
Schedule: Timing Topic
20 minutes Lecture
30 minutes Practice
50 minutes Total

Gaudi Framework Tutorial, April 2006

7
Algorithm Tools: what they
are, how to write them, how

to use them

Gaudi Tutorial: Introduction 7-2

7-2 Gaudi Framework Tutorial, April 2006

Objectives

After completing this lesson you should
be able to:
• Understand the difference between

tools and algorithms
• Retrieve and use tools in an algorithm
• Understand tools interfaces
• Define and implement a tool

Goals
The first goal of this lesson in Algorithm tools is to introduce this new concept. Understanding the differences
between with other components of the framework (Services, Algorithms) is important for making consistent
designs across the experiment.
The second objective of the lesson is to enable you to use tools, understanding the difference between public
and private instances of tools.
The third objective is to learn to write a new tool

Gaudi Tutorial: Introduction 7-3

7-3 Gaudi Framework Tutorial, April 2006

Why Algorithm Tools?

Sometimes in an Algorithm it is necessary
to execute the same operation more than
once per event, only for some events, on
specific non identifiable data objects,
producing new objects that will be put in
the Event Store later. Or the same
operation might need to be performed by
several different algorithms.

Needed to introduce a new concept

The need for Algorithm Tools
When implementing an Algorithm, very often it is necessary to perform some operations or complex
processing for each object in a list (e. tracks in the track collection). Therefore, the concept of sub-algorithm
is not adequate for that purpose. In this kind of operations is more efficient to pass the data as arguments
instead of registering and retrieving from the transient store. In addition, it can be that the same kind of
operation can be re-used in other algorithms.

Gaudi Tutorial: Introduction 7-4

7-4 Gaudi Framework Tutorial, April 2006

Algorithm Tools
The concept of Algorithms Tools, being a
sort of simple algorithms callable many
times and with arguments, was introduced
in Gaudi
• Examples

– Vertexing
– Track transport
– Association to truth
– Filtering of particles based on a pID CL

Designing for Re-use
Algorithm Tools are useful small algorithms that can be packaged in a way that will make it easy to re-use
them in other Algorithms. They are callable many times during the execution of an event and the user can
pass arguments.
Examples:

• Vertexing (to produce one or many vertexes from a list of tracks or particle candidates)
• Track transport (to obtain the track parameters on other points of the detector)
• Association to truth (to obtain the Monte Calo information corresponding to a reconstructed object)
• Selection from a container of objects (to reduce the a list ob objects according to some selection

criteria)

Gaudi Tutorial: Introduction 7-5

7-5 Gaudi Framework Tutorial, April 2006

ToolSvc
The ToolSvc is the service that manages
Algorithm Tools (private or shared)
• Algorithms ask the ToolSvc for a given Tool by

type/name, they can then keep a pointer to the
tool and use it when necessary

• Manages the life-cycle of Tools creating them
on a first request basis

• Keeps track of existing Tools, holding all
instances and dispatching them as requested

Tools can be configured using the
JobOptions, like Algorithms or Services

The ToolSvc Service
This service is managing Algorithm Tools. It is the service in charge of tools in their life-cycle, it creates
them on first request, configures them and destroys them at the finalize phase of the job.
An Algorithm requests the ToolSvc to obtain a reference to a Tool by its type/name. Tools can be private or
shared. The idea is that if a Tool requires a fair amount of resources (memory, cpu time for configuration) it
does make sense to share the Tool among the various Algorithms that may require this functionality. The
problem with a shared tool is that is can not keep a state between invocations since it is not guaranteed that
other Algorithms may have used it meanwhile.

Gaudi Tutorial: Introduction 7-6

7-6 Gaudi Framework Tutorial, April 2006

Accessing Tools from
GaudiAlgorithm

In MyAlgorithm.h:
private:

IMCAcceptanceTool* m_accTool; ///< Tool interface

In MyAlgorithm::initialize()
// Get the tool from the toolSvc

m_accTool = tool<IMCAcceptanceTool>(
"MCAcceptanceTool/MyTool");

In MyAlgorithm::execute()
// Do something with it
if(m_accTool->accepted(*itP)) { ++numAccepted; }

Accessing tools from GaudiAlgorithm
GaudiAlgorithm hides the technicalities of contacting the toolSvc to obtain a tool, and of properly
releasing it at the end of the job.

Every tool implements an interface specific to that tool. The algorithm requests the tool using its
tool() method. This method is templated by the Tool interface; the argument is a string containing the
class name of the tool, optionally followed by an instance name. If a public tool with this name
already exists, the ToolSvc returns a pointer to it. If it doesn’t, the ToolSvc creates the tool instance,
initializes it, and returns the pointer. This pointer should then be stord by the algorithm in a member
variable, for later use.

Sometimes it may be useful to have a private instance of a tool, configured specially for the calling
algorithm, rather than a shared public one. In this case one should call the tool() function with an
additional argument:
m_accTool = tool<IMCAcceptanceTool>("MCAcceptanceTool/MyTool“, this);

Which tells the toolSvc to create and return a private instance of the tool, whose owner is the object
pointed to by “this” (i.e. the calling algorithm)

Gaudi Tutorial: Introduction 7-7

7-7 Gaudi Framework Tutorial, April 2006

ParentName.ToolName

Configuring a tool

A concrete tool can be configured using
the jobOptions
Follow usual convention:

IdentifyingNameOfTool.NameOfProperty

Through the base class all tools have the
OutputLevel property

• The default value is that of the parent

ToolSvc.MyTool.MinPz = 0.1*GeV;

Gaudi Tutorial: Introduction 7-8

7-8 Gaudi Framework Tutorial, April 2006

Algorithm Tools Types

Different tools can implement the same
functionality
Since the algorithms interacts with them
only through the interface they are
interchangeable
The choice can be done via the job
options at run time
This offers a way to evolve and improve
Tools

Tools classification
The idea is to classify tools for their functionality and try to define interfaces that are general enough
to be applicable to a number of them. In this way we can have different implementation ranging from
very simple ones to a more sophisticated ones.

Since algorithms using this category of tools interact with them only through their interface they are
interchangeable. In fact the choice is done changing the string specifying the tool type in the tool()
method. If this string is a property of the algorithms, the concrete tool used can be chosen at run-time
via the job options.
When knowing a priori that there will be concrete tools with a common functional interface (like
vertexers, associators, etc.) it is worth to ask if they will have common properties or methods and
implement them in a base class.
For the scope of the tutorial the tools are in component libraries, without bothering with different type
of libraries.
In reality for tools things are a little more complicated: the interfaces and base classes (for any tool
you will want to allow various implementations) should be in a linker library, while tools concrete
implementations and algorithms using them should be in a (many) component library.

Gaudi Tutorial: Introduction 7-9

7-9 Gaudi Framework Tutorial, April 2006

Tools Specific Interfaces

A tool must have an additional interface to
define its functionality

– which must inherit from the IAlgTool interface, so
that the tool can be managed by ToolSvc

– Remember: The implementation of the IAlgTool interface is
done by the AlgTool base class, you don’t need to worry about it

– Tools performing a similar operation in different
ways will share the same interface (ex. Vertexer)

Tools Specific Interfaces
Interfaces based on tool functionality must be defined. This is the interface with which Algorithms
interact. Many tools can perform similar operation in different ways but with the same well defined
protocol. For example fitting a vertex from a list of particles can be done in more than one way but it
will always require a list of particles and return a vertex.
In order for a tool to interact with the ToolSvc via this additional interface, the interface itself has to
inherit from IAlgTool. The implementation of the IAlgTool interface is done in the AlgTool base class
and does not have to be implemented in concrete tools.

Gaudi Tutorial: Introduction 7-10

7-10 Gaudi Framework Tutorial, April 2006

Tools Interfaces

YourTool

IAlgTool

IYourTool

IAlgTool
• name(), type(), parent()

IYourTool
• Interface for your tool

Interfaces
•IAlgTool. Basic interface that any AlgTool implements and is used for bookkeeping purposes of the
ToolSvc.
•IYourTool. This represents the interface (abstract) for this particular tool or class of tools.

Gaudi Tutorial: Introduction 7-11

7-11 Gaudi Framework Tutorial, April 2006

GaudiTool base class

All tools should inherit from GaudiTool
• Similar functionality to GaudiAlgorithm
• Hides details of

– MsgStream
– Event Data Service access
– etc.

Gaudi Tutorial: Introduction 7-12

7-12 Gaudi Framework Tutorial, April 2006

How to write concrete tools
When encapsulating some reoccurring
functionality in a tool you need to:
• Identify the tool functionality and define

its special interface: ITool.h
– Unless the interface already exists

• Inherit from the GaudiTool base class in
MyTool.h

• Implement the tool specific functionality
in MyTool.cpp

How to write concrete tools: header file
By inheriting from the GaudiTool Base class, concrete tools are managed by the ToolSvc. The base
class in fact inherits from the AlgTool base class, which in turn implements the IAlgTool interface that
is the protocol used by the ToolSvc to interact with tools.
Tools can be configured in the constructor or via the job options.

Gaudi Tutorial: Introduction 7-13

7-13 Gaudi Framework Tutorial, April 2006

Tools interfaces in practice
See Kernel/IMCAcceptanceTool.h in Tutorial/TutKernel package

class IMCAcceptanceTool : virtual public IAlgTool {

public:

}

#include “GaudiKernel/IAlgTool.h”

static const InterfaceID

IID_IMCAcceptanceTool(“IMCAcceptanceTool”, 1, 0)

Necessary for Inheritance

Unique interface ID

/// Retrieve interface ID

static const InterfaceID& interfaceID() {

return IID_IMCAcceptanceTool;

}

/// + specific signature

virtual bool accepted(const LHCb::MCParticle* mother) = 0;

Pure virtual method(s)

Tools interfaces In practice
A tool additional interface has to conform to the rules of a Gaudi interface.
It will have only pure virtual methods, with the exception of the static method InterfaceID. This
method returns a unique interface identifier to be used by the query interface mechanism.

Note that the only specific code in this file is the interface name, and the specific signature.
Everything else is common to all tool interfaces. These files are easily generated by Emacs

Gaudi Tutorial: Introduction 7-14

7-14 Gaudi Framework Tutorial, April 2006

A concrete tool will inherit from the
GaudiTool base class:

– has properties
– debug(), info(), warning() etc.
– get()
– tool(), svc()
– possible initialize(), finalize()

Called after creation by ToolSvc

GaudiTool inheritance

Configurable via job options

access to event data

Configured at creation

access to other tools, services

How to write concrete tools: header file
By inheriting from the GaudiTool Base class, all the necessary communication with the ToolSvc is
implemented, and you have access to all the nice shortcuts also available in GaudiAlgorithm

Gaudi Tutorial: Introduction 7-15

7-15 Gaudi Framework Tutorial, April 2006

GaudiTools life-cycle
GaudiTools are created by a factory

DECLARE_TOOL_FACTORY(MCAcceptanceTool);

This must be instantiated in the
implementation file

•As for Algorithms but TOOL_FACTORY

•Done for you by emacs

GaudiTool creation and Configuration
GaudiTools are created and configured the same way as Algorithms, using the “factory” design pattern.
Using factories, opposite to using the new() operator directly, the creator of the GaudiTool does not need to
know the concrete type. Technically this means that the header file containing the defining of the concrete
type does not need to be included in the creators code.
The way to achieve this is by instantiating a static object that knows to create an instance (the factory). The
convention is to use the macro DECLARE_TOOL_FACTORY for that purpose.

Gaudi Tutorial: Introduction 7-16

7-16 Gaudi Framework Tutorial, April 2006

How to write concrete tools:
implementation file

Declare in constructor specific properties
Get services necessary for implementation
in constructor or initialize method

– Very similarly to Algorithms

Implement necessary functionality
– Additional methods specific to the tool

How to write concrete tools: implementation file
Anything that need to be held through the lifetime of a tool has to be set in the constructor or the
initialize method. While properties must be declared in the constructor, pointers to necessary
services can be set in either one. If reset mechanisms are implemented their management has to be
taken care of by the tool.
The necessary functionality of a tool is implemented in additional methods, this methods can be
executed as often (or rarely) as deemed necessary by the algorithm using the tool.

Gaudi Tutorial: Introduction 7-17

7-17 Gaudi Framework Tutorial, April 2006

A note about packaging

Tools, like Algorithms, are components
– They should reside in a component library

Header files of Tool interfaces are public
– They should reside in a public include directory

Component packages should not export an
include directory

– include_path none
– Put the interface in a separate Kernel package

• e.g. TutKernel/vxry/Kernel
– Component library will depend on Kernel package

• If interface changes, Components must be recompiled
• THINK TWICE before changing an interface!

Gaudi Tutorial: Introduction 7-18

7-18 Gaudi Framework Tutorial, April 2006

Hands on: MCAcceptanceTool
Write a simple Monte Carlo tool that:

• checks if a MCParticle satisfies a list of
criteria and returns true/false

– Define the cuts as properties of the Tool

• implements simple cuts:
– Minimum Pz cut
– Is produced close to IP (zOrigin < value)
– Does not decay before end of the magnet (zDecay>

value)
– Use what you learned about MCParticle & MCVertex

When you start from scratch emacs will provide you with a skeleton

Hands on
In the following exercise we will write a simple Monte Carlo utility tool using some of the things
learned in the Gaudi Basics Tutorial.
Eventually we will use the tool in an Algortihm.
We will need to

- Look at the interface methods in
Components/IMCAcceptanceTool.h

- Write the tool itself
MCAcceptanceTools.h, MCAcceptanceTools.cpp

- Modify the algorithm that retrieves and uses the tool
VisibleEnergyAlgorithm.h, VisibleEnergyAlgorithm.cpp

Gaudi Tutorial: Introduction 7-19

7-19 Gaudi Framework Tutorial, April 2006

Hands on: MCAcceptanceTool

Modify VisibleEnergyAlgorithm to use the
new tool plot the primary vertex multiplicity
of MCParticles in the acceptance

– Retrieve and use the tool as shown in slide 7-6

If you have time afterward (homework?)
extend the tool

– Check if the MCParticle has reached the last Tracking
stations (has hits in at least n layers of the Inner Tracker or
Outer Tracker after a certain z position)

Gaudi Tutorial: Introduction 7-20

7-20 Gaudi Framework Tutorial, April 2006

Hands on: MCAcceptanceTool.h
Inherit from IMCAcceptanceTool

Declare the interface method(s)

class MCAcceptanceTool : public GaudiTool,

virtual public IMCAcceptanceTool {

virtual bool accepted(const LHCb::MCParticle* mother);

Gaudi Tutorial: Introduction 7-21

7-21 Gaudi Framework Tutorial, April 2006

Hands on: MCAcceptanceTool.cpp
constructor

Declare specific Interface(s)

Implement the interface method
declareInterface< IMCAcceptanceTool >(this);

bool MCAcceptanceTool::accepted(const LHCb::MCParticle* mcpart)
{

/// Momentum cut (Pz)

if (mcpart->momentum().z() < m_minPz) {

return false;

} else {

return true;

}

}

Gaudi Tutorial: Introduction 7-22

7-22 Gaudi Framework Tutorial, April 2006

Solution

In src.data directory of
Tutorial/Components package
To try this solution:

cd ~/cmtuser/Tutorial/Component/v7r0/src

Move your modified files if you want to keep them
cp ../src.usetool/*.* .
cd ../cmt
gmake
$MAINROOT/$CMTCONFIG/Main.exe $MAINROOT/options/jobOptions.opts

