
Schedule: Timing Topic
15 minutes Lecture
20 minutes Practice
35 minutes Total

Gaudi Framework Tutorial, April 2006

3
Job Options and Printing

Gaudi Tutorial: Printing and Job Options 3-2

Lesson Aim
Printing obviously helps to understand what is going on inside a program. Although it can never
replace a real debugger it is essential e.g. in batch application to know why certain actions failed. In
the following printing in Gaudi is introduced and the usage is shown.
Any Gaudi job is steered by a setup file called the job options. It will be shown how you can
customize an algorithm with properties. These properties allow you to change the behavior at run-
time and allow for more flexibility.
Also a few standard job options will be introduced.

3-2 Gaudi Framework Tutorial, April 2006

Objectives

After completing this lesson, you should
be able to:
• Know how to implement job options in

an algorithm.
• Know basic job options.
• Know how to print.

Gaudi Tutorial: Printing and Job Options 3-3

3-3 Gaudi Framework Tutorial, April 2006

Job Options

•Job is steered by “cards” file
•Options are not directly accessed
•Access through IJobOptionsSvc interface

– Details hidden from users by the
framework

Job Options
Typically every analysis job is steered by a cards file. Cards historically were real cards, meaning
punch cards used to pass parameters from some input device to the program.

Gaudi uses the same mechanism, by reading in one or more Job Options files. These files were
foreseen as a temporary solution. In the long run, all job options might be stored in a database, which
would facilitate manipulation of e.g. different production settings. Another future development that is
foreseen is to code the job options in python.

The job options are accessed by the framework using a special service, which exposes the
IJobOptionsSvc interface. Because of this separation, only the service will need to be changed if the
options are moved to a database or to python scripts.

Gaudi Tutorial: Printing and Job Options 3-4

3-4 Gaudi Framework Tutorial, April 2006

Job Options: Data Types

Primitives
– bool, char, short, int, long, long long,

float, double, std::string
– And unsigned char, short, int, long, long long

Arrays of primitives
– std::vector<bool>,

std::vector<double>...

Job Options: Data Types
Objects like algorithms and services can retrieve options of several data types from the job option
file. These are primitive options like bools, doubles etc. and arrays of those.

Gaudi Tutorial: Printing and Job Options 3-5

3-5 Gaudi Framework Tutorial, April 2006

Declare the property in the Constructor, and
initialize it with a default value
DecayTreeAlgorithm:: DecayTreeAlgorithm(<args>)
<initialization>
{
declareProperty("DecayParticle", m_partName = "B0");

}

Declare property variable as data member
class DecayTreeAlgorithm : public GaudiAlgorithm {
private:
std::string m_partName;
...

};

Using Job Options

LHCb convention

Using Job Options
Optional parameters of an algorithm are part of the algorithm itself. In C++ they are typically
implemented as member variables.
However, the framework must be made aware that a given algorithm has a certain property and that
the value of this property may be changed.
Property defaults may sometimes be useful. However, if a default value can not ensure proper
behavior, it may be better to require external input.

Gaudi Tutorial: Printing and Job Options 3-6

3-6 Gaudi Framework Tutorial, April 2006

Set options in job options file
– File path is first argument of executable

../$CMTDEB/Main.exe ../options/jobOptions.opts

– C++ like syntax
– Example

B0_Decays.DecayParticle = “B0”;
D0_Decays.DecayParticle = “D0”;

– Object name (Instance not class)

Set Job Options

– Property name
– Property value

Set Job Options
The job options file itself is passed to the executable as the first argument.
The job options have C++ like syntax. This means in particular
•A property of an algorithm is addressed using the following syntax:

<object-name>.<option-name> = <value>;
•Any option is terminated by a semi-colon (;).
•Strings are enclosed in double quotes (“value”).
•Arrays of options are enclosed in curly brackets. Example: SomeAlg.SomeOpt = {1, 2, 3, 5, 6};
•Job options are assigned to an object according to the name of the instance, not at the level of the
class.

Gaudi Tutorial: Printing and Job Options 3-7

3-7 Gaudi Framework Tutorial, April 2006

Job Options: Conventions

Many algorithms need many options
– Options go along with code

– New code release may need different options
– Must be configurable with cmt

– Need for conventions

Job Options: Conventions
When talking about large applications such as a reconstruction program, it is clear that many

different algorithms are involved.

There are two broad categories of options:
1. Options to configure the job (Sequence of algorithms to be executed, DLLs to be loaded)
2. Options to configure the properties of algorithms and tools (e.g. cuts, tuning parameters)

For ease of maintenance, the two types of options should be kept logically separated.
The job configuration options should be released in a job options file together with the code

(depending on complexity this can be in a component package, or in the package defining a
package group or a project)

The default values of the algorithm and tool properties should be in the code (declareProperty
initializer) – only options different from the default need to be put in an external file (e.g. when
several instances of an algorithm or tool are needed). Such a file, if needed, should be released
in the same package as the algorithm.

In future, all job options files released with a project may be copied to a single installation directory. It
will aid the migration if the file names of job options files are unique (jobOptions.opts is NOT a
good name!)

Gaudi Tutorial: Printing and Job Options 3-8

3-8 Gaudi Framework Tutorial, April 2006

ApplicationMgr.DLLs += { “STAlgorithms" };
ApplicationMgr.TopAlg += {

"MCSTDepositCreator/MCITDepositCreator" };

#include "$STALGORITHMSROOT/options/itDigi.opts“

LHCb conventions
LHCb applications organize sequencing of
algorithms, then take specific options
from corresponding algorithms package

MCITDepositCreator.tofVector = {25.9, 28.3, 30.5};

ToolSvc.STSignalToNoiseToolIT.conversionToADC = 0.0015;

Default values for the options should be
hard-coded. Included options files modify
these defaults.

LHCb: Conventions
LHCb applications configure the job by loading the necessary component libraries
(ApplicationMgr.DLLs) and by setting up the processing sequences for the algorithms. Any algorithm
specific options are delegated to the algorithm packages.

The name of the processing sequences are set by convention. They consist of a program phase
(“Digi”) and the sub-system (“IT”), followed by “Seq”.

Gaudi Tutorial: Printing and Job Options 3-9

3-9 Gaudi Framework Tutorial, April 2006

ApplicationMgr.EvtMax <integer>

ApplicationMgr.DLLs <Array of string>

ApplicationMgr.TopAlg <Array of string>

Job Options You Must Know

• Maximal number of events to execute
• Component libraries to be loaded
• Top level algorithms: “Type/Name”

“DecayTreeAlgorithm/B0_Decays”
This also defines the execution schedule

Job Options You Must Know
These options are essential in any job. During the tutorial other options will be introduced as well,
which you should add to this list to be kept in (brain-)memory.

Gaudi Tutorial: Printing and Job Options 3-10

3-10 Gaudi Framework Tutorial, April 2006

Job options printout

Contents of job options files is printed out
when Gaudi starts.

- Control printing during processing:

#pragma print off // Do not print options defined after this
#pragma print on // Switch back on

#printOptions

- Print a single sorted list of all modified
options:

By default, Gaudi prints out the contents of the job options files as it processes them. The printing
can be controlled by adding the following directives to job options files:

#pragma print off
Switches off printing of all options defined after this directive (can be nested)

#pragma print on
Switches on printing of all options defined after this directive (can be nested)

#printOptions
Do not print contents of options files during their processing. Instead, print a sorted list of all

modified options at the end of the job options processing

Gaudi Tutorial: Printing and Job Options 3-11

3-11 Gaudi Framework Tutorial, April 2006

Printing

Why not use std::cout, std::cerr, ... ?
• Yes, it prints, but

– Do you always want to print to the log file?
– How can you connect std::cout to the message

window of an event display?
– You may want to switch on/off printing at several

levels just for one given algorithm, service etc.

Printing
Print statements are a very useful way to document checkpoints within a running program.
C++ by itself implements three standard output streams, which in practice all go to the terminal
output:
•std::cout, the standard output destination
•std::cerr, for logging errors
•std::clog, for debugging
These printout destinations however have some disadvantages
•They all go to log files, a more fine grained specification of the destination is not possible.
•Although possible it is e.g. not too obvious how to redirect output properly e.g. to an error logger
display in the online environment.
•You may want to switch on debug printing

•For the algorithm/service you want to debug and you do not want to get flooded by all the printouts
of other algorithms
•You want to globally adjust the level of severity for printout.

To summarize, there are quite some reasons why the standard printing may not be entirely
adequate.

Gaudi Tutorial: Printing and Job Options 3-12

3-12 Gaudi Framework Tutorial, April 2006

Printing - MsgStream
Using the MsgStream class
• Usable like std::cout
• Allows for different levels of printing

– MSG::VERBOSE (=1)
– MSG::DEBUG (=2)
– MSG::INFO (=3)
– MSG::WARNING (=4)
– MSG::ERROR (=5)
– MSG::FATAL (=6)
– MSG::ALWAYS (=7)

• Record oriented
• Allows to define severity level per

object instance

Printing - MsgStream
The alternative to using the default print streams defined by C++ is a Gaudi extension, the
MsgStream. The usage of this class should be the same as for the standard streams. The
MsgStream however, allows to specify more fine grained severity levels:
Verbose, Debug, Informational, Warning, Error and Fatal levels. Always is reserved for informational
messages that should always be printed.
Secondly, printout of the MsgStream class is record oriented, not line oriented like for the C++ output
streams. Standard output streams print whenever a newline character appears. The MsgStream
prints on the occurrence of an end-record specifier. A record may contain several lines of output.
MsgStream objects allow to define the severity level based on the name of an object instance. This
feature allows to enable printouts for one single algorithm while suppressing extensive printout for
others.

Gaudi Tutorial: Printing and Job Options 3-13

3-13 Gaudi Framework Tutorial, April 2006

MsgStream - Usage

Print error and return bad status
return Error("Cannot retrieve particle properties");

Set printlevel in job options
MessageSvc.OutputLevel = 5; // MSG::ERROR
MySvc.OutputLevel = 4; // MSG::WARNING
MyAlgorithm.OutputLevel = 3; // MSG::INFO

Send to predefined message stream
info() << "PDG particle ID of " << m_partName

<< " is " << m_partID << endmsg;

err() << "Cannot retrieve properties for particle "
<< m_partName << endmsg;

Formatting with format(“string”, vars)
debug() << format("E: %8.3f GeV", energy) << endmsg;

MsgStream - Usage
The GaudiAlgorithm and GaudiTool base classes hide the technicalities of creating MsgStream.
Simply use the verbose() debug(), info(), warning(), err(), fatal(), always() methods as in the
examples above, passing the values to dump and the end-of-record stream modifier endmsg.

In the job options you can then specify the output level for your printout. In this example general
printout is only done for messages with a severity ERROR or higher. However, for the service
instance “MySvc” also warning messages will be printed and for the algorithm “MyAlgorithm” even
informational messages.

Note: if you set the OutputLevel to 2 (debug), the base class will print the value of all the algorithm
Properties during initialization
Caveat: The GaudiAlgorithm and GaudiTool base classes were only introduced recently. In looking
at older code, you will come across explicit usage of the MsgStream as shown below. This should
now be avoided:
Add Header file

#include “GaudiKernel/MsgStream.h”
Create object and print

MsgStream log(msgSvc(), name());
log << MSG::INFO << “Hello world!” << endmsg;

Gaudi Tutorial: Printing and Job Options 3-14

3-14 Gaudi Framework Tutorial, April 2006

Hands On: DecayTreeAlgorithm

Introduce a property
– std::string called “DecayParticle”
– long called “DecayDepth”

Print value in DecayTreeAlgorithm using
– accessors to MsgStream class
– several severity levels

Add algorithm instance to top alg list
– Name: B0_Decays

Hands On
You will introduce properties to the DecayTreeAlgorithm. This algorithm has an empty
implementation we have already built.

Then these properties will be printed when the algorithm is initialized. This requires that the algorithm
is instantiated, so it must be added to the list of top level algorithms.

Gaudi Tutorial: Printing and Job Options 3-15

3-15 Gaudi Framework Tutorial, April 2006

Hands On: If you have time left...

Extend for printout of D0 decays
• Re-use the existing implementation

Play with printing directives:
#pragma print off
#pragma print on
#printOptions

Gaudi Tutorial: Printing and Job Options 3-16

3-16 Gaudi Framework Tutorial, April 2006

Hands On: DecayTreeAlgorithm.h

class DecayTreeAlgorithm : public GaudiAlgorithm {

private:

/// Name of the particle to be analysed

std::string m_partName;

/// Integer property to set the depth of printout

long m_depth;

...

};

Gaudi Tutorial: Printing and Job Options 3-17

3-17 Gaudi Framework Tutorial, April 2006

Hands On: DecayTreeAlgorithm.cpp

StatusCode DecayTreeAlgorithm::initialize() {
debug() << “Decay Particle:” << m_partName

<< “Number of daughter generations in printout:”
<< m_depth
<< endmsg;

}

DecayTreeAlgorithm::DecayTreeAlgorithm(
const std::string& name, ISvcLocator* pSvcLocator)

: GaudiAlgorithm(name, pSvcLocator)
{
declareProperty("DecayParticle", m_partName = "B0”);
declareProperty("DecayDepth", m_depth = 2);

}

In fact, this is a bit of a stupid example. As you will have noticed, the GaudiAlgorithm base class
already prints the value of all its properties if the message level is MSG::DEBUG

Gaudi Tutorial: Printing and Job Options 3-18

3-18 Gaudi Framework Tutorial, April 2006

Hands On: B0DecayTree.opts
// Add B0 decay algorithm to list of top level algorithms

ApplicationMgr.TopAlg += {"DecayTreeAlgorithm/B0_Decays"};

// Setup of B0 decay algorithm

B0_Decays.DecayParticle = "B0";

B0_Decays.DecayDepth = 3;

Gaudi Tutorial: Printing and Job Options 3-19

3-19 Gaudi Framework Tutorial, April 2006

Hands On: add D0 decays
// Add B0 decay algorithm to list of top level algorithms

ApplicationMgr.TopAlg += {"DecayTreeAlgorithm/B0_Decays"};

// Setup of B0 decay algorithm

B0_Decays.DecayParticle = "B0";

B0_Decays.DecayDepth = 3;

// Add D0 decay algorithm to list of top level algorithms

ApplicationMgr.TopAlg += {"DecayTreeAlgorithm/D0_Decays"};

// Setup of D0 decay algorithm

D0_Decays.DecayParticle = “D0";

