
Schedule: Timing Topic
20 minutes Lecture
10 minutes Practice
30 minutes Total

Gaudi Framework Tutorial, April 2006

2
Configuration and Build

System

Gaudi Tutorial: Configuration and Build System 2-2

2-2 Gaudi Framework Tutorial, April 2006

Objectives

After completing this lesson, you should
be able to:
• Understand the LHCb Configuration

Management
• Get a copy of a package from the LHCb

code repository
• Know how to re-build libraries and

programs

Lesson Aim
Understanding and being able of using the basic commands of the configuration and build system is a pre-
requisite for the rest of the Tutorial.
The commands introduced in this lesson would allow us to get a copy of the packages that we are going to
use for the rest of the Tutorial.

Gaudi Tutorial: Configuration and Build System 2-3

Package Definition
We define a “package” as a collection of related classes and as being the minimal entity that can be versioned
and built. From this definition is clear that the configuration and build system we are using only deals with
“packages” and not with individual classes or subroutines.

2-3 Gaudi Framework Tutorial, April 2006

Package

• Package Definition
– Collection of related classes in a

logically cohesive physical unit
– Minimal entity that can be versioned

• Reflects on
– Logical structure of the application
– Organizational structure of the

development team

Gaudi Tutorial: Configuration and Build System 2-4

2-4 Gaudi Framework Tutorial, April 2006

Package: Structure

packA

v1r0 v1r1 v2r0

cmt src doc win32_
vc71_dbg

slc3_ia32_
gcc323_dbg

slc3_ia32_
gcc323packA

$PACKAROOT

Version
number

binariesmanager directory
contains the
requirements file

public include files
#include “packA/xxx.h”

. . .

Package Structure
All packages in LHCb follow the structure shown in the viewgraph.

• Package version name follow the convention “v<version number>r<release number>p<patch
number>” or “v<version number>r<release number>d<date>”. Versions with the same v number
should be considered compatible.

• The /cmt directory is mandatory (see later with CMT)
• The source files are located in /src and the exported header files are in /packA. In that way it is visible

from which package a header is included.
• The /doc directory contains the documentation for the package. It is mandatory to have a file called

“release.notes” where we keep the changes on the package up to date.
• A number of binary (platform & configuration dependent) directories will exists in each package.

Package Groups (Hats)
We have organized the packages in LHCb by putting together all related packages into a package group.
Examples are: Event, Det, Ex, etc.

Gaudi Tutorial: Configuration and Build System 2-5

2-5 Gaudi Framework Tutorial, April 2006

Project
•Projects are a collection of packages that
are released together

– One project per application (e.g.
Brunel, DaVinci)

– Several independent projects for
components (e.g. Lbcom, Rec, Phys)

– Two projects for the framework
(Gaudi, LHCb)

•Users work in the environment defined
for a given version of the chosen project

– e.g. LHCbEnv v20r3

LHCb Software Project:
Projects are the collection of packages that are released together. A given version of a project contains a single version

of all its constituent packages. This includes the sources and the binaries for all the supported platforms. Each new
release of a project implies a complete rebuild from sources of the constituent packages.

We have defined two projects for the framework:
• Gaudi contains all the packages of the (experiment neutral) Gaudi distribution
• LHCb contains all the LHCb specific common software (e.g. event model, detector description etc.)

Component packages (i.e. packages that contain algorithms and tools built on the framework), reside in one of several
independent projects broadly classified by functionality. We currently have the following component projects,
which are all built on top of the framework projects:

• Lbcom contains packages shared by all applications (e.g. general purpose Rich tools)
• Rec contains reconstruction packages (e.g. tracking pattern recognition)
• Phys contains physics analysis packages (e.g. physics selections)
• Online contains packages needed for running in the online farm (e.g. Gaucho)

There is then one project per application (e.g. Brunel, DaVinci) which contains the application itself and possibly other
packages very specific to the application, and uses one or more of the component packages.

Users must work inside a given project environment. They must choose the project and the version. The ProjectEnv
script sets up all the environment variables required to work in the project. It is invoked as <project>Env <version>,
e.g. LHCbEnv v20r3

Gaudi Tutorial: Configuration and Build System 2-6

Basic Description of CVS
CVS is a system that lets groups of people work simultaneously on groups of files (for instance packages).
It works by holding a central `repository' of the most recent version of the files. You may at any time create a
personal copy of these files by `checking out' the files from the repository into one of your directories. If at a
later date newer versions of the files are put in the repository, you can `update' your copy.
You may edit your copy of the files freely. If new versions of the files have been put in the repository in the
meantime, doing an update merges the changes in the central copy into your copy.
When you are satisfied with the changes you have made in your copy of the files, you can `commit' them into
the central repository.

When you are finally done with your personal copy of the files, you can `release' them and then remove them

2-6 Gaudi Framework Tutorial, April 2006

CVS

Version Control System
• Record the history of

your source files
• Helps you if you are

part of a group of
people working on the
same project.

(Repository, Module, File,
Version, Tag)

Gaudi Tutorial: Configuration and Build System 2-7

2-7 Gaudi Framework Tutorial, April 2006

CVS: Common Repository

• LHCb Repository on CERN-IT CVS server
– Web browsable

– http://isscvs.cern.ch/cgi-bin/cvsweb.cgi/?cvsroot=lhcb
– http://isscvs.cern.ch/cgi-bin/cvsweb.cgi/?cvsroot=Gaudi

– World readable if authenticated
– Kerberos authentication (e.g. AFS on CERN Linux)

• Configured by LHCb group login at CERN
– SSH authentication (e.g. from Windows)
– Detailed instructions at

http://cvs.web.cern.ch/cvs/howto.html#accessing

– For write access
– register with Florence.Ranjard@cern.ch

CVS Repository
Code Repository Location

The LHCb code repository is located in AFS and accessed via the CERN-IT CVS server.
The repository is web browsable at http://isscvs.cern.ch/cgi-bin/cvsweb.cgi/?cvsroot=lhcb

Using the CVS server
Read access to the browser is available to any authenticated client, either via Kerberos 4 or SSH.

Write access can be obtained by registering with Florence.Ranjard@cern.ch
If Kerberos 4 is available in your platform (e.g. AFS in CERN RedHat Linux distribution), set CVSROOT

= :kserver:isscvs.cern.ch:/local/reps/lhcb
This is done automatically in the LHCb group login at CERN

If not, you must use SSH.
Detailed instruction for configuring Kerberos access from outside CERN, and SSH access from both Linux

and Windows, are available at:
http://cvs.web.cern.ch/cvs/howto.html#accessing

CVS packages
From time to time you may need to create a new package in CVS. Before doing so you should discuss your

proposed packaging with one of the librarians or program maintainers. You can then follow the detailed
instructions at http://cern.ch/lhcb-comp/Support/CMT/CMTnewpackage.htm

Gaudi Tutorial: Configuration and Build System 2-8

2-8 Gaudi Framework Tutorial, April 2006

CMT

Configuration Management Tool written
by C. Arnault (LAL, Orsay)

• It is based around the notion of Package
• Provides a set of tools for automating

the configuration and building packages
• It has been adopted by LHCb (other

experiments are also using it)

CMT introduction
CMT is an attempt to formalize software production and especially configuration management around a
package-oriented principle. The notion of packages represents hereafter a set of software components (that
may be applications, libraries, documents, tools etc...) that are to be used for producing a system or a
framework. In such an environment, several persons are assumed to participate in the development and the
components themselves are either independent or related to each other.
The environment provides conventions (for naming packages, files, directories and for addressing them) and
tools for automating as much as possible the implementation of these conventions. It permits to describe the
configuration requirements and automatically deduce from the description the effective set of configuration
parameters needed to operate the packages (typically for building them or using them).

Gaudi Tutorial: Configuration and Build System 2-9

2-9 Gaudi Framework Tutorial, April 2006

How we use CMT

CMTrequirements

codecodecodecodecode

CVS
repository

•What to build
•How to build
•Package dependencies

makefile
DevStudio files

Building
tools

(compilers,
linkers,
IDEs)

Libraries
&

Executables

How we use CMT
The user interacts mainly with the CMT tools to configure and build the packages. The instructions on what
to build, how to build and dependencies are located in a single text file called requirements. Very often the
user needs to edit this file.
From the requirements, CMT is able to automate the creation of the makefiles (or Visual Studio projects)
required for building the different package constituents (libraries, programs, documentation, etc).
Note that CMT takes care of generating all files needed to make a package (e.g. dependencies makefiles).
When you type “make”, what actually happens is that make calls CMT, which regenerates all the necessary
makefiles, before calling the real make.

Gaudi Tutorial: Configuration and Build System 2-10

2-10 Gaudi Framework Tutorial, April 2006

CMT: Requirements file
package Main
version v5r3
branches doc job options cmt

use Components v7r* Tutorial
use GaudiSvc v* -no_auto_imports
use GaudiPoolDb v* -no_auto_imports
use PackedEvent v* Event -no_auto_imports
use GenEvent v* Event -no_auto_imports
use RootHistCnv v* -no_auto_imports
use ParamFiles v* -no_auto_imports
use GaudiConf v* -no_auto_imports

#==> Build the main program
application Main "$(GAUDICONFROOT)/src/GaudiMain.cpp"
apply_pattern application_path

Some basic keywords
•package. Defines the name of the package
•version. Defines the version of the package. The number after the “v” is the major version number, that
after the “r” the minor version number (“p” is also available, for patches). We increase the major version if
there are major changes in functionality that are likely to affect other packages (e.g. modified interfaces,
incompatible changes in data objects, changed behaviour of algorithms), the minor version otherwise (e.g.
new classes added, backward compatible bug fixes)
•use. Instructs CMT on the dependencies of this package to other CMT packages. Normally the wildcard “*”
is sufficient because the specific versions are frozen by the project. Explicit major versions can be a useful
indication when integrating the software that the package can only work with a specific version of a
dependent package. The name after the version is the location of the package (package group).
The “-no_auto_imports” token tells CMT that this package is needed at run time (so environment variables
should be set up) but is not needed for compilation of linking (so compiler flags should not be imported)
•application. Tells CMT that this package is constituted of a program (application) and where to locate the
sources. Similarly library
•apply_pattern. Tells CMT to apply one or more CMT commands (typically a macro definition) following
a pattern that is common to all packages of a given type (in this case applications). Other common patterns
are component_library and linker_library.

Gaudi Tutorial: Configuration and Build System 2-11

2-11 Gaudi Framework Tutorial, April 2006

CMT and projects
• CMTPATH

– The directories to look for CMT packages
– Initialised to ~/cmtuser in LHCb login

• CMTCONFIG
– The “default” configuration

• <Project>Env [<version>]
– Adds to the CMTPATH the path where the

project packages are located and their
dependent projects

• <Project>_release_area
– Specifies the path to a project, in case it does

not reside in the default release area

CMT and projects
•CMTPATH
Is the list of top directories to look for CMT packages. In LHCb environment is set at login time to:
/afs/cern.ch/user/<u>/<user>/cmtuser
•CMTCONFIG
Is the default configuration used by the CMT commands (when the –tag= option is not specified) . It is set by default at login time to
the current platform name and recommended default compiler (e.g. slc3_ia32_gcc323). The User can change it to a different default
(e.g. slc3_ia32_gcc323_dbg to turn on the debug configuration)
•<Project>Env script adds to this path the locations of the specific project environment (and dependent projects) with which you
choose to work. For example, “LHCbEnv v20r3” sets CMTPATH to:

/afs/cern.ch/user/<u>/<user>/cmtuser:/afs/cern.ch/lhcb/software/releases/LHCB/LHCB_v20r3:/afs/cern.ch/lhcb/software/releases/D
BASE:/afs/cern.ch/lhcb/software/releases/PARAM:/afs/cern.ch/sw/Gaudi/releases/GAUDI/GAUDI_v18r3:/afs/cern.ch/sw/lcg/app/re
leases/LCGCMT/LCGCMT_42b

If given without argument, the script prints a list of all available versions

•<Project>_release_area is the location of project releases. For LHCb software it defaults to
$LHCb_release_area = /afs/cern.ch/lhcb/software/releases

The CMTPATH can be modified to point to a different area. E.g.
setenv LHCb_release_area $LHCBDEV
LHCbEnv v20r3

sets CMTPATH to:
/afs/cern.ch/user/<u>/<user>/cmtuser:/afs/cern.ch/lhcb/software/releases/DEV/LHCB/LHCB_v20r3:/afs/cern.ch/lhcb/software/releas
es/DEV/DBASE:/afs/cern.ch/lhcb/software/releases/DEV/PARAM:/afs/cern.ch/sw/Gaudi/releases/GAUDI/GAUDI_v18r3:/afs/cern.
ch/sw/lcg/app/releases/LCGCMT/LCGCMT_42b

Gaudi Tutorial: Configuration and Build System 2-12

2-12 Gaudi Framework Tutorial, April 2006

CMT: Basic Commands
• cmt config

– Configures the package (creates
setup and makefile files)

• source setup.csh
– Sets environment

• cmt show uses
– Show dependencies and actual

versions used
• cmt show macro <macro>

– Show the value of a macro for the
current configuration

CMT Primary commands
•configure a package

> cd cmtuser/package/v1r0/cmt
> cmt config
> source setup.csh

•visualize packages and version numbers used by a library or an application.
> cd cmtuser/package/v1r0/cmt
> cmt show uses

•get macro definitions used in makefiles
> cd cmtuser/package/v1r0/cmt
> cmt show macros

•get one specific macro used in makefiles
> cd cmtuser/package/v1r0/cmt
> cmt show macro cppflags

Gaudi Tutorial: Configuration and Build System 2-13

2-13 Gaudi Framework Tutorial, April 2006

Package Categories
• Program: is a package that contains a main

routine and a list of dependent packages
needed to link it.

• Library: contains a list of classes and the list
of dependent packages needed to compile it.

• Package group: contains a list of other
packages with their version number (e.g.
GaudiSys)

• Interface package: interfacing to packages not
managed with CMT (e.g. POOL, GSL, ROOT,…)

Package Categories
With respect to CMT it is interesting to distinguish the different categories of packages. They are used in the
exactly the same way but their requirement files will show some differences, specially in patterns that are
used.
The concept of interface package is interesting for integrating in the build system packages that have been
developed outside CMT. Basically these packages only define a number of macros and environment
variables needed for compiling, linking and running with these external packages. These interfaces packages
are defined currently in the LCGCMT project (common between the various LHC experiments using CMT)
Package group are useful for fixing a set on compatible versions of other packages. In this case the package
using this set of packages needs only to state the version number of the package group.

Gaudi Tutorial: Configuration and Build System 2-14

2-14 Gaudi Framework Tutorial, April 2006

Link vs. Component Libraries

• Link libraries are need for linking the
program (static or dynamic)
– Traditional libraries.

• Component libraries are loaded at run-
time (ApplicationMgr.DLLs property)
– Collection of components

(Algorithms, Tools, Services, etc.)
– Plug-in

Link libraries
These are traditional libraries that, as the name implies, will be linked into the application. Typically they
contain base classes or data objects. Remember that, if you rebuild a link library, you must also relink the
application
Component Libraries

Component libraries are shared libraries that contain standard framework components which implement
abstract interfaces. Such components are Algorithms, Auditors, Services, Tools and Converters. These
libraries do not export their symbols apart from the one which is used by the framework to discover what
components are contained in the library. These libraries are loaded at run time – this means that you do not
have to relink the application if you rebuild the library
The Tutorial will be based on the development of a “component” library that will include all the Algorithms
that we are going to develop during the practical exercises.

Gaudi Tutorial: Configuration and Build System 2-15

2-15 Gaudi Framework Tutorial, April 2006

Component Libraries

#include “GaudiKernel/DeclareFactoryEntries.h”
DECLARE_FACTORY_ENTRIES (Components) {
DECLARE_ALGORITHM(MyAlgorithm)
DECLARE_SERVICE(MyService)
DECLARE_TOOL(MyTool)

}

Components_load.cpp

#include “GaudiKernel/LoadFactoryEntries.h”
LOAD_FACTORY_ENTRIES (Components)

Components_dll.cpp

Your components need
to be added here

No change needed

Component Libraries
In order to satisfy the requirements of a component library, two additional files must also be present in the
package. One is used to declare the components, the other to load them. Because of the technical limitations
inherent in the use of shared libraries, it is important that these two files remain separate, and that no attempt
is made to combine their contents into a single file.
<Components>_load.cpp This file contain the declaration of all the components that should be available in
the component library. There have been same macros defined to ease the writing of this file.
<Components>_dll.cpp This file is fixed and needs to be added into the package and do not need to be
updated if new components are added later into the package.

Gaudi Tutorial: Configuration and Build System 2-16

2-16 Gaudi Framework Tutorial, April 2006

Getting a package

• The “getpack” command
– Script combining “cvs checkout” +

“cmt config”
– It suggests the latest version of

package

> getpack [hat/]<package> [<version>] [head]

Getting a package
The “getpack” command has been developed to ease the use for getting a copy of a package from the LHCb
CVS repository and putting it in the correct directory structure with the correct version. It also suggests to the
user what versions are available for the package in case the user does not specify it.
For the tutorial we recommend to get always the “head” revision of the packages.

Gaudi Tutorial: Configuration and Build System 2-17

2-17 Gaudi Framework Tutorial, April 2006

Building a package
• Working in the /cmt directory

– <package>/<version>/cmt
• Invoke the gmake command

> gmake [target] [tag=<configuration>] [clean]

configurations: $CMTCONFIG (default)
$CMTDEB (for debug)

• Set the run time environment
– (Not needed for building)

> source setup.csh [-tag=<configuration>]

Building a package
Typically for building (and also running) a package we stay in the /cmt directory. This is convenient for
executing the configuration and build commands.
•Setting the environment. We need to setup the correct environment for the current version of the package.
This environment consists on a set of environment variables (PATH, LD_LIBRARY_PATH, and others).
Setting the environment is done my executing “source setup.csh” in the .cmt directory. This must be done
before running the application always and in some cases also is needed for building the package. Therefore,
we suggest to do it before building the package. You only need to re-do the setting of the environment if you
change the package or the version you are using otherwise the environment stays valid for the complete
session. We suggest for the tutorial to use the “debug” configuration by issuing the command “source
setup.csh –tag=$CMTDEB”
•The gmake command. The “gmake” command is used for building the libraries and/or the programs. There
are various configurations available in form of “tag=<configuration>”. We suggest for the tutorial to use the
“debug” configuration by issuing always the command “gmake tag=$CMTDEB” since the default is without
debug information. Note that “gmake” and “make” are equivalent on lxplus

Gaudi Tutorial: Configuration and Build System 2-18

2-18 Gaudi Framework Tutorial, April 2006

Emacs customisation
• A customisation of emacs for LHCb:

– Templates for creation of files
– E.g. MyAlgorithm.h, .cpp, <Components>_load.cpp,

<Components>_dll.cpp, requirements etc.

– Various shortcuts for code insertions
– Optionally, load an EDT keypad

emulation
• Add following lines to ~/.emacs:

(load (expand-file-name "$EMACSDIR/edt"))
(load (expand-file-name "$EMACSDIR/lhcb"))

– Or copy from $EMACSDIR/.emacs

LHCb emacs customisation
Documentation at:
http://agenda.cern.ch/askArchive.php?a01680/a01680s6t2/transparencies/EmacsConfig.pdf

Gaudi Tutorial: Configuration and Build System 2-19

2-19 Gaudi Framework Tutorial, April 2006

Tutorial Packages
• Tutorial/Main [v5r3]

– The executable. During the tutorial will
be using the same program.

• Tutorial/Components [v7r0]
– A package consisting of a single

Component library in which we will be
adding all the Algorithms of the Tutorial

• Tutorial/TutKernel [v1r0]
– A package containing public Headers,

used in the later part of the tutorial

Tutorial/Main
This is the main program. We will use it without modification during the tutorial.

• /cmt/requirements requirements file
• /options/jobOptions.opts job options file to be used during the tutorial (everything is commented to start with)

Tutorial/Components
This is the component library. We will populate the /src directory with new files from other /src.<xxxx> which contains the
solutions to the different exercises of the tutorial.

• /cmt/requirements requirements file
• /options/<exercise>.opts job options “fragments” for the different exercises
• /src/Component_dll.cpp Needed for building a “component library”
• /src/Component_load.cpp Needed for building a “component library”
• /src/DecayTreeAlgorithm.* “Empty” .h and .cpp files for the Decay Tree exercise
• /src.decaytree/* Directory with solutions for the Decay Tree exercise
• /src.hist_tuple/* Directory with solutions for the Histogram Ntuple exercise
• /src.data/* Directory with solutions for the Writing Data exercise
• /src.usetool/* Directory with solutions for the Tools exercise
• /src.solution/* Directory with the complete solution

Tutorial/TutKernel
Contains Event classes and tool interfaces. We will use these in the last two exercises

• /xml/VertexInfo.xml File for generation of LHCb event model class used in Writing Data exercise
• /Kernel/IMCAcceptanceTool.h Interface for GaudiTool of Tools exercise

Gaudi Tutorial: Configuration and Build System 2-20

2-20 Gaudi Framework Tutorial, April 2006

Exercise
• Get Tutorial/Components and Tutorial/Kernel

packages and build them
– Remember to “LHCbEnv v20r3”
– Remember to build first the dependent package

(Components) and then the program (Main)

• Execute the program
– It should do nothing for now

• Use LHCb Emacs to create empty files
DecayTreeAlgorithm.h, .cpp and compare
with those provided
– Create the new files somewhere other than /src
– Change at least one character in the new file before saving

You can in fact build both packages in one go:
go to the cmt directory of Tutorial/Main package (i.e. the application)
type:

cmt broadcast make
This command tells cmt to execute the “make” command for all this package and any dependent
packages that are found on the first part of the CMTPATH (i.e. ~/cmtuser)

Gaudi Tutorial: Configuration and Build System 2-21

2-21 Gaudi Framework Tutorial, April 2006

Exercise
> LHCbEnv v20r3
> cd ~/cmtuser
> getpack Tutorial/Components v7r0
> getpack Tutorial/Main v5r3

> cd Tutorial/Main/v5r3/cmt
> source setup.csh –tag=$CMTDEB
> cmt broadcast gmake tag=$CMTDEB

> ../$CMTDEB/Main.exe ../options/jobOptions.opts

> cd
> cp $EMACSDIR/.emacs .
> cd cmtuser/Tutorial/Components/v7r0
> emacs DecayTreeAlgorithm.h &
> diff DecayTreeAlgorithm.h src/DecayTreeAlgorithm.h

Note that the file automatically generated by emacs must be touched before saving it (e.g. add a
comment) – otherwise emacs will consider that you have not edited anything and will not save the
template.

