
Performance Testing of DIRAC v2.1

(December 2003)

Ian Stokes-Rees

January 13, 2004

1 Summary

The DIRAC v2.1 system, based on XML-RPC, bbftp, and written in Python,
performs well even under reasonable loads. No significant functionality problems
were discovered, although that was not the objective of these tests. Some sample
results include 4000 job status queries executed in 33 seconds, and 100 job
submissions including a 500k file upload completed in 2 minutes 16 seconds.
Performance seems to be maintained even with 8000+ jobs stored in the Job
DB. The only problem appeared to occur when large numbers (¿1500) of job
submissions were initiated simultaneously – we believe the delay here is due to
Jabber messaging queues being filled.

2 Introduction

This report summarises tests of the DIRAC physics production and analysis
system. The DIRAC system consists of the following key components:

Client – where jobs originally come from and where results are returned to

Job Receiver – accepts job submissions from the Client and registers them to
the Job DB

Job DB – stores information pertaining to each job

Matchmaker – decides what jobs to give to a particular computing resource

Agent – which monitors some computing resource (cluster or single processor),
and fetches jobs from the Matchmaker

Monitoring DB – contains monitoring information pertaining to individual
jobs and to computing resources

The set of tests performed were focusing on performance evaluation as opposed
to functionality testing. No significant problems were found with the functional-
ity, however. The performance tests aimed to evaluate the behaviour of Agents
and Clients accessing the DIRAC central services.

1



2.1 Types of Tests

Each set of tests aimed to measure: single invocation response time; ”average”
loading response time and performance; and ”saturation” loading response time.
The ”average” loading consisted of between 40-100 invocations, and the ”sat-
uration” loading between 500-4000 invocations. The repeated execution was
handled in two ways: serially, within the code; and, in parallel, either using
”fork” or multiple threads. The multi-threaded version was required because
with hundreds or thousands of parallel operations using ”fork” the memory
resources were exhausted. The particular technique is noted in the test descrip-
tion.

The tests can be broken down into a few general categories, based on the com-
mon operations for the DIRAC system: job submission, job fetching, monitoring
updates, and monitoring queries. Job execution was not tested, as the perfor-
mance of individual compute nodes cannot be controlled by the DIRAC system.

2.2 Note on Testing Technique

Due to the limited number of suitably configured systems, it was not possible to
have multiple Clients or Agents on independent systems accessing the DIRAC
central services. We hope to perform tests of this sort in the future, however
we belive the testing approach described here provides results which can be
generalised to the expected performance of the final system. We were using
at most three systems: one hosting the DIRAC central services, one acting as
a job submission (or retrieval) Client, and one acting as an Agent and fetch-
ing/returning jobs. Simultaneous parallel invocation of Clients or Agents were
used to simulate the effect of multipe systems concurrently accessing the central
services.

Note also that while timing results lists clock time, user time, and system time,
in most cases only the ”wall clock” time is relevant. The user and system time
only refers to the client side operations, and not the server side. Distinguishing
between network and file system latencies, server side load, and client side load
would have required significantly more effort to instrument the various services.
As a result, the ”wall clock” time captures all of these together. The user and
system times have been included, but these only indicate user and system time
for the client or agent.

3 Testing Results

3.1 Job Submission

The following details results for three different types of job submission: one
which simply executes an ”echo”, one which includes a small (1k) file, and the
third which includes a 500k jpeg image file (therefore not very compressible).
The two types which include input sandboxes use bbftp to transfer the file to
the DIRAC Storage Element.

2



Description Count Clock User System Method

echo 1 1.2s 0.074s 0.043s fork
echo 100 4.0s 0.68s 0.21s fork
echo 1500 44s 9.7s 2.9s fork
echo 4000 7m30s 25s 7s fork
1k file 1 6.6s 0.20s 0.06s fork
1k file 100 2m21s 13s 4.9s fork
1k file 100 1m29s 2.4s 3.4s thread
1k file 500 7m32s 11.9s 35.1s thread
500k file 1 7.5s 0.23s 0.1s thread
500k file 100 2m16s 2.5s 3.8s thread

Table 1: Job submission results

When executed 4000 times, the ”echo” job submission caused the server to
essentially lock up after approximately 1800 jobs had been received. These first
1800 jobs were submitted in under a minuet. It appeared that the problem
due to the Jabber messaging queues being backlogged. After a significant delay
(30s-1m), the job submissions resumed, and the client finished after 7m30s,
however the server continued to produce Jabber messages for a further 7 or 8
minutes, hence the conclusion that it was a Jabber messaging queue backlog.
The total time to clear the 4000 messages through Jabber was approximately 15
minutes. As can be noted, with only 1500 jobs submitted the client completed
very quickly and the server was able to keep up without a Jabber backlog.

When transfering 500 1k files approximately 50 bbftp transfers timed out around
the middle of the transfer band. Given the small size of the file, we assume that
this was due to the bbftp server saturating, although this was not verified. At the
time, the server machine was reported a load average of 40 and was responding
very slowly. It appears that the client side transfer mechanism successfully
re-attempted the transfers such that they eventually succeeded. Notice that
the 500 file transfer time was approximately 5 times the length of the 100 file
transfer time.

Many simultaneous ”large” files also transfer quickly. While 500k is, in fact,
relatively small, it does establish a test where 100 active file transfers are taking
place concurrently, and that they can all complete successfully and in good time.

3.2 Job Fetching

The environment used for testing job execution simply fetches and discards all
jobs it gets in order to simulate numerous agents simultaneously accessing the
job server. The objective of the job fetch testing is not to see how long it takes
for a compute node to execute a job, but how quickly the job matcher can server
jobs to nodes which are requesting them.

It is important that the server be able to deal out a large number of jobs rapidly.
This will occur whenever the server is first brought on-line or restarted for some
reason. It is possible that all active agents will query the server for jobs, so

3



Description Count Clock User System Method

getJob 1 1.1s 0.15s 0.04s thread
getJob 100 15.0s 0.59s 0.36s thread
getJob 200 17.0s 1.6s 1.4s thread
getJob 300 27.1s 2.0s 1.9s thread
getJob 400 1m50s 2.3s 2.1s thread
getJob 500(*) 3m30s 2.8s 3.1s thread

Table 2: Job fetching results (* 34 threads timed out, between threads 344 and
475)

possibly thousands of jobs may need to be dispatched very rapidly.

It appears that timeout issues can occur if more than 10 job fetches per second
are requested. In a test to repeatedly execute 200 job fetches, the delays were:
13s, 24s, 52s, 3m32, however the last execution had 37 threads timeout, and the
last successful fetch occurred after 2m50s. It is not clear what is causing the
increase in time for subsequent fetches. It may be that the DB has background
tasks to perform, or that the DIRAC service is responding to re-ordering the
queue lists and changes in the DB. It appears that all Jabber communication
has been completed after each run, so we do not expect Jabber message backlogs
to be the source of the delays. After waiting a few minutes the job match rate
returns to approximately 10/second.

A final test was done sequentially fetching 100 jobs at a time. The completion
rate for this was as follows: 8s, 23s, 46s, 8s, 37s, 1m52s, 7s. The most interesting
point is that for the 1m52s run there were only a few jobs left in the DB to match.
At least 90 threads got the response ”No work available”. The following 7s run
also had no jobs available. I cannot provide an explanation for this behaviour.

3.3 Monitoring Updates

Description Count Clock User System Method

setJobStatus 1 1.35s 0.06s 0.01s thread
setJobStatus 100 4.0s 0.28s 0.18s thread
setJobStatus 500 12.2s 1.5s 0.8s thread
setJobStatus 1000 14s 3.1s 1.54s thread

Table 3: Monitoring updates

More than 1000 concurrent setJobStatus operations causes faults which I believe
are due to Python threading issues (more than 1000 threads), rather than due
to DIRAC limitations.

3.4 Monitoring Queries

Monitoring queries showd very high sustained throughput, in excess of 100
queries per second.

4



Description Count Clock User System Method

getJobStatus 1 0.8s 0.064s 0.03s fork
getJobStatus 100 1.6s 0.23s 0.12s fork
getJobStatus 4000 33s 7.0s 2.73s fork

Table 4: Monitoring queries

4 Further Testing

Further testing should be done to make use of multiple active clients and agents
on independent systems simulatneously accessing and loading the DIRAC cen-
tral services. Also, more testing should be done with large file transfers, and,
to date, no testing has been done here on job fetching. These tests are required
to evaluate the performance of handling input sandboxes.

5 Testing Setup

This section is only for historic purposes. It documents how the testing system
was setup and how the tests were run, in order that they may be reproduced in
the future.

1. Currently the definitive CVS repository for DIRACv2 is :ext:ijstokes@isscvs.cern.ch:/local/reps/dirac
(replace ijstokes with your AFS username, and set CVS RSH=ssh). Set
CVSROOT to this value and then checkout the WMSpy module. If you want
the version used for these tests, add the option -D 2004-01-01.

declare -x CVSROOT=:ext:ijstokes@isscvs.cern.ch:/local/reps/dirac

declare -x CVS_RSH=ssh

cvs co -D 2004-01-01 WMSpy

2. Read the file WMSpy/README. This details how to setup the server,
client, and agent, although it is very brief. Full install documentation is
not yet available.

3. Setup DIRAC on two systems. One will act as the server, and one will
act as both the Client and Agent. It is necessary to set the appropriate
PYTHONPATH on both, and may be necessary to set BBFTP EXEC
(location of bbftp) and LHCBBBFTPRC (location of file containing bbftp
username/password pair).

4. Start the server(s) running by executing WMSpy/scripts/SystemControler.

5. Relevant client, agent, and monitoring scripts can be found at:

• Client/scripts/wms jobs submit JDL-file

• Agent/scripts/ForkAgent CE-JDL-file

• JMS/scripts/wms job status JobID

5



• JMS/scripts/wms job setstatus RangeToSet

Variations which are suffixed ”X” or ”Y” generally repeat the operation
a specified number of times, using either ”fork” or threads.

6


