

\mathcal{D} etector \mathcal{D} escription \mathcal{T} ree

- logical description of apparatus structure
- each \mathcal{DE} user entry point to retrieve (sub)detector information
- unique "named" element
 - individual access "by name"
 - unique location
- hierarhical tree structure
 - top element
 - knowledge of "up" and "down" links

Ivan Belyaev Geometry& Detector Description (2) 4th LHCb Software Week E-mail:Ivan.Belyaev@itep.ru

\mathcal{D} etector \mathcal{E} lement Granularity

- \mathcal{M} echanical \mathcal{C} onstruction
- \mathcal{G} eometry (\mathcal{N} ominal)
- individual $(\mathcal{M}is)\mathcal{A}lignment$
 - generic for \mathcal{DE}
 - custom for non- \mathcal{DE} (sub)elements
- Slow Control information
 - low & hight voltage, thresholds
 - temperature, pressure, gas quality
- Calibration

• $\mathcal{R}ead\mathcal{O}ut$ information

- channel map
- noisy and hot channels
- \mathcal{DB} ase access
 - constants for \mathcal{D} igitisation
 - constants for Calibration
- Other considerations
 - code performance
 - "simplicity", \mathcal{MC} , ...

SINGLE CHANNEL IS NOT DE !

Is is easy fo fulfill all criteria?

Ivan Belyaev Geometry& Detector Description (3) 4th LHCb Software Week E-mail:Ivan.Belyaev@itep.ru

\mathcal{D} etector \mathcal{E} lement \mathcal{G} ranularity

The top level \mathcal{DE} structure could be deduced from geometry structure of subdetectors:

- (almost) all subsystems consist of several "stations"
- (almost) all subsystems consist of several parts with different granularities "inner", ..., "outer"
- (almost) all "stations" consist of two (movable) parts ("left"-"right" or "up"-"down")

The further "division" could not be deduced from pure geometry principles on a common basis for all subsystems

Ivan Belyaev Geometry& Detector Description (4) 4th LHCb Software Week E-mail:Ivan.Belyaev@itep.ru

\mathcal{D} etector \mathcal{E} lement \mathcal{G} ranularity (\mathcal{P} edestrian \mathcal{V} iew)

 $\mathcal{V}ertex:$ single *wafer* looks as ideal candidate for the most deep \mathcal{DE} IT racker:

for MSGC-like technology choice single chamber looks as ideal candidate for the most deep \mathcal{DE}

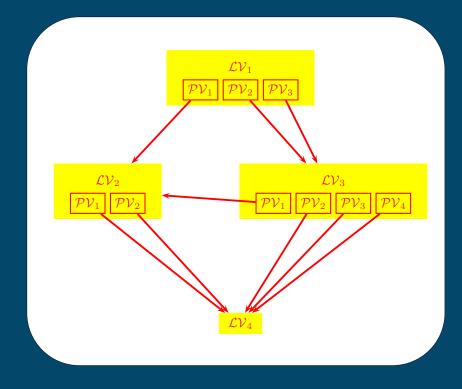
OT racker & Muon: Is single *chamber* a good solution?

pro: mechanical construction, readout, alignment, monitoring, ...

contra: number of *chambers* could be quite large

Ivan Belyaev Geometry& Detector Description (5) 4th LHCb Software Week E-mail:Ivan.Belyaev@itep.ru

\mathcal{D} etector \mathcal{E} lement \mathcal{G} ranularity (\mathcal{P} edestrian \mathcal{V} iew)


Calorimeters:

• Top level division according to the geometry consideration is quite natural. The properties of the top level \mathcal{DE} s were discussed within Calorimeter group in detailes and their interfaces with respect to reconstruction purposes were fixed.

- definition of geometry for simulation requires different approach

- The additional division is absolutely unclear yet, and it was not yet discussed. Several possibilities, each of them has certain advantages and disadvantages:
 - divide according to readout bords, suitable for trigger and especially fine for preshower, where MPT are used.
 - divide according to geometry (could be suitable for alignment)

\mathcal{G} eometry \mathcal{D} escription \mathcal{T} ree

- geometry description of apparatus
- "palette" of Logical Volumes
 - "bricks" for construction
 - knows *Solid* and *Material*
 - no information about position
- \mathcal{LV} has "structure", described by daughter \mathcal{PV}
- \mathcal{PV} is daughter \mathcal{LV} assosiated with its position inside mother

Ivan Belyaev Geometry& Detector Description (7) 4th LHCb Software Week E-mail:Ivan.Belyaev@itep.ru

\mathcal{G} eometry \mathcal{D} escription \mathcal{T} ree

- Navigation Loops are forbidden
 - no intersection between volumes
 - no GEANT3 'MANY'
- no any absolute positioning
- \mathcal{PV} is the only source for navigation

- all questions to *LV* have sence only in the local reference system of this *LV*
- all questions to *PV* have sence only in the local reference system of its mother *LV*
- Global Reference System is just the local reference system of top \mathcal{LV}

Ivan Belyaev Geometry& Detector Description (8) 4th LHCb Software Week E-mail:Ivan.Belyaev@itep.ru

\mathcal{G} eometry \mathcal{D} escription \mathcal{T} ree

- (goal) The only one source of geometry information for simulation & reconstruction
- (Very) detailed geometry description Probably not all screws should be described, but the most important screws must be described
- Quite complicated
 - now SICB JVOLU contains ??? volumes
 - "new" number \downarrow due to boolean solids
 - "new" number \uparrow due to more detailed description
- (goal): good navigation performance
- (goal): good performance with respect memory comsumption

Both "optimisation" tasks are very closely related!

Ivan Belyaev Geometry& Detector Description (9) 4th LHCb Software Week E-mail:Ivan.Belyaev@itep.ru

\mathcal{G} eometry \mathcal{D} escription \mathcal{T} ree Optimisation

Memory optimization for tree with \mathcal{N} "identical" elements with \mathcal{K} layers with \mathcal{N}_i branches per layer *i*: minimize the total number of volumes

$$N_1 \times N_2 \times \dots \times N_{\mathcal{K}} = \mathcal{N}$$

 $\sum_{i=1}^{\mathcal{K}} N_i = \min$

solution =
$$\begin{cases} N_i = \langle n \rangle \\ \langle n \rangle = e \\ \mathcal{K} = \log \mathcal{N} \end{cases}$$

Navigation optimisation for the system of \mathcal{N} "unique" elements

- the navigation time "per one element": τ
- the navigation time at level $i: t_i$
- the total navigation time: \mathcal{T}

 $t_i = \tau \times n_i$ $\mathcal{T} = \sum t_i$ $\mathcal{T} = \min$ The same equations! The same solution?

Ivan Belyaev Geometry& Detector Description (10) 4th LHCb Software Week E-mail:Ivan.Belyaev@itep.ru

\mathcal{G} eometry \mathcal{D} escription \mathcal{T} ree \mathcal{O} ptimisation

Each layer in navigation has an additional extra overhead!

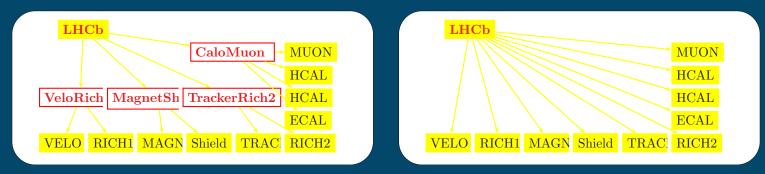
 $t_i \sim \mathcal{O}(\tau \times N_i) + \mathcal{O}(i)$ $\mathcal{T} \sim \mathcal{O}(\Sigma t_i) + \mathcal{O}(\mathcal{K})$ $\mathcal{T} \sim \mathcal{O}(\log \mathcal{N}) + \mathcal{O}(\log \mathcal{N})$

This overhead could be significant: for "simple question" within "simple geometry" could be estimated analytically to be the same! This factor of 2 is to be reduced! Use shortcuts and cache! $\mathcal{DE} \ \mathcal{T}$ ree acts as cache and shortcut collection for navigation!

- each DE has unique location ⇒ no extra overhead due to relocation of the level
- Shortcuts remove redundant layers!
- \mathcal{DE} \mathcal{T} ree represents the "simplified" \mathcal{G} eometry \Rightarrow number of elements (& layers!) is smaller
- "natural" solution: DE tree follows the Geometry Tree till some level of detalisation

Ivan Belyaev Geometry& Detector Description (11) 4th LHCb Software Week E-mail:Ivan.Belyaev@itep.ru

\mathcal{N} avigation


Effective navigation using $\mathcal{DE} \mathcal{T}$ ree and \mathcal{LV} (Geometry Description) \mathcal{T} ree

- Locate "point" on the most deep level of DE Tree (usage of "cache" - FAST!)
- 2. switch to the Geometry Description Tree (skip several layers -"shortcut" - FAST!)
- 3. (is it "optimal"?) \Rightarrow answer depends on structure of concrete links, next slide

Up to now only <u>"general bla-bla-bla"</u> - no <u>concrete</u> fix of structure of \mathcal{DE} Tree, BUT: next slide!

Ivan Belyaev Geometry& Detector Description (12) 4th LHCb Software Week E-mail:Ivan.Belyaev@itep.ru

"*Realistic*" comparison of two models

use *Transport Service* as a tool for testing Geometry & Detector Derscription navigation performance

relevant for testing the geometry optimisation since

- obvious "client" ("user") of Geometry/Detector Description and the only one in *GAUDI* now
- analog from SICB is invoked up to $\sim 4 \cdot 10^5/\text{event}$

the exact algorithm is irrelevant, but some features are essential for Geometry/Detector description

- 1. locate 2 points inside one \mathcal{DE}
- 2. further action closely relates to the navigation inside \mathcal{LV} , associated with \mathcal{DE} .

Ivan Belyaev Geometry& Detector Description (13) 4th LHCb Software Week E-mail:Ivan.Belyaev@itep.ru

" \mathcal{R} ealistic" comparison of two models

- 1. estimate "distance" in radiation length between 2 points "random" points
- 2. make performance measurement for both "models" after all caches activated
- 3. One naively expects that for the performace could be better of a factor 10/6 for Model II

- a 2.5 better performance!
 - additional cache level in the Transport itself
 - different allocated space for subdetectors and "envelops"
- "real" advantage will be not so good
 - the geometry will be not so primitive
 - more clever usage of the service

Ivan Belyaev Geometry& Detector Description (14) 4th LHCb Software Week E-mail:Ivan.Belyaev@itep.ru

${\cal S}$ ummary

Detector Description

- 1. Choose right objects and structure
- 2. Single channel is not a node in $\mathcal{DE} \mathcal{T}$ ree
- 3. Avoid multiply branches per layer
- 4. Use hierarhy
- 5. Follow Geometry Tree

Geometry Description

- 1. Choose optimal structure
- 2. Avoid multiply branches per layer
- 3. Use hierarhy
- 4. Avoid navigation from Top

Ivan Belyaev Geometry& Detector Description (15) 4th LHCb Software Week E-mail:Ivan.Belyaev@itep.ru