the
TCP/IP part of the overhead benefits from the support of
the NIC, as mentioned earlier. For larger packets, the
overhead, not counting the data transfer, is expected to
increase proportionally to the packet size, due, in particular,
to data copy between kernel and user space [11].

VII. COMPARISON AND CONCLUSION
We compared one implementation of the event building

protocol in the host computers, using TCP/IP (supported by
the firmware running in the NIC) with an implementation
directly in the NIC relying only on the Ethernet protocol.

The pure software overhead due to the execution of the
event building protocol is larger in the NIC than on the
host, due to the slower speed of the embedded processor.
Nevertheless, the required performance is achieved and is
even exceeded by a factor > 2 for packets of 1000 bytes.

The most important benefit when embedding the event
building protocol in the NIC is to protect the host computer
from the heavy load of handling the fast traffic of small
data packets in terms of system overhead. Thus the SFC
processor can be devoted to management tasks of the sub-
farm of processors, remembering that this processor has to
control some 30 processors.

Future revisions of the requirements might lead to an
increased rate of event triggers delivered by the Level-1
trigger, probably by a factor ~ 2. In this case the NIC
implementation would offer the additional advantage of a
smaller overall overhead that permits to support a rate of
more than 100 kHz of fragments of 1100 bytes.

The good performance of the embedded event building
relies, for a large part, on the assumption that no transport
protocol is required. This hypothesis still needs to be
confirmed by the study of the traffic in the switching
network.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of sources

10

10

10

E
v
e
n
ts
/s
e
c
o
n
d

5

4

3

VIII. SUMMARY
Embedded event building has been studied for a specific

Gigabit Ethernet NIC that implements a general purpose
CPU. The feasibility of event building at a rate of 100 kHz,
for fragments of 1000 bytes, has been demonstrated. The
average time for processing one fragment in the destination
NIC is of the order of 9 µs. The implementation of the
event building protocol in the NIC processor results in a
considerable offload for the host processor, which is
interrupted only at the rate of completed events (a few
hundred Hz). Consequently host CPU power is saved that
can be devoted to the management of the sub-farm
processors and to the data distribution.

IX. REFERENCES
[1] LHCb Technical Proposal, CERN/LHCC 98-4, Feb. 1998.
[2] J-P. Dufey, M. Frank, F. Harris, J. Harvey, B. Jost, P. Mato and H.

Mueller, "The LHCb Trigger and Data Acquisition System," IEEE
Trans. Nucl.. Sci., vol. 47, no. 2, pp. 86-90, April 2000.

[3] B. Jost, “The LHCb DAQ system,” in Conference Record of 2000
IEEE Nuclear Science Symposium and Medical Imaging
Conference, 2000 [CD-ROM].

[4] M. Zuin, “Embedded Event Building on a Gigabit Ethernet Network
for the LHCb Experiment,” Tesi di Laurea, Nov. 2000, Università
Ca`Foscari – Venezia, unpublished.

[5] Alteon WebSystems, Tigon/PCI Ethernet Controller, rev 1.4, Aug.
1997, [Online]. Available: www.alteonwebsystems.com (from April
2001 this site just provided a link to a 3Com site).

[6] Intel Gigabit Ethernet NIC PRO/1000. [Online]: Available
www.intel.com/network/products/server_adapters.htm

[7] SysKonnect SK-9843-SX Gigabit Ethernet Adapter. [Online].
Available: www.syskonnect.com/index.htm

[8] I. Pratt and K. Fraser, "Arsenic: a User-accessible Gigabit Ethernet
Interface," presented at IEEE INFOCOM 2001. Available:
infocom.ucsd.edu/papers/394-3981268191.pdf

[9] Netgear GA620 Gigabit Ethernet Adapter. [Online]. Available:
www.netgear.com/adapters_main.asp.

[10] 3Com 3C985-SX Gigabit Ethernet Adapter. [Online]. Available:
www.3com.com.

[11] D. Clark, L. van Jacobson, J. Romkey and H. Salwen, "An Analysis
of TCP processing overhead," IEEE Commun. Mag., vol. 27, no. 6,
pp. 23-29, June 1989.

[12] R. Seifert, Gigabit Ethernet. Reading MA, 1998.
[13] Ch.E. Spurgeon, Ethernet, the Definitive Guide. O'Reilly &

Associates Inc, CA, 2000.

	Introduction
	Trigger and Data Acquisition System Overview
	Architecture of the Event Builder
	Implementation of the Event Building System
	Event Building Protocols
	Implementation of the Event Building Protocol
	The NIC architecture
	Test set-up and performance of the standard firmware
	Implementation of the Event Building Protocol in the NIC
	Performance measurements in the NIC
	Performance measurements for the event building protocol running on the host computers.

	Comparison and Conclusion
	Summary
	References

