

LCG Conditions Database Project

COOL Development and Deployment:

Status and Plans

Andrea Valassi

On behalf of the COOL team

(A.V., D.Front, M.Clemencic, S.A.Schmidt, U.Moosbrugger)

Outline

What are conditions data?

Background to COOL

COOL software overview and status

• Development and deployment perspectives

What are conditions data?

- Non-event detector data that <u>vary with time</u>
 - And may also exist in <u>different versions</u>

- Data producers from both online and offline
 - Geometry, readout, slow control, alignment, calibration...

- Data used for event processing and more
 - Detector experts
 - Alignment and calibration
 - Event reconstruction and analysis

Prehistory

Background of common activities in 2000-2003

- Collaboration of IT-DB, LHCb, Atlas, COMPASS, Harp
 - Borrowing a few design ideas from the BaBar experience
- C++ API definition and Objectivity implementation
- Oracle implementation of original API ("BLOB" payload)
- MySQL implementation of extended API (flexible payload)

• LCG Conditions DB project launched in 2003

Subproject of LCG Persistency Framework (POOL)

2003 until CHEP 2004

• Two parallel activities (common project mandate)

- Integrate existing Oracle/MySQL packages into LCG AA
- Review old software and API to plan new developments

Project faced two main problems in this phase

- Lack of manpower for new developments
- Divergence of the two packages

Decision to develop new software just after CHEP

- Following public AA Meeting discussion in October
- Development of COOL started in November 2004

"Common" project scope

NOT the problems specific to one experiment or one data type (handled by each experiment)

Conditions DB Access (COOL) Time-varying single-version data (~online) Time-varying multi-version data (~offline)

Software for time-varying and versioned data: a common component with a well-defined task

(RDBMS implementation of technology-neutral API)

C++ Relational Access (CORAL)

Oracle Access

MySQL Access

SQLive Access

Oracle OCI

MyODBC ALI

SQLite API

Oracle DI

MySQL DB

SoLite DB

Relational Database Deployment

and Data-Distribution-(3D)

NOT the generic C++ access to relational data (handled by CORAL)

NOT the generic deployment of relational services and distribution of relational data (handled by 3D – at CERN by IT-PSS)

Conditions data: metadata model

- Designed to handle data "objects" that
 - Can be classified into independent data items
 - VARY WITH TIME

- May have different **Versions** (for given time and data item)

This 3-D metadata model is still valid!

A CondDBObject has

- Metadata:
 - Data item identifier
 - Interval-of-validity [since, until]
 - Version information
- Data "payload":
 - Actual data variables (temperatures, calibration parameters...)
 - Separate fields or encoded as a LOB

Figure 1 The three axes for identifying uniquely each data item in the condition database

- Main use case: fetch data valid at given time and tag
 - Inverse lookup (from temperature to time or version) is not a priority

COOL software overview

Merge best ideas of two previous packages

- New API enhances both original and 'extended' APIs

Single implementation for many relational backends

- Encapsulated behind C++ API (no direct SQL user access)
- Support for Oracle, MySQL and SQLite via CORAL
 - Attention to Oracle performance (bulk operations, bind variables...)

Maximize integration with other LCG projects

- Reuse infrastructure and software (SPI, SEAL, POOL...)
- Mutually beneficial collaboration with CORAL team

COOL relational implementation

Modeling of condition data "objects"

- System-managed common "metadata"
 - Data items: many tables ("folders"), each with many "channels"
 - Interval of validity IOV: since, until
 - Versioning information with handling of interval overlaps
- User-defined schema for "data payload"
 - Support for simple C++ types as CORAL "AttributeList"

objectID	channelID	since	until	pressure	temperature

Metadata

Data payload

System-controlled

User-defined schema

(versioning metadata not shown)

(different tables for different schemas)

Milestones

Nov 2004: start of COOL software development

- Brand new code, merge ideas of two pre-existing packages
- Initially ~1.3 FTE for development (A.V. and S.A.S.)

• Apr 2005: first COOL production release 1.0.0

- Support for Oracle and MySQL through POOL RAL
- Basic insertion/retrieval (single/multi-version, single/bulk)

Oct 2005: Atlas use case performance validation

- One job every 5s, each retrieving 100 MB in 100k rows

Latest of many releases: COOL 1.2.8 (Jan 2006)

- SQLite (July), CLOB, PyCool, multi-channel bulk ops (Aug.), performance tests (Oct.), data copy (Nov.), CORAL (Jan.)
 - Team has grown to ~3.5 FTE (IT/LCG, Atlas and LHCb)

Future perspectives

Software consolidation and enhancements

- Major API and schema changes in 1.3.0 (~Apr 2006)
- Implement new features following experiment priorities

Support real life deployment before LHC startup

- Continue to test and improve Tier0 software performance
- Support Atlas and LHCb in setting up distributed services
- Collaboration with 3D and IT-PSS service teams is crucial

Software enhancement plans

• Next on the list (COOL 1.3.0 and later)

- AMD64 port and storage precision in API (int32 vs. int64)
- Add table with "channel" metadata; schema evolution tools
- Improve versioning: user tags (later: HVS hierarchical tags)
- Later: add CORAL monitoring/authentication/indirection

More requests for new functionalities are pending

- Often received at weekly phone meetings
 - Handled according to experiment priorities and available manpower
- Formal review later on when API is more stable

Atlas (offline) deployment

COOL fully integrated into Athena since mid-2005

- Small payload stored 'inline', complex payload as POOL refs
- Development priorities: CORAL API, schema evolution, HVS

Most data still in Lisbon MySQL implementation

- Transition phase: complete migration to COOL by mid-2006

Deployment priorities

- Commissioning (now); simulation (Apr); reconstruction (Oct)
- Static replication now (Oracle->SQLite)
- Explore T0-T1 dynamic replication via Oracle streams in 3D
 - Interest in distributed Oracle access via Frontier too

LHCb deployment

Conditions DB (COOL) one of many databases

- COOL holds conditions data for reconstruction/analysis
- Other data in PVSS, LFC, Bookkeeping, Configuration DBs

Deployment model (online and offline)

- Masters (r/w) at the pit and CERN TO
- Replicas (r/o) at T1
- Oracle replication via Oracle streams

Data challenge plans in 2006

- Alignment/calibration challenge in Oct (with all T1 sites)

Summary

COOL software is recent but of production quality

- Software developments started in fall 2004 after CHEP04
- Manpower has increased from ~1.3 to ~3.5 FTE
- Single implementation for Oracle, MySQL and SQLite

Tight integration with other LCG projects

- Mutually beneficial collaboration with CORAL project
- Service integration with IT-PSS at CERN and 3D project

Focus moving from development to deployment

- Development of new functionalities is far from finished
- Deployment is progressing fast in Atlas and LHCb

For more information

LCG Conditions Database Project Web page

http://lcgapp.cern.ch/project/CondDB

Related talks and posters at this conference

- COOL performance and distribution tests (A. Valassi)
- CORAL relational database access software (I. Papadopoulos)
- POOL object persistency into relational databases (G. Govi)
- Software for a variable Atlas detector description (V. Tsulaia)
- LHCb conditions database framework (M. Clemencic)
- Database access in Atlas computing model (S. Vaniachine)