
12/9/00 G.Corti1

Computing Meeting, 11/09/00

Design and example implementation of Gaudi Associator tools
In

fo
rm

at
io

n

Track segments

Reconstructed space
points

Track candidates

Monte
Carlo

Raw data

Hits

Digits

 Particles

Dis-integrated Detector
response

Processing

Comparison

12/9/00 G.Corti2

Computing Meeting, 11/09/00

Design and example implementation of Gaudi Associator tools

 Three different entities:
– Associator: provides the user with information that is "already" there

l because of an inheritance mechanism or because it is possible to follow links
l It will do algorithmic operations when necessary or read short-cuts from the data
l Concrete associators have local copies of specific reverse connections (time

consuming operation)
l Concrete associators can have local copies of direct connections when those results

from long link following or imply algorithmic choices.
l It can be called at any time during the processing of an event but it should be done

only in very well defined monitoring algorithms.

12/9/00 G.Corti3

– AssociationMaker: creates the AssociationTables (or in Marco's early schema
the MC corresponding class) and puts them in the store.
l This should be done ONLY at the end of the reconstruction once all of the tracks

for example are there.
l This entity doesn't know anything about the algorithmic operation involved and uses

the information returned by a concrete Associators.
– AssociationTable: hold the short-cuts info for high level entities.

l This is a data object (SmartRefTable ?)
l It is created and stored by the AssociationMaker but an Associator is able to read

it if stored on a file

12/9/00 G.Corti4

IProperty

TrTrackToMC

IAlgTool

AlgTool

AssociatorIAssociator

IAlgTool

IAssociator

serviceLocator()

msgSvc()

Properties

outputLevel

Associator and IAssociator

• The Associator is a type of AlgTool, it is retrieved via the ToolSvc that
takes care of locating the appropriate factory, creates it, and manages it
 IAssociator* pAsct;
 std::string m_asctCalo = "CaloDigitMCSumDepAsct";
 StatusCode sa = m_toolSvc->retrieveTool(m_asctCalo , pAsct);

• Properties of the concrete associators can be set via jobOptions
ToolSvc.CaloDigit2MCAsct.DataLocation = "/Event/Raw/Ecal/Digits_0";

12/9/00 G.Corti5

IAssociator interface

 Five methods in the IAssociator interface must be implemented by the
concrete associators

• flushCache(), to reset status of Associator as it is when it is created
• it will be called automatically when the Event Data change

• i_retrieveDirect(ContainedObject* objFrom, ContainedObject*& objTo,
 const CLID idFrom, const CLID idTo)

• one-to-one relation
• i_retrieveDirect(ContainedObject* objFrom, std::vector<ContainedObject*>&

 objTo, const CLID idFrom, const CLID idTo)
• one-to-many relation

• i_retrieveInverse(… .)
• two corresponding methods for relation reverse to processing
• could be incorporated in above methods BUT this way aware it is a time
consuming operation

pr
ot

ec
te

d

12/9/00 G.Corti6

IAssociator interface (2)

Templated methods corresponding to the four retrieve methods for the
client wanting to use the Associator

SmartDataPtr<CaloDigitVector>Digs(eventSvc(),"/Event/Raw/Ecal/Digits_0");

 for(CaloDigitVector::iterator it=Digs->begin(); Digs->end()!=it; ++it){
 MCCaloSummedDeposit* pMC = 0;
 StatusCode sas = pAsct->retrieveDirect(*it, pMC);
 }

12/9/00 G.Corti7

Associator Base Class
 Additional methods in the base class:

• The standard event data service. Every associator will access the data.
IDataProviderSvc* eventSvc();

• Return flag declaring if the associator follows links or looks into stored shortcuts
 bool followLinks(); Property (“FollowLinks”)

• Location of data where the associator will look for info
 std::string whichTable(); Property (“DataLocation”)

• For inverse association
bool inverseExist(); flag if the inverse is locally kept
void setInverseFlag(bool value) { m_inverse = value; }

protected
 virtual StatusCode buildReverse() {return StatusCode::SUCCESS;}

to be overriden by concrete Asct

12/9/00 G.Corti8

CaloCluster

CaloDigitPair CaloDigit

MCCaloSumDepositMCCaloDigit

MCCaloDeposit

MCParticle

Concrete example: CaloDigitMCSumDepAsct

12/9/00 G.Corti9

CaloDigitMCSumDepAsct

Need to declare the tool factory
 static ToolFactory<CaloDigitMCSumDepAsct> s_factory;
 const IToolFactory& CaloDigitMCSumDepAsctFactory = s_factory;

Need to inherit from Associator
 CaloDigitMCSumDepAsct::CaloDigitMCSumDepAsct(const std::string& type,
 const std::string& name, const IInterface* parent) :
Associator (type, name, parent), m_inverseTable() { }

Implements the interfaces
• i_retrieveDirect (...), i_retrieveInverse(...)
• between CaloDigit* and MCCaloSummedDeposit*
• if CLID are not of the right type return StatusCode::FAILURE and null
pointers
• one-to-many in this case return StatusCode::FAILURE and empty vector

Locally keeps the inverse table, filled at first request

12/9/00 G.Corti10

CaloDigitMCSumDepAsct

The example works on Linux, both for direct and reverse relation
• tried out few CaloDigit and MCCaloSumDeposit for few events and got the
same pointers as dynamic_cast
• both the example and the IAssociator and the Associator base class need
polishing

