
Packages
(extracted from “Large-scale C++ software design” by John Lakos)

J.Harvey
26 October 1998



Packages Slide 2

Logical vs Physical Design

q Logical design addresses architectural issues; physical design addresses
organisational issues

q Physical design takes account of physical things such as compile-time
coupling, link-time dependency, executable size

EdgeIter

Graph

NodeIter

Node Edge

Graph.h Graph.cincludes

Logical View
Physical view



Packages Slide 3

What are components?

q A component is smallest unit of physical design. It allows for
consideration of physical issues not addressed by class level design.

q It is an indivisible physical unit, none of whose parts can be used
independently of the others.

q It consists of exactly one header file (.h) and one implementation file (.c).
q It defines one or more closely related classes and free operators deemed

appropriate for abstraction it supports.
q The logical interface of a component is the set of types and functionality

defined in the header file that are programmatically accessible by clients of
that component.

q The physical interface of a component is everything in its header file.
q A component y DependsOn a component x if x is needed in order to

compile or link y



Packages Slide 4

Why packages?
q Focuses on physical structure of system
q Reflects on :
ã logical structure of application
ã organisational structure of development team

q Large systems require hierarchical physical organisation
beyond hierarchy of individual components

q Need a macro unit of physical design referred to as a package
q A package is a collection of related components in a logically

cohesive physical unit.
q It has an associated registered prefix that identifies both files

and file-scope logical constructs as belonging to package.



Packages Slide 5

From Components to Packages
q A component is smallest unit of physical design containing :

ã 1,2, or even several classes
ã several hundred lines of C++ source code and .h files

q Address complexity by abstraction and hierarchy.
Interpreter

Evaluator FormatterParser

Runtime Database

q Dependencies between larger units represent an envelope for aggregate
dependencies among the components comprising each subsystem

q Once database is designed, can launch 3 concurrent efforts on Parsing,
Evaluating and Formatting and finally top level Interpreter

Example



Packages Slide 6

Definitions

q A package is a collection of components
organised as a physically cohesive unit

q It refers to a generally acyclic, often
hierarchical collection of components
that have a cohesive semantic purpose.

q Physically it consists of a collection of
header files along with a single library
file

q It might consist of a loosely-coupled
collection of low-level re-usable
components, such as STL

Hierarchical

Acyclic

Cyclic



Packages Slide 7

Possible Organisation
system

develop Include
p1_c1.h

..
pm_cn.h

Lib
libp1.a

..
libpm.a

p1 p2 pk pm

dependencies source exported

Pk_c1.h
pk_c2.h
..
Pk_cn.h

Pk_c1.cpp
pk_c2.cpp
..
Pk_cn.cpp

Headers required 
outside package

Library file for
each package

Holds names of all other
packages upon which this 
package is authorised 
to depend. This is job of
the architect. Verification
should be automated.

List of component headers 
to be placed in systemwide 
include directory for use 
by general clients. Proper
subset of components defined
within package.



Packages Slide 8

DependsOn, Levilisation
q A package x DependsOn another package y if 1 or more

components in x DependsOn one or more components in y

k l

i j
Package Level 2 Level 2

Level 1

f g

b

ha

c d e
Package Level 1

Package a

Package b

DependsOn



Packages Slide 9

Decomposition of System into Packages of Components

v

s

lk

u

r

p q

ohgi

a b c j t d m e f n

v

s

lk

u

r
p q

o

hg

i

a b c

j

t

d

m

e f

n

Pkg A

Pkg B Pkg C

Pkg D

L1

L2

L1

L2

L1

L2

L3
L4

L1

L2
L1

L2

L3

L4

L5

L6



Packages Slide 10

Advantages of Packages

q Develop architecture at higher level of abstraction
q Delineate responsibility for a package - each package can be

owned/authored by single developer
q Specify acceptable dependencies as part of overall system

design without addressing individual components
q Putting at same level in directory structure makes them easily

accessible to developers
q Physical dependencies can be extracted by tool and compared

to architect’s specification
q Highly coupled parts of system can be assigned to single

package with single developer - change management easier



Packages Slide 11

Package Prefixes

q Structured approach required to avoid name collisions
q Each package must be associated with unique registered

prefix consisting of 2-5 characters
q Each construct in header file is prepended with package prefix

as are .cpp and .h files implementing component.
q Major design rules
ã Prepend every global identifier with its package prefix
ã Prepend every source file name with its package prefix

q Principles : Purpose of prefix is to :
ã identify uniquely physical package in which component resides
ã indicate logical and organisational characteristics



Packages Slide 12

Avoid Cyclic dependencies

q Important design goal - aids incremental comprehension,
testing and reuse.

q Avoid among packages too! In general minimise package
interdependencies
ã optimises linking
ã usability - don’t link huge libraries just to use simple functions
ã reduces number of libraries that must be linked
ã minimises size of executable image

q Need to test large system incrementally and hierarchically
q Techniques to avid - escalate component to higher level

package, repackage



Packages Slide 13

Partitioning
q A package should consist of components that make sense to be packaged

together and treated abstractly at higher level.
v

s

lk

u

r

p q

ohgi

a b c j t d m e f n

zx y

w

z

y

x w

redundant

q When adding a component to a package both logical and physical characteristics of
component should be considered



Packages Slide 14

Multi-site development
q Geographical distribution influences how package ownership

is distributed among developers

z

y

x

w

z

zz

z

Partition here 
(cost = 3)



Packages Slide 15

Package Insulation

q Minimising number of exported header files enhances usability

sp

qo m n

r

Exported headers
r.h

sp qo m nr

Exported headers
o.h
m.h
p.h
q.h
..

n.h

Logical abstraction only
Logical and physical abstraction only



Packages Slide 16

Must header for particular component be exported?

q Do clients of package need access to component to use
functionality provided by package?

q Does any other exported component fail to insulate its clients
from this components definition?

q Do other packages need access to this component e.g. to reuse
its functionality?



Packages Slide 17

Other package issues discussed
q Groups of packages (very large systems - us?)
q Release structure

ã directory hierarchy
ã cost of compiling - function of #.h files, but also #directories

å Put header files in just a few directories

q A patch is a local change to previously released software to repair faulty
functionality within a component. It must not affect internal layout of any
existing object.

q Start-up time is time between when a program is first invoked and when
thread of control enters main. Time when non-local static objects are
created.

q Clean-up. Provide mechanism for freeing dynamic memory allocated to
static constructs within a component.



Packages Slide 18

Other Topics discussed

q Architecting a component
ã component interface design
ã degrees of encapsulation

q Designing a function
ã interface specification
ã types used in the interface

q Implementing an Object
ã member data
ã function definitions
ã memory management
ã using templates in large projects


