
Bookkeeping Implementation

Sebastien Ponce

March 12, 2004

Internal Note
Issue : 1
Revision : 0
Reference : -
Created : September 1, 2003
Last modified : March 12, 2004

Internal Note
Issue: 1
CONTENTS

Reference: -
Revision: 0
Last modified: March 12, 2004

Contents

0.1 Introduction . 3

1 Data description and access 4

1.1 Persistent Data . 4

1.1.1 The Data Model . 4

1.1.2 Constraints . 5

1.1.3 How to generate unique IDs . 7

1.2 The transient Data Model . 7

1.3 Access to data from Java . 8

1.3.1 StatusCode and Handle . 8

1.3.2 Main Bookkeeping data . 9

1.3.3 Event types . 10

1.3.4 Replicas . 10

1.3.5 A word on the default implementation . 11

1.4 Access to data from python and XMLRPC . 11

1.4.1 Python objects . 11

1.4.2 Python interface . 13

1.4.3 XMLRPC interface usage . 13

2 Server infrastructure 15

2.1 Server implementation . 15

2.2 Server deployment . 16

3 Booking of data 17

4 The end-user web interfaces 18

page 2

Internal Note
Issue: 1
CONTENTS

Reference: -
Revision: 0
Last modified: March 12, 2004

0.1 Introduction

This document describes the implementation of the bookkeeping tools and services in LHCb.

We first present the persistent data model, which describes the tables and columns declared in the
database to store the data.

We then deal with the description of the transient data model and the way applications can access
to the data. This includes the definition of abstract interfaces for both data access and data
writing.

Finally we present the python and web tools deployed around the main system for easy access by
the end user. We also present some tools that were used to transfer, create or update the main
database.

Before jumping into the details, here are some prerequisites :

• The core system was implemented in Java. Thus the interfaces described in the “Data
Management” document were adapted to this language. Details are given in section ??.

• Since Gaudi is only available in C++ at this time, the system has no link to it. In particular,
the interfaces do not inherit from the Interface abstract interface and the services do not
inherit from the IService abstract interface. However, the needed Gaudi components were
recreated in Java.

• The database used in the implementation is not precisely defined in the rest of this chapter.
This is because it may be any relational database having a JDBC interface. MySQL and
Oracle are the two databases that were actually tested and the final system is running mainly
under Oracle.

page 3

Internal Note
Issue: 1
Data description and access

Reference: -
Revision: 0
Last modified: March 12, 2004

Chapter 1

Data description and access

1.1 Persistent Data

1.1.1 The Data Model

The persistent data model (Figure 1.1) describes the design of the database used to store book-
keeping data. This database is supposed to be relational. Thus the description is the description
of the tables used and of their colums. Each bubble of the figure is a table and the list of column
is given inside each one. The associations drawn as lines show where IDs are supposed to match.
As an example, the Job ID in Job and in JobOptions match. The dotted line indicates that
on the FilesParam side, the EvtType ID is actually stored in the Value column when the Name
column contains “EventtType” and not as a separate column.

Job_ID : INTEGER
Name : VARCHAR
Value : VARCHAR
Type : VARCHAR

JobParams

Job_ID : INTEGER
ConfigName : VARCHAR
ConfigVersion : VARCHAR
Date : DATE

Jobs

Job_ID : INTEGER
Name : VARCHAR
Value : VARCHAR
Recipient : VARCHAR

JobOptions

File_ID : INTEGER
Job_ID : INTEGER
Type_ID : INTEGER
LogName : VARCHAR

Files

File_ID : INTEGER
Quality_ID : INTEGER
Name : VARCHAR
Value : VARCHAR

QualityParams

Type_ID : INTEGER
Name : VARCHAR
Value : VARCHAR

TypeParams

File_ID : INTEGER
Name : VARCHAR

FileParams

Value : VARCHAR

Job_ID : INTEGER
File_ID : INTEGER

InputFiles

File_ID : INTEGER
Replica : VARCHAR
Location : VARCHAR

Replicas

EvtTypes

Decay : VARCHAR
Primary : VARCHAR
Description : VARCHAR
EvtType_ID : INTEGER

Figure 1.1: The design of the database tables

page 4

Internal Note
Issue: 1
Data description and access

Reference: -
Revision: 0
Last modified: March 12, 2004

The whole design was intended to build thin tables on the database side by removing all columns
that would not be absolutely necessary for all cases. Lines in one of the parameter tables replace
these columns. As an example, the number of event of a given file is only relevant in the case of
a file containing data (not in the case of a log file). Thus, is was not added in the Files table
but will be a line in the FileParams table with name ”NbEvent” and value the actual number of
event of the associated file.

This architecture also allows taking advantage of the indexing capabilities of the underlying
database to search for objects. As an example, indexes should be created in the InputFile table,
based on the file ID and in the Files table based on the Job ID. This allows an efficient browse
of the hierarchy of jobs and files.

In principle, every object in the data model maps to a table and every relation between objects
to an ID. There are however some exceptions:

• The Type and Quality objects have actually no members. These are stored as parameters.
The names of these parameters are ”Name” and ”Version” for Type and ”Group” and ”Flag”
for Quality.

• Types are not mapped to a table since this table would have had no column except the ID
one. They only exist through IDs in other tables. As an example, the Type ID is used in
the TypeParams and in the Files tables.

• Qualities are not mapped to a table. However, the table would have had two columns:
one for File ID and one for Quality ID. For optimization purposes, it was decided that the
File ID would be replicated in every line of the QualityParams table and that the Qualities
table would be suppressed. However, all the quality parameters defined for a given file stay
grouped by the Quality ID and will map to parameters of the same Quality object in the
transient world.

• The many to many link that exists for input files requires a specific link table: InputFiles.
Each line of this table describes one link between a job and a file, which is seen as an input
file of this job. Note that the output files relation is a regular relation and is thus mapped
to an ID, namely the Job ID in Files.

1.1.2 Constraints

The ”Type” column of table ”JobParams” cannot be filled with any value. Table 2 give a list of
the allowed values and their meaning.

Value Meaning
”Info” This parameter gives information on the conditions under which

the job ran
”Script” This is a script that was launched before the job was run.
”Environment variable” This is an environment variable that was defined before the job

was run.
”Error” This is a parameter created by the book process when it crashes.

It stores what could not be put anywhere else du to the crash.

Many parameter tables are defined in this design that may keep most of the relevant information.
It is thus important to agree on the name of the parameters to be able to retrieve the information.
Here are the parameters and name that are defined by default. More parameters may be defined
in the future. Note that in the case of the ”JobParams” table, these are ”Info” parameters.

page 5

Internal Note
Issue: 1
Data description and access

Reference: -
Revision: 0
Last modified: March 12, 2004

Table Name Description Needed

JobParams

Location The laboratory where the job was executed No
Host The machine where the job was executed No
Run The run number for data files that have

one
No

Seed1 First random number seed used for this
job, if any

No

Seed2 Second random number seed used for this
job, if any

No

XmlDDDBVersion Version of the geometry database used for
this job, if the XML database is used

No

DbaseVersion Version of the geometry database used for
this job, if the old dbase is used

No

Name The job name. By convention
XXXXXXXX YYYYYYYY Z where
XXXXXXXX is the production num-
ber, with 8 digit and prefixed with 0s,
YYYYYYYY is the job number (same
convention) and Z is the step number

No

Production The production number No
Job The job number in the production No
ProgramName The name of the program that was run No
ProgramVersion The version of the program that was run No

FileParams
EvtType The type of events contained in this file

(Only in case of a data file). Only an id
is given here. The description of the event
type can be found in the EvtType table

No

EvtStat The number of events in this file (Only in
case of a data file)

No

Size The size of the file in KB No

TypeParams
Name The name of this type. Example: ”RAW”,

”DST” or ”Log”
Yes

Version The version of this type. Usually a num-
ber.

Yes

Description A short description of this type. No

QualityParams Group The group concerned by this Quality. Yes
Flag The quality by itself. Allowed values are

”Good”, ”Fair”, ”Bad” and ”Not checked”.
Yes

page 6

Internal Note
Issue: 1
Data description and access

Reference: -
Revision: 0
Last modified: March 12, 2004

1.1.3 How to generate unique IDs

As you can see in the tables of Figure 1.1, many IDs are defined in the database schema. Each
Job, File, Type and Quality can thus be identified by a single and unique number. The problem
is to ensure the uniqueness of this number.

Since every database has its own way of solving this problem (if any), it was decided to do it by
hand via the use of an additional table called ”NextBookkeepingIDs”. This table has only two
columns: ”TableName” and ”ID”. It contains only four lines (with TableNames ”Job”, ”File”,
”Type” and ”Quality”), which keep track of the next ID that should be used when creating a
Job, a File, a Type or a Quality. The IBookkeepingEditor interface implementations have to take
care that this table is maintained up to date. Note that the table contains a fifth line called
“IndexName”. This index is used for the bookkeeping updates, see section ??.

1.2 The transient Data Model

A preliminary version of the transient data model was exposed in the document ”Data Manage-
ment”. We describe here its current implementation. Lsiting 1.1 shows the implementation of
every class used in this model. The code should be pretty obvious to understand.

pub l i c c l a s s Job {
pub l i c Job (i n t jobID , St r ing configName ,

S t r ing con f i gVers ion , Date date) ;
pub l i c i n t jobID () ;
pub l i c S t r ing configName () ;
pub l i c S t r ing con f i gVe r s i on () ;
pub l i c Date date () ;

}
pub l i c c l a s s F i l e {

pub l i c F i l e (i n t f i l e ID , i n t jobID ,
i n t typeID , St r ing logName) ;

pub l i c i n t f i l e I D () ;
pub l i c i n t jobID () ;
pub l i c i n t typeID () ;
pub l i c S t r ing logName () ;

}
pub l i c c l a s s Type {

pub l i c Type (i n t typeID , St r ing name , S t r ing ve r s i on) ;
pub l i c i n t typeID () ;
pub l i c S t r ing name () ;
pub l i c S t r ing ve r s i on () ;

}
pub l i c c l a s s Qual i ty {

pub l i c Qual i ty (i n t f i l e ID , i n t qual i tyID ,
S t r ing group , S t r ing f l a g) ;

pub l i c i n t qua l i ty ID () ;
pub l i c i n t f i l e I D () ;
pub l i c S t r ing group () ;
pub l i c S t r ing f l a g () ;

}
pub l i c c l a s s Param {

pub l i c Param (in t ID , S t r ing name , S t r ing value) ;
pub l i c i n t ID () ;
pub l i c S t r ing name () ;
pub l i c S t r ing value () ;

}
pub l i c c l a s s JobOption extends Param {

pub l i c JobOption (i n t jobID , St r ing name ,
S t r ing r e c i p i e n t , S t r ing value) ;

page 7

Internal Note
Issue: 1
Data description and access

Reference: -
Revision: 0
Last modified: March 12, 2004

pub l i c S t r ing r e c i p i e n t () ;
}
pub l i c c l a s s TypedParam extends Param {

pub l i c TypedParam (i n t jobID , S t r ing name ,
S t r ing value , S t r ing type) ;

pub l i c S t r ing type () ;
}
pub l i c c l a s s EvtType {

pub l i c EvtType (i n t id , S t r ing desc ,
S t r ing prim , St r ing decay) ;

pub l i c i n t ID () ;
pub l i c S t r ing d e s c r i p t i o n () ;
pub l i c S t r ing primary () ;
pub l i c S t r ing decay () ;

}

Listing 1.1: Transient Data Model

1.3 Access to data from Java

The interfaces are actually divided in two groups : the ones providing read access to the data
and the ones providing write access. The first ones have their name ending with “Info” while the
second ones have their name ending with “Editor”.

The data were split into three pieces : the event types, the replica catalog and the rest of the
bookkeeping. Thus, there are 6 interfaces : IEvtTypeInfo, IReplicaInfo, IBookkeepingInfo, IEvt-
TypeEditor, IReplicaEditor and IBookkeepingEditor.

On top of the interface themselves, two helper classes were defined in the (tiny) Java part of Gaudi
: StatusCode and Handle. They are the only objects returned by the methods of the interfaces.

1.3.1 StatusCode and Handle

The StatusCode class has the same interest in Java that it had in the C++ world: it encapsulates
a status and allow to query whether the operation is success or not. The interesting part of its
Java definition is shown on Listing 1.2.

pub l i c c l a s s StatusCode extends Object {
stat ic pub l i c StatusCode FAILURE = new StatusCode (0) ;
stat ic pub l i c StatusCode SUCCESS = new StatusCode (1) ;
pub l i c boolean i s Su c c e s s () ;
pub l i c boolean i s F a i l u r e () ;

} ;

pub l i c c l a s s Handle extends StatusCode {
stat ic pub l i c Handle FAILURE = new Handle (0 , null) ;
stat ic pub l i c Handle SUCCESS = new Handle (1 , null) ;
pub l i c Object ob j e c t ;

} ;

Listing 1.2: Definition of class StatusCode and Handle

Besides StatusCode, a new return type has been defined that extends it by adding a member of
class Object. This allows a function to return at the same time the status and the return value.
This new type was called Handle. The Handle class is heavily used in the IBookkeepingInfo and
IBookkeepingEditor interfaces.

page 8

Internal Note
Issue: 1
Data description and access

Reference: -
Revision: 0
Last modified: March 12, 2004

1.3.2 Main Bookkeeping data

Listings 1.3 and 1.4 gives the definition of the IBookkeepingInfo and IBookkeepingEditor interfaces
in Java. Some functions are returning a Handle that encapsulates the actual return value. The
return value is either a single object (see type definitions in section 1) or a java.util.Vector object
containing such objects.

pub l i c interface IBookkeepingInfo {
pub l i c Handle jobs () ;
pub l i c Handle jobs (Date date1 , Date date2) ;
pub l i c Handle jobs (S t r ing configName , S t r ing con f i gVe r s i on) ;
pub l i c Handle jobs (F i l e inpuF i l e) ;
pub l i c Handle job (F i l e outputF i l e) ;
pub l i c Handle job (i n t id) ;
pub l i c Handle f i l e s () ;
pub l i c Handle f i l e s (S t r ing SQLQuery) ;
pub l i c Handle f i l e (S t r ing logName) ;
pub l i c Handle i npu tF i l e s (Job job) ;
pub l i c Handle outputF i l e s (Job job) ;
pub l i c Handle f i l e s (Type type) ;
pub l i c Handle q u a l i t i e s (F i l e f i l e) ;
pub l i c Handle qua l i t y (F i l e f i l e , S t r ing group , S t r ing f l a g) ;
pub l i c Handle types () ;
pub l i c Handle type (St r ing Name , S t r ing ve r s i on) ;
pub l i c Handle type (F i l e f i l e) ;
pub l i c Handle jobParameters (Job job) ;
pub l i c Handle jobParameters (Job job , S t r ing type) ;
pub l i c Handle jobParameter (Job job , S t r ing name) ;
pub l i c Handle jobOptions (Job job) ;
pub l i c Handle jobOption (Job job , S t r ing name , S t r ing r e c i p i e n t) ;
pub l i c Handle qua l i tyParameters (Qual i ty qua l i t y) ;
pub l i c Handle qual i tyParameter (Qual i ty qua l i ty , S t r ing name) ;
pub l i c Handle f i l ePa rame t e r s (F i l e f i l e) ;
pub l i c Handle f i l ePa ramet e r (F i l e f i l e , S t r ing name) ;
pub l i c Handle typeParameters (Type type) ;
pub l i c Handle typeParameter (Type type , S t r ing name) ;

}
Listing 1.3: Definition of the IBookkeepingInfo interface

pub l i c interface IBookkeepingEditor extends IBookkeepingInfo {
pub l i c Handle createJob (St r ing configName , S t r ing con f igVer s ion ,

Date date) ;
pub l i c StatusCode modifyJobConfigName (St r ing configName , Job job) ;
pub l i c StatusCode modifyJobConfigVers ion (St r ing con f igVers ion , Job job) ;
pub l i c StatusCode modifyJobDate (Date date , Job job) ;
pub l i c StatusCode de l e t eJob (Job job) ;
pub l i c Handle c r e a t eF i l e (S t r ing logName , Job o r i g i n , Type type) ;
pub l i c StatusCode modifyFileLogName (St r ing logName , F i l e f i l e) ;
pub l i c StatusCode d e l e t e F i l e (F i l e f i l e) ;
pub l i c Handle c r ea t eQua l i t y (F i l e f i l e , S t r ing group , S t r ing f l a g) ;
pub l i c StatusCode de l e t eQua l i t y (Qual i ty qua l i t y) ;
pub l i c Handle createType (St r ing name , S t r ing ve r s i on) ;
pub l i c StatusCode deleteType (Type type) ;
pub l i c StatusCode createJobParameter (Job job , S t r ing name ,

S t r ing value , S t r ing type) ;
pub l i c StatusCode modifyJobParameterValue (Job job , S t r ing name ,

S t r ing value) ;
pub l i c StatusCode modifyJobParameterType (Job job , S t r ing name ,

S t r ing type) ;
pub l i c StatusCode deleteJobParameter (Job job , S t r ing name) ;

page 9

Internal Note
Issue: 1
Data description and access

Reference: -
Revision: 0
Last modified: March 12, 2004

pub l i c StatusCode createJobOption (Job job , S t r ing name ,
S t r ing r e c i p i e n t , S t r ing value) ;

pub l i c StatusCode modifyJobOptionValue (Job job , S t r ing name ,
S t r ing r e c i p i e n t , S t r ing value) ;

pub l i c StatusCode deleteJobOption (Job job , S t r ing name , S t r ing r e c i p i e n t) ;
pub l i c StatusCode createF i l eParamete r (F i l e f i l e , S t r ing name ,

S t r ing value) ;
pub l i c StatusCode modifyFi leParameterValue (F i l e f i l e , S t r ing name ,

S t r ing value) ;
pub l i c StatusCode de l e t eF i l eParamete r (F i l e f i l e , S t r ing name) ;
pub l i c StatusCode createQual i tyParameter (Qual i ty qua l i ty , S t r ing name ,

S t r ing value) ;
pub l i c StatusCode modifyQualityParameterValue (Qual i ty qua l i ty ,

S t r ing name ,
S t r ing value) ;

pub l i c StatusCode de leteQual i tyParameter (Qual i ty qua l i ty , S t r ing name) ;
pub l i c StatusCode createTypeParameter (Type type , S t r ing name ,

S t r ing value) ;
pub l i c StatusCode modifyTypeParameterValue (Type type , S t r ing name ,

S t r ing value) ;
pub l i c StatusCode deleteTypeParameter (Type type , S t r ing name) ;
pub l i c StatusCode addInputFi le (F i l e f i l e , Job job) ;
pub l i c StatusCode removeInputFi le (F i l e f i l e , Job job) ;

}
Listing 1.4: Definition of the IBookkeepingEditor interface

Note that the two files methods should never be used except for debug purposes. As a matter of
fact, the first one would output the full list of available files, which would kill the server for lack
of memory on the production system. The second method would execute any SQL query which
would allow a user to delete or corrupt data.

The methods are only there for internal debug purposes and should never be exposed to the end
user.

1.3.3 Event types

The IEvtTypeInfo and IEvtTypeEditor abstract interfaces are described in listings 1.5 and 1.6

pub l i c interface IEvtTypeInfo {
pub l i c Handle evtTypes () ;
pub l i c Handle evtType (i n t id) ;

}
Listing 1.5: Definition of the IEvtTypeInfo interface

pub l i c interface IEvtTypeEditor extends IEvtTypeInfo {
pub l i c StatusCode addEvtType (i n t id ,

S t r ing de s c r i p t i on ,
S t r ing primary ,
S t r ing decay) ;

pub l i c StatusCode removeEvtType (i n t id) ;
}

Listing 1.6: Definition of the IEvtTypeEditor interface

1.3.4 Replicas

The IReplicaInfo and IReplicaEditor abstract interfaces are described in listings 1.7 and 1.8

page 10

Internal Note
Issue: 1
Data description and access

Reference: -
Revision: 0
Last modified: March 12, 2004

pub l i c interface IRep l i c a I n f o {
pub l i c Handle r e p l i c a (F i l e f i l e , S t r ing l o c a t i o n) ;
pub l i c Handle r e p l i c a s (F i l e f i l e) ;

}
Listing 1.7: Definition of the IReplicaInfo interface

pub l i c interface IRep l i c aEd i to r extends IRep l i c a I n f o {
pub l i c StatusCode addRepl ica (F i l e f i l e , S t r ing r ep l i c a ,

S t r ing l o c a t i o n) ;
pub l i c StatusCode removeReplica (F i l e f i l e , S t r ing l o c a t i o n) ;

}
Listing 1.8: Definition of the IReplicaEditor interface

1.3.5 A word on the default implementation

The BookkeepingSvc class is a service that implements all Editor interfaces and as a consequence
all Info interfaces. The details of the implementation won’t be described here but some facts need
to be known :

• All connections to the database are using JDBC. The only requirement is to give correct
connection string, user name and password when creating the service. An example of an
initialization string is : ”jdbc:oracle:thin:@oradev:10521:D”

• Every query done on the bookkeeping database corresponds to a SQL statement. The whole
list of statements used was put at the very beginning of the Java file.

• The rest of the code is made of very simple calls to JDBC.

1.4 Access to data from python and XMLRPC

All interfaces presented in section ?? are available in python through XMLRPC. The implemen-
tation of the XMLRPC server is described in details in section 2.1 of chapter 2. We describe here
the interface available in python, the python objects that are defined and the way the interface
should be used.

The python interface is very close to the Java interface described in section 1.3 :

• Each java object has a python counterpart which is a dictionnary having the members of
the Java object as entries.

• Java vectors are converted to python lists.

• Each java method has a python counterpart with the same name and same arguments.

1.4.1 Python objects

Here is the list of the python objects used by the interface together with the members of each of
them and their type :

job

• jobID : number

page 11

Internal Note
Issue: 1
Data description and access

Reference: -
Revision: 0
Last modified: March 12, 2004

• configName : string

• configVersion : string

• date : python time tuple, as returned by the gmttime function

file

• fileID : number

• jobID : number

• typeID : number

• logName : string

type

• typeID : number

• name : string

• version : string

quality

• qualityID : number

• fileID : number

• group : string

• flag : string

parameter

• ID : number

• name : string

• value : string

typedparameter

• ID : number

• name : string

• value : string

• type : string

joboption

• ID : number

• name : string

• value : string

• recipient : string

evttype

• ID : number

• description : string

• primary : string

• decay : string

Take care that these are actually not objects but dictionnaries and the “members” are the entries
in the dictionnary.

page 12

Internal Note
Issue: 1
Data description and access

Reference: -
Revision: 0
Last modified: March 12, 2004

1.4.2 Python interface

There is a little complication in the definition of the python interface. It lies in the fact that python
does not include the signature of a method in its definition. In other words, you cannot define
two functions with the same name and differents arguments (even different numbers of them) in
python.

The solution is to define a single function in python for all java functions with the same name
which checks the number of arguments given and their types to choose the right java function.
This was done in the actual interface implementation, in file python/BookkeepingSvc.py of the
Bookkeeping package. However, we will show here a pseudo interface where different functions
may have the same name.

Listing 1.9 gives the full list of methods available in python with the type of the arguments and
return type. Note that the given return type is the one that is returned in case of success. If the
call fails, a string is returned containing the error message. Thus the returned type should always
be checked to detect errors.

l i s t <job > j obs (f i l e f)
l i s t <job > j obs (s t r i n g configName , s t r i n g con f i gVer s i on)
l i s t <job > j obs (time date1 , time date2)
job job (f i l e outputF i l e)
job job (number id)
l i s t < f i l e > f i l e s (s t r i n g SQLquery)
l i s t < f i l e > f i l e s (type t)
f i l e f i l e (s t r i n g logname)
l i s t < f i l e > i n pu tF i l e s (job j)
l i s t < f i l e > outputF i l e s (job j)
l i s t <qua l i ty > q u a l i t i e s (f i l e f)
qua l i t y qua l i t y (f i l e f , s t r i n g group , s t r i n g f l a g)
l i s t <type > types ()
type type (f i l e f)
type type (s t r i n g name , s t r i n g ve r s i on)
l i s t <typedparameter > jobParameters (job j)
l i s t <typedparameter > jobParameters (job j , s t r i n g type)
typedparameter jobParameter (job j , s t r i n g name)
l i s t <jobopt ion > jobOptions (job j)
jobopt ion jobOption (job j , s t r i n g name , s t r i n g r e c i p i e n t)
l i s t <parameter > qua l i tyParameters (qua l i t y q)
parameter qual i tyParameter (qua l i t y q , s t r i n g name)
l i s t <parameter > f i l ePa rame t e r s (f i l e f)
parameter f i l ePa ramete r (f i l e f , s t r i n g name)
l i s t <parameter > typeParameters (type t)
parameter typeParameter (type t , s t r i n g name)
d ic t ionnary <s t r i n g l o ca t i on , s t r i n g name> r e p l i c a s (f i l e f)
s t r i n g r e p l i c a (f i l e f , s t r i n g l o c a t i o n)
l i s t <evttype > evtTypes ()
evttype evtType (number id)

Listing 1.9: python interface to the Bookkeeping service

1.4.3 XMLRPC interface usage

The usage of the XMLRPC interface is standard. One just needs the name of the service (RPC/-
BookkeepingSvc) and the machine and port where to find it. Listing 1.10 shows some code
displaying the replicas of a given file.

from xmlrpc l ib import Server
s e r v e r = Server (’ http :// lbnt s3 . cern . ch :8100/RPC/BookkeepingSvc ’)
f = s e rv e r . f i l e (‘ ‘00000141 00000001 6 . oodst ’ ’)

page 13

Internal Note
Issue: 1
Data description and access

Reference: -
Revision: 0
Last modified: March 12, 2004

print s e r v e r . r e p l i c a s (f)

Listing 1.10: XMLRPC code sample

page 14

Internal Note
Issue: 1
Server infrastructure

Reference: -
Revision: 0
Last modified: March 12, 2004

Chapter 2

Server infrastructure

The bookkeeping services are hosted by a central server that deals both with web pages and
XMLRPC services. We describe here the server itself as well as its deployment as the time this
document was written.

2.1 Server implementation

The Bookkeeping server is based on a piece of python code providing both an XMLRPC server
and a web server. This code was initially used in the Production system and was reused with
no change in the Bookkeeping. It is implemented in file python/gaudiweb.py of the Bookkeeping
package. The server is then customized in file python/BookkeepingServer.py of the Bookkeeping
package.

The server handles essentially three things : webpages, servlets and XMLRPC services. The
webpages and XMLRPC services just need to be registered to become available, as you can see
in methods startBookkeepingWeb and startRPCServices. Most of the functionnalities is actually
provided by the underlying gaudiweb server.

For the servlets, the situation is a bit more complex since this concept is java specific and thus not
available in python. For this purpose, the Bookkeeping server can actually not run using a regular
python implementation. It actually needs Jython, a java implementation of python. On top
of that, dedicated classes were defined to handle servlets correctly, reusing the gaudiweb.Service
mechanism.

This servlet support is 70% of the code of BookkeepingServer.py. It uses some home made, dummy
implementation of a servlet engine provided in the calsses DummyServletConfig, DummyServle-
tResponse and DummyServletRequest. However ever, the servelt engine could be droped as soon
as the servlets are hosted by an external web server, like apache or the ORACLE one.

To conclude with the Bookkeeping server, here is the list of entry points in the current server as
well as their type and usage.

• Main : A servlet building the main bookkeeping web page, i.e. the one for selecting data.
See section ??.

• EvtTypes : A servlet building a list of existing event types. The types for which no events
can be found are not listed. See section ??.

• EvTypeInfo : A servlet handling the selection of data and building a web page with the
results See section ??.

• DataSets : ? Francoise, could you put something here ?

page 15

Internal Note
Issue: 1
Server infrastructure

Reference: -
Revision: 0
Last modified: March 12, 2004

• Select A Servlet allowing to browse the database. See section ??.

• NewConfirm : A Servlet to enter data into the database. See section ??.

• DisplayBookFile : A servlet that displays details of database modification requests. See
section ??.

• Manager : A python servlet allowing to shutdown the server from a web interface. See
section ??.

• Bookkeeping : A directory containing files used by the generated html pages. Essentially
javascripts files.

• images : A directory containing images used by the generated html pages.

• RPC/BookkeepingSvc : An XMLRPC service providing the Bookkeeping API. See section
1.4.

• RPC/BookkeepingQuery : An XMLRPC service providing the BookkeepingQuery API. This
API allows to select files from the Bookkeeping. See section ??.

• RPC/GetLogFiles : An XMLRPC service providing easy access to log files. See section ??.

2.2 Server deployment

To be filled by Joel... Merci Joel !

page 16

Internal Note
Issue: 1
Booking of data

Reference: -
Revision: 0
Last modified: March 12, 2004

Chapter 3

Booking of data

page 17

Internal Note
Issue: 1
The end-user web interfaces

Reference: -
Revision: 0
Last modified: March 12, 2004

Chapter 4

The end-user web interfaces

page 18

