Safety Detection Systems inside the LHC Experiments

Rui Nunes ST-AA-AS

Presentation Organization

- Overall ST Picture

Detection Systems

Overview

- Fire, Gas & Evacuation in LEP
- Projects for LHC

- Detection, CSAM & Safety Actions

– Time

- 25~30 min presentation

Questions at the end please

Overall ST Picture (1/2)

ST-AA-AS Mandate

- Design, procure, install & maintain all Evacuation systems, Fire, Flammable Gas and Oxygen deficiency detection systems in all CERN Sites
- ST-AA Responsibility
 - Includes Transmission of Safety Alarms (AL3) to the Fire Brigade

• What about ST-MO and CSAM ??

Overall ST Picture (2/2)

ST Division strategy

- CSAM is a close collaboration between ST-AA & ST-MO
 - ST-MO was "contracted", due to their expertise to specify, design, install and commission a Safety Alarm Monitoring system
 - ST-MO provides the "tool" for ST-AA
 - CSAM will be integrated in ST-AA in the future

25/07/2001

• What are they?

WGAL3S defined them as the AL3S

– Listed in TIS IS37

•	smoke (fire) detectors	ST-AA
•	flammable gas detectors	ST-AA
•	oxygen concentration detectors	ST-AA
•	local evacuation signals	ST-AA
•	general emergency stop	ST-EL
•	flooding detectors	ST-CV
•	blocked lift	ST-HM
•	red telephones (will disappear?)	IT/CS
•	"deadman" devices	users

Detectors

May be of many types and technologies

Fire detectors

- Point smoke detectors
- Flame detectors
- Thermal detectors
- Multi-point detectors
- Linear detectors

Gas detectors

- Flammable Gas
- Oxygen detectors

(optical, ionisation) (IR, UV)

(air sampling, sensitive cable, Optical, Laser, diffraction, etc..) (IR, optical fibre, etc..)

(catalytic, IR, electrochemical, etc..)

(semiconductor, electrochemical, paramagnetic, etc..)

25/07/2001

R. Nunes - JCOP Project Team Meeting

Example of a Point Gas Detector

25/07/2001

- Detectors are connected to Control and Indicating **Equipment (CIE)**
 - The CIE is responsible for
 - Analysis of the signals
 - Interface with Alarm transmission network
 - simple safety/warning actions
 - Maintenance interface

25/07/2001 • etc...

R. Nunes - JCOP Project Team Meeting

Fire, Gas & Evacuation in LEP (1/2)

Surface & Underground

- Generalised Fire Detection
- Flammable Gas detection in BGs and Gas mixing areas
- No Oxygen Deficiency detection
- Evacuation system
 - General Evacuation
 - BIW Beam Imminent Warning

Alarm Transmission via GSS and hardwired

25/07/2001

Fire, Gas & Evacuation in LEP (2/2)

Safety Actions in LEP

Not Always Homogeneous

- Some direct safety actions (only on surface)
- Some Actions via GSS (always via GSS in underground, sometimes on the surface)

– What kind of actions were performed?

- Flashing panels and sirens
- **Ventilation** (Cut or High Speed)
- Electrical Cuts
- Gas Valve Cuts

Projects for LHC Experiments

Detection in the surface buildings
 Detection in the Underground

 Experimental Caverns
 Technical Caverns

 Evacuation for the Underground
 The SNIFFER Project

 Inside the experimental apparatus

Projects for LHC Experiments

Projects under the guidance of TIS

Respecting Relevant Codes and Instructions

- In close collaboration with the users (GLIMOS / DSO / FGSO / CSO / TSO)
- To determine User Requirements
 - LHC Safety Co-ordination (TIS)
 - ATLAS FAGIA
 - CMS AL3 Task Force

LHC Surface Sites Strategy

CERN Sites Divided into Safety Zones

LHC Surface Sites

- Systematic Re-evaluation due to:

- Possible change of use of buildings
- New buildings
- Gradual Replacement of Fire & Gas Detection
- New O₂ deficiency detection
- Summary of TIS & User Requirements published
 - CERN-TIS-GS/TM/2000-04

LHC Experiments Underground

- Generalised Detection systems
 - User Requirements Gathering phase
 - ATLAS
 - the most advanced (FAGIA, GLIMOS)
 - but incomplete
 - CMS
 - Some information available,
 - very incomplete
 - ALICE, LHCb
 - No info available

LHC Experiments Underground

Evacuation system

- Separate Safety Equipment from detection
 - Consisting of
 - Manual Call Points (break glass type)
 - Sirens or Public Address (do be defined by Experiments)
 - Control and Indicating Equipment (CIE)
 - Functions (to be confirmed by Experiments)
 - General Evacuation
 - Beam Imminent Warning

The SNIFFER Project

For the protection of People Property Early Detection of - Fire - Flammable Gas Leak – Oxygen Deficiency INSIDE Experimental Apparatus

25/07/2001

R. Nunes - JCOP Project Team Meeting

19

The SNIFFER Project

Prototyping needed

- to validate physical principle
- to assure performances
- to define best architecture

Status report

- Prototyping phase started
- Expected Completion early next year
- Invitation to Tender will go out during 2002

CSAM Functional Diagram (Already Presented by L. Scibile)

CSAM & Environment

CSAM & Environment

Detection Safety Actions

 What are the capabilities for Safety Actions?

- Few Hardwired contacts only (one per zone)

Simple safety actions

- General Electrical cuts, ventilation, and gas valves
- Only a few simple actions are reasonably possible

Complex Shutdown Operations

-Impossible

25/07/2001

R. Nunes - JCOP Project Team Meeting

Safety Actions

- Functional point of view
 Three different functions can be identified:
 - Detection
 - Transmission
 - Safety Actions "Mise en securité"
 - Requires specific knowledge of the Experiment

 There should be one "entity" for each of these functions

Summary (1/2)

Overall ST Picture

- ST-AA responsible for the whole chain
- ST-MO provides the "tool" CSAM

Detection Systems

- User Requirements needed for
 - generalised detection in the LHC Experiments
 - evacuation system
 - SNIFFER Project
- ST-AA-AS shall provide the equipment according to user requirements and approved by TIS, CSAM shall transmit to the Fire Brigade and XCR

25/07/2001

Summary (2/2)

- Safety Actions
 - Technically
 - Only very simple safety actions can be performed by the detection equipment
 - Practically
 - For reasons such as:
 - **simplicity** (the simpler the better)
 - shutdown operations
 - treatment of other signals than AL3

Safety Actions should be done by an entity with overall view and control of the experiment

Thank You for your Attention

For more info Rui.Nunes@cern.ch