
 1

WMS overview and Proposal for Job Status
Author: V.Garonne, I.Stokes-Rees, A. Tsaregorodtsev.

Centre de physiques des Particules de Marseille
Date: 15/12/2003

Abstract
In this paper, we describe briefly the workload Management System (WMS) of DIRAC
(Distributed Infrastructure with Remote Agent Control). Dirac will be the infrastructure
used for this year’s DC’04 production. This document also discusses the different states
of a Job during its lifecycle and the job parameters required by the system.

WMS Architecture Overview

Figure 2. WMS Architecture

The WMS consists of the following key components:

User where jobs originally come from and where results are

returned. The User submits jobs in JDL. JDL is used to
maintain interoperability with others grid projects such EDG,

 2

Alien and LCG.

Job receiver accepts job submissions from the User and registers them into
the Job DB.

Job DB stores information pertaining to each job.

Optimizer sorts jobs into Grid queues with a priority computed by
optimizer.

Match Maker decides what jobs to give to a particular computing resource

Agent Monitors a Computing Element (CE) and fetches jobs from
the Match Maker

Computing Element provides computational resources to the user (see also
Computing Element chapter)

Computing Element
The Computing Element (CE) is an abstraction which provides an interface to local
computing resources. Although single node and “grid” Computing Elements are
possible, in general we model each Computing Element as a single Gatekeeper which
manages/accesses a cluster of computing Worker Nodes. We assume such a system
consists of its own local scheduler and queues (as illustrated in Figure 2). At present,
DIRAC provides interfaces to LSF, PBS, BQS and Globus.

Figure 1: Computing Element

A CE is classified as “Available” if it is immediately (un-utilised CPUs) or imminently
(CPUs with no queued jobs) able to execute a job. This criterion of availability depends
on the nature of the CE, so we define different criteria of availability:

• For Batch System type
Total Queuing Jobs=0 or Total Queuing Jobs/Total CPUs < 0.3

• For a local PC
Total Running Jobs == 0

 3

Job status

During its lifetime a job may go through a number of states. These states and there
meaning are listed below.

Ready The user has submitted the Job to the User Interface

Waiting The Job is queued in Grid queues

Queued The Job is queued in a Cluster on a local queue (for example PBS)
 of a Computing Element

Running The Job is running on a worker node

Done The execution of the Job has completed

Outputready The Output of the Job is ready

Rescheduled To be defined

Failed To be defined

Job Information & Parameters: Example Values

v Job Information

JobID 209
Owner Nobody
Site ccali.in2p3.fr/bqs-A
Type Test
SubmissionDate 2003-12-19
SubmissionTime 09:41:07
Status outputready

v Job Parameters

JobID Name Value
209 LocalBatchId I3191743
209 Worker Node ccwali64
209 Memory 027904kB
209 Model PentiumIII(Coppermine)

 4

209 CPU 996.894
209 CPU comsumed 36.97
209 Execution Time 37.3256549835

Job Life in the WMS

When the job is done it is not necessary to keep all its information in the system. We
plan to use an agent called the “Job Monitor” in order to clear out information from old
jobs. This agent will transfer information concerning a job from the Job DB to a
Provenance DB when it discovers jobs to be cleared. The criteria for clearing a job is still
to be fixed.

The Provenance DB will also be used as an accounting service. For the moment we
propose to use the Bookkeeping DB as Provenance DB.

Implementation details

The WMS is implemented as a set of classes written in Python. This provides a clean
object-oriented design together with a rapid development environment. It uses the XML-
RPC protocol and Jabber to communicate with different services. The Job DB uses
MySQL. DIRAC jobs are described with the Condor ClassAds Job Description Language
(JDL).

Job splitting and Merging proposal

With the WMS architecture, we propose different approaches to do the job splitting and
merging. We firstly considered jobs with no input data.

Splitting and Merging approach for jobs with no input data

The job is submitted to DIRAC and then divided into a set of sub-jobs, all of which are
targeted for the same destination CE. A “Merge” job is also submitted to the same CE,
which allows all sub-job outputs to be locally available, thus facilitating the merge,
whose only purpose is to combine subjob outputs. The JDL of the parent job must
contain these options in order for splitting to be possible:

- JobType
- NbEvents
- SizePerEvent
- CPUPerEvent
- Splittable (true or false)
- CEName

 5

The Job Receiver stores the parent job in the DB and returns a JobId. Then it notifies a
“Splitter Service” which is a specialized Optimiser. This splits the job into the n subjobs
and one merging job. The jobs are queued and will eventually match to the specified CE
when its Agent requests a job.
The “Splitter” will also keep track of the relation between the parent’s JobId and the
SubJob’s JobId in a DB. This information will be available via the Job Monitoring
Service. The merging job will be executed only if all inputs are ready.

Implication:

There are various implications of this scheme:

- A new optimiser is required which is able to split jobs and manage the sub job

dependencies.

JobType = MinBias;
NbEvents = 10000 ;
SizePEreevnt = 114;
CPUPerEvent = 60;
Splittable = true;
Site = X;

Parent Job

Splitter
Optimizer

Splits job in n
subjobs and

Creates a
merging job

Merging Job

JobType = Merger;
Executable = /bin/cat;
Site = X;
InputData = {mc_01.rawh;
mc_02.raw.h,…}

Theses job are then
stores in Job DB and
sorted in a queue by
the “Splitter”.
The relation between
JobId and SubJobId
are stored in a DB.

SubJob 1

JobType = MinBias;
NbEvents = 200 ;
….

SubJob 2

JobType = MinBias;
NbEvents = 200 ;
….

SubJob n

JobType = MinBias;
NbEvents = 200 ;
Site = X;
….

JobId rank

5 1

4 2

6 4
… …

Job Queue

 6

- A way to report the status of the parent job from the Job Monitoring Service. For
example: 23 % in done status, 2% in running status. The access to this information
could be done by a special process which monitors subjobs and computes some
statistics.

- A “Dependency Checker Agent” will also check if data is available for a job. This

builds on the idea of “virtual data” where a job can be submitted before the data is
available. Specifically, this will be required to hold the “merge” job until all the
outputs are ready. This agent will be interfaced with the file catalogue.

Splitting and Merging approach for jobs with input data

This is the same as the scenario without input data, except that fragmentation of the input
data set must be considered. Here the “Dependency Checker” Agent will be make sure
that a job is split into groups such that all the files in a sub job are accessible from a
single CE. To facilitate this the Dependency Checker can act as or in conjunction with a
Replica Manager and initiate data replication to insure that groups of input files for sub
jobs are accessible from a single CE which has available computing resources.

Terminology
Glossary
class-ad Classified advertisement
CE Computing Element
job-ad Class-ad describing a job
JDL Job Description Language
LRMS Local Resource Management System
PID Process Identifier
SE Storage Element
UI
VO
WMS

User Interface
Virtual Organisation
Workload Management System

