
Data Model for LHCb Calorimetry Software

Ivan Belyaev∗

February 8, 2000

Abstract

Some general and essential features of the calorimetry data model are
discussed.

Contents

1 Event Data Model 1
1.1 General . 1
1.2 Digits . 2
1.3 Clusters . 4
1.4 Basic Functors . 5

2 Data Flow 7

3 Event Data Access 8
3.1 Native GAUDI way . 8
3.2 Advanced method for CaloDigit* access via CaloCellID index . . . 9
3.3 Sequential access to CaloDigit* . 11

4 Algorithms 11
4.1 CaloDigitizerAlg . 12

4.1.1 Digitisation Functors . 12
4.2 CaloCalibratorAlg . 13

4.2.1 Calibration Functors . 13
4.3 CaloClusterizatorAlg . 14

4.3.1 Clusterisation Functors . 14

5 Examples & Use-cases 17

1 Event Data Model

1.1 General

It was agreed that all calorimetry software should deal Monte Carlo data in the
same manner as real data. Technically it can be implemented in a 3 different ways:

• ”No Monte Carlo” approach: Object for representing Monte Carlo data and
object for representing the real data are the same objects. Within this
approach, the same functions and algorithms are used for Monte Carlo data
and for real data.

∗E-mail:Ivan.Belyaev@cern.ch

1

• Templated approach: Monte Carlo data object and real data object are sim-
ilar in the sense that they have the same subset of the most important meth-
ods. The essential feature of this approach is the wide usage the templated
functions and algorithms.

• Inheritance approach: Monte Carlo data object is a kind of real data object,
e.g. Monte Carlo data object inherits from the corresponding real data object.
Within this approach the same functions and algorithms for Monte Carlo data
and for real data deal only with pointers (or references) to the base classes.

All three approaches fulfil the main mandatory requirement to have the same
codes for processing of the real data and for Monte Carlo data.

The disadvantage of the first approach is the complexity of getting of Monte
Carlo information, when one needs to get it. All proposed schemes of connection to
Monte Carlo truth informations look quite artificial, complicated and unnatural.

The second approach looks as the least suitable for us due to quite complex
communications between complicated templated classes. E.g. it almost unavoidable
results in the the existence of split structures (Monte Carlo digits and real data
digits, Monte Carlo Clusters and real data clusters and so on) at all levels of the
Calorimetry software.

Currently I do not see any serious disadvantages of the third approach. It looks
very natural, elegant and powerful. Especially the flexibility of the third approach is
amazing. One can easily to switch off this approach and switch on the first approach
changing only an extremely small peaces of codes.

The power, beauty and flexibility of the third approach result in our choice.
Currently we are planning to use the same structures/classes for all sub-detectors

of LHCb Calorimeter system (Scintillator Pad Detector, Preshower Detector, Elec-
tromagnetic and Hadronic Calorimeters). If one day we recognise the necessity of
introducing the difference in the data structures, these changes can be easily incor-
porated into the overall schema including the inheritance and function overloading.

1.2 Digits

The proposed structure of digits for calorimetry software consists of 4 classes - class
CaloDigit, class MCCaloDigit, class MCCaloDeposit & class MCCaloSummedDe-
posit. The most essential feature is the inheritance of class MCCaloDigit from class
CaloDigit.

The physical meaning of class CaloDigit is just an energy deposition in a given
cell of the calorimeter. Skipping the technical methods and details (constructors,
destructors, setters, serialisation, printout, const-versions of getters and other tech-
nicalities), the simplified version of class CaloDigit can be represented as:

class CaloDigit: virtual public ContainedObject {
public:
/// Retrieve the energy of this digit
double e () const;
/// Retrieve the identification of
/// calorimeter cell of this digit
const CaloCellID& cellID () const;
private:
/// Cell identifier
CaloCellID m_cellID;
/// Calibrated energy in MeV
/// ("the best knowledge of energy")
double m_energy;

2

};

The physical meaning of class MCCaloDigit - it is just an energy deposition in a
given cell of the calorimeter with a reference to the Monte Carlo truth information.
The analogous ”simplified” view of class MCCaloDigit is presented here:

class MCCaloDigit: public CaloDigit
{
public:
/// Retrieve energy deposited in active (sensitive) matherial.
/// (delegation to MCCaloSummedDeposit)
inline double activeE () const ;
/// Retrieve the total deposited energy
/// (delegation to MCCaloSummedDeposit)
inline double totalE () const ;
/// Retrieve container of Monte Carlo deposits
/// (delegation to MCCaloSummedDeposit)
inline SmartRefVector<MCCaloDeposit>& deposits () ;
/// Retrieve pointer to Monte Carlo summed deposits
inline MCCaloSummedDeposit* summedDeposit() ;
private:
// deposits
SmartRef<MCCaloSummedDeposit> m_summedDeposit;

};

Some methods of class MCCaloDigit are just delegation to the underlying Monte
Carlo structures.

The physical meaning of class MCCaloSummedDeposit is just the energy de-
posited in the active material of the calorimeter (Scintillator plates) corrected tak-
ing into account such phenomena as Birk’s law, light collection, and other factors,
and the total energy deposited an active and absorber material of the calorimeter
system and vector of references to the individual energy depositions for this cell
from Monte Carlo particles. the individual energy depositions from Monte Carlo
particles are represented with class MCCaloDeposit. The ”simplified view” of class
MCCaloSummedDeposit and class MCCaloDeposit are presented here:

class MCCaloSummedDeposit: public ContainedObject
{
public:
/// Retrieve energy deposited in active (sensitive) matherial
/// there is no method to set activeE manually!
double activeE() const
/// Retrieve the total deposited energy
/// there is no method to set totalE manually!
double totalE () const
/// Retrieve (reference to) container of Monte Carlo deposits
inline SmartRefVector<MCCaloDeposit>& deposits() ;
private:
// Energy deposited in active calorimeter (scintillator) elements
// corrected for Birk’s law and other corrections
double m_activeE;
// Total deposited energy (including adsorber)
double m_totalE ;
// deposits
SmartRefVector<MCCaloDeposit> m_deposits;

3

};

class MCCaloDeposit : public ContainedObject
{
public:
/// Retrieve the active energy deposited in the
/// active/sensitive elements (scintillator)
inline double activeE () const ;
/// Retrieve the total deposited energy
inline double totalE () const ;
/// Retrieve the reference to the MCParticle)
inline MCParticle* particle () ;
private:
/// Active energy deposited in active/sensitive material
double m_activeE ;
/// Total deposited energy
double m_totalE ;
/// Reference to the particle
SmartRef<MCParticle> m_particle ;

};

1.3 Clusters

The proposed structure of calorimeter clusters consists of class CaloCluster. Since
class CaloCluster deals only with pointer to the class CaloDigit, there is no necessity
to get the additional class for Monte Carlo clusters. The same class CaloCluster
serves for holding the real data and Monte Carlo data.

The ”simplified” structure of class CaloCluster is presented here:

class CaloCluster: public ContainedObject
{
public:
///
typedef std::vector<CaloCellID> CellContainer ;
typedef unsigned int DigitStatus ;
typedef unsigned int ClusterStatus ;
typedef std::pair< SmartRef<CaloDigit> ,

CaloCluster::DigitStatus > CaloDigitPair ;
typedef std::vector<CaloCluster::CaloDigitPair> DigitContainer ;
///
public:
/// Retrieve the energy of the cluster
inline double e () const ;
/// Retrieve the x-position of the cluster (barycenter?)
inline double x () const ;
/// Retrieve the y-position of the cluster (barycenter?)
inline double y () const ;
/// Retrieve the (symmetric) covariance matrix
inline HepSymMatrix& cov() ;
inline CaloCluster::DigitContainer::size_type size () const ;
/// Retrieve owned digits
inline CaloCluster::DigitContainer& digits() ;
/// Retrieve the current status of the cluster
inline ClusterStatus status () const ;

4

private:
/// Energy of the cluster in MeV
double m_energy;
/// x-position of the cluster in mm
double m_xPosition;
/// y-position of the cluster in mm
double m_yPosition;
/// Covariance matrix
HepSymMatrix m_covariance;
/// digits
CaloCluster::DigitContainer m_digits;
/// Status of the cluster
CaloCluster::ClusterStatus m_status;

};

Essential feature is that each digits within the cluster is associated with some
flag CaloCluster::DigitStatus, which is to be used to distinguish cases of privately
owned digits or digits shared between several clusters, or even more complicated
classification.

1.4 Basic Functors

A set of useful functors is defined in namespace CaloDataFunctor to be used in
conjunctions with STL algorithms. They allow us for fins selection, sorting, finding,
removing and transformation between basic types of the chosen data model.

namespace CaloDataFunctor
{
///
/// Is the "energy" of the object of type TYPE exceed
/// the threshold value?
/// templated functor-predicate
/// TYPE is required to have valid comparison operation with 0,
/// and "->e()" method
/// (e.g. CaloDigit*,MCCaloDigit*,CaloCluster* and so on...
/// can be used for any STL algorithm, like std::find_if
template <class TYPE>
class Over_Threshold:
public std::unary_function< TYPE , bool >;

///
/// Is the "energy" of the one object of type TYPE exceed the
/// "energy" of another object of type TYPE ?
/// templated functor-predicate
/// TYPE is required to have valid comparison operation with 0,
/// and "->e()" method
/// (e.g. CaloDigit*,MCCaloDigit*,CaloCluster* and so on...
/// can be used for any STL algorithm, especially useful for
/// sorting
template <class TYPE>
class Greater_by_Energy:
public std::binary_function< TYPE , TYPE , bool >;

///
/// Is the "active energy" of the one object of type TYPE exceed

5

/// the "active energy" of another object of type TYPE ?
/// templated functor-predicate
/// TYPE is required to have valid comparison operation with 0,
/// and "->activeE()" method
/// (e.g. MCCaloDigit*)
/// can be used for any STL algorithm, especially useful for sorting
///
template <class TYPE>
class Greater_by_ActiveEnergy:
public std::binary_function< TYPE , TYPE , bool >;

///
/// Is the "total energy" of the one object of type TYPE exceed
/// the "total energy" of another object of type TYPE ?
/// templated functor-predicate
/// TYPE is required to have valid comparison operation with 0,
/// and "->totalE()" method
/// (e.g. MCCaloDigit*)
/// can be used for any STL algorithm, especially useful for sorting
template <class TYPE>
class Greater_by_TotalEnergy:
public std::binary_function< TYPE , TYPE , bool >;

///
/// This functor families allows us to "accumulate" (sum)
/// different energies for object of type TYPE, TYPE is required
/// to have valid comparison with zero and access to a
/// corresponding energy
//
template <class TYPE>
class Accumulate_Energy:
public std::unary_function< TYPE , double >

template <class TYPE>
class Accumulate_ActiveEnergy:
public std::unary_function< TYPE , double >;

template <class TYPE>
class Accumulate_TotalEnergy:
public std::unary_function< TYPE , double >;

};

A typical usage of these basic functors one can find here:

typedef std::vector<CaloDigit*> DigitSeq ;
DigitSeq digit = ... ; // get input data
///
/// 1) get the digit over the threshold
///
DigitSeq digits1;
const double threshold = 10.0 * GeV;

std::remove_copy_if(digits0.begin() , digits0.end() ,

6

std::back_inserter(digits1) ,
CaloDataFunctor::Over_Threshold<const CaloDigit*> (threshold));
///
/// here digit1 contains only pointers to digits which
/// energy exceeds 10 GeV
///
/// 2) sort digits which are over threshold
///
std::sort(digits1.begin() , digits1.end() ,
CaloDataFunctor::Greater_by_Energy<const CaloDigit*>());
///
/// here digit1 contains a sorted sequence of digits which
/// energy exceeeds 10 GeV

2 Data Flow

From a formal point of view the complete data flow within calorimeter software can
be roughly represented by a following scheme:

Simulation At this step a sequence of objects which behaves like MCCaloDigit*
objects1 is produces.

Digitisation At this step a ”transformation” of input sequence of MCCaloDigit*
to the output sequence of objects2, each of them behaves like CaloDigit* ob-
ject. An natural place of this step is just after the Simulation before writing
objects into tape. But since we want currently to investigate in detail all as-
pects and all details, currently it is foreseen to keep this step before calorime-
ter reconstruction. In a time, when we have agree with stable digitisation, it
naturally goes from begin of Reconstruction phase to the end of Simulation
phase.

Calibration The input sequence of objects of type CaloDigit* is transformed3

Clusterisation The input sequence of CaloDigit* objects is transformed into out-
put sequence of CaloCluster* objects. Internally it is also in a very transparent
way can be split into several ”sequence-to-sequence” transformation steps4

Seed Finder At this step an output sorted(optional) sequence of ”Seeds” for
Clusterisation is produced from input sequence of CaloDigit* objects. It
also can be split into some steps it a natural way

Cutter From input sequence of all CaloDigit* objects it produces the
sorted(optional) sequence of CaloDigit* objects with energy deposi-
tion over the certain cell-depended(optional) threshold.

Maximum Finder from the sequence of CaloDigit* objects, it selects
the CaloDigit* which are local maxima5

1It means that it returns either the pointer to class MCCaloDigit objects, or to objects, inherited
from this class MCCaloDigit

2Taking into account that class MCCaloDigit inherits from class CaloDigit, it can be either
the same updated sequence, or a new sequence of MCCaloDigit* objects, or a new sequence of
CaloDigit* objects. The concrete realization is irrelevant for further discussion.

3It can be either replaced(updated), or a new sequence of CaloDigit*(or MCCaloDigit*) can
be produced.

4The following sub-division is an illustration only, the real Clusterisation algorithm and it
implementation can be quite different, but this schema utilise the quite common features of almost
any Clusterisation algorithms

5Whatever it means.

7

Analyser From sequence of CaloDigit*, which are local maxima, pro-
duce (taking into account some additional considerations (borders,
etc.) sequence of ”Seeds”

Cluster Maker From input sequence of ”Seeds” it produce the output se-
quence of CaloCluster* objects. Also can be split into several obvious
steps

Collector From input sequence of ”Seeds” produce the ”PreClusters”6

- just collections of connected CaloDigit* .
Calculator At this step an input sequence of ”PreClusters” is transformed7

into the output sequence of CaloCluster* objects. A Summed energy,
barycenter position and their covariance matrix is calculated (esti-
mated).

Corrector (optional) At this step an information in the sequence of Calo-
Cluster* objects are updated in more sophisticated way - e.g, by applying
the S-wave correction, or event with a fitting by shower shape.

Matching & Particle ID At this phase the reconstructed CaloCluster objects are
matched with reconstructed tracks/segments from other subsystems (and with
CaloClusters from other parts of calorimeters in th most optimal way. A
photon and π0 reconstruction and an electron/hadron discrimination is per-
formed.

The first two steps could be in a quite naturally way combined into one step.
Probably it is the most effective realization for Monte Carlo mass production. But
one should take into account that on the start phase, till the digitisation procedure
is not proved to be stable and fixed, the most frequent way is just to (re)-run the
Digitisation in the beginning of the Reconstruction/Clusterisation step.

One can see how nicely the proposed schema of CaloDigit, MCCaloDigit &
MCCaloDeposit fits the data flow. We have an unique flexibility within this schema
- some ”transformations” can be just a ”casting”, some ”transformations” is just
”in-place update”, and only a minor part of them are to be such nasty and primitive
tricks like copying or creating of new objects. But in any case, if due to some external
limitation data update will be not possible, the third way is always available, and
only a few lined are to be changed to switch off the nice facilities of the proposed
approach. In this case where will be no significant advantage with respect to the
scheme, proposed by Olivier.

3 Event Data Access

Access to the CaloDigit and MCCaloDigit objects is discussed in this section.

3.1 Native GAUDI way

A straightforward and generic way of accession the data from Algorithm is provided
by GAUDI framework via the notion of class SmartDataPtr, which provides us with
a fast access to the container(ObjectVector) of CaloDigit* objects (MCCaloDigit*
in the case of Monte Carlo):

SmartDataPtr<CaloDigitVector>
SmartRawContainer(eventDataService() ,

"/Event/Raw/CaloDigitVector");
6It can be CaloCluster* object with a properly defined status-word
7or updated in-place

8

if(!SmartRawContainer){ // we’ve got the container and here we have
// an access to the data

}else{
// something wrong, or data are unavailable

}
//
SmartDataPtr<MCCaloDigitVector>
SmartMCContainer(eventDataService(),
"/Event/MC/MCCaloDigitVector");

if(!SmartMCContainer){
// we’ve got the container and here we have
// an access to the data
}else{
// something wrong, or data are unavailable
}

The size of this container is ∼ 10%×#Cells
8. This container represents a nice and

compact store of pointers to the calorimeter digits. Advantages are obvious but
disadvantages are also obvious:

• In the case of Monte Carlo it is still an container of MCCaloDigit* point-
ers! (template!), a (trivial) ”transformation” to the base class (CaloDigit*)
is required before real usage of Monte Carlo. I have some consultation with
Pavel and he states that within our approach we are able to store Monte Carlo
data no in the container of type ObjectVector<MCCaloDigit> but in the con-
tainer of the type ObjectVector<CaloDigit> and therefore this disadvantage
disappears.

• A ”sequential” access to the energy deposition for a given cell. Currently we
see that it is one of the most frequent question for any implementation of Clus-
terisation. This question must be answered in the most effective way. Neither
ordinary sequential scan9 no more sophisticated associative or binary scans10

are not fast enough. Only access by index (”direct access”)11 is acceptable
for us.

3.2 Advanced method for CaloDigit* access via CaloCellID
index

The main statement of almost all our previous discussions was that we definitely
need the object which is able to provide a fast and effective access to the data
using CaloCellID as an index. An class CaloDigitCollection was developed to fulfil
this requests and in addition to this it was designed to resolve the first problem,
mentioned in the previous section - it returns the CaloDigit* pointer both for ”data”
and for Monte Carlo.

The simplified view of this constructions are presented here:

class CaloDigitCollection: public CaloCollection<CaloDigit*>
{
public:
/// constructor - from "address"
/// (full path in the Transient Store);
8Taking the average occupancy in the calorimeter at the level of 10%.
9Access time ∝ O(#digits)

10Access time for each of them ∝ O(log(#digits))
11Access time ∝ O(1)

9

CaloDigitCollection(IDataProviderSvc* dataService ,
const std::string& address ,
IMessageSvc* messageSvc = 0);

private:
// data provider
IDataProviderSvc* m_cdc_dataProvider;

};

///
///
/// Base class
///

/* type of content */
template <class CONTENT ,

/* return type */
class RETTYPE = CONTENT ,

/* container type */
class CONTAINER = std::vector<CONTENT> ,

/* index type */
class INDEX = const CaloCellID& ,

/* functor type */
class FUNCTOR = std::unary_function<INDEX,RETTYPE&> >

class CaloCollection : public CONTAINER , public FUNCTOR
{
///
public:
///
typedef CONTENT Content ;
typedef RETTYPE ReturnType ;
typedef INDEX Index ;
public:
// constructor

/* "default" value */
CaloCollection(Content def = Content() ,

IMessageSvc* messageService = 0);
public:
// CONTAINER
// access to CONTAINER interfce:
// access to the content itself
// using CaloCellID as an index
inline Content operator[](Index id)
// checked access, need to be catched!
virtual inline Content at(Index id)
/// FUNCTOR!
/// access to FUNCTOR facilities
/// please, pay some attention that return type here
/// CAN BE DIFFERENT from
/// the return type of operator [] !
/// this trick is used!!!
///
virtual ReturnType operator() (Index id) ;
private:
// "default value"
Content m_cc_def;

10

// Message Service
IMessageSvc* m_cc_messageService;

};
:

Example of usage of this construction:

CaloDigitCollection digits(eventDataService(),
"/Event/Raw/CaloDigitVector",
messageService());

CaloCellID id = ... ;
CaloDigit* digit = digits[id] ; // get energy
if(0 != digit)
{ std::cout << " energy is equal to " << digit->e() << endl; }

This construction provides us with fast and effective (access time ∝ O(1)) access
to the data. An analogous approach (based on concrete implementation of class
CaloCollection) can be applied to any containers with not trivial access by index,
e.g. for geometry implementation.

3.3 Sequential access to CaloDigit*

One should keep in mind that significant part of calorimeter (sub)-algorithms will
have a better performance dealing with sequential access to date (e.g. via the native
GAUDI way). Just to simplify this kind of access and to provide the uniform access
to CaloDigit* object an simpler construction Digit (defined in namespace CaloData
is provided. It helps to construct a sequence of CaloDigit* objects either from na-
tive GAUDI container ObjectVector<CaloDigit> or ObjectVector<MCCaloDigit>
CaloDigitVector or MCCaloDigitVector. The usage of this construction is illustrated
by following example12:

///
typedef std::vector<CaloDigit*> DigitSeq;
///
///
/// 1) get the data
///
DigitSeq digits;
CaloData::Digits(eventDataService() ,

"Address in Transient Store " ,
std::back_inserter(digits) ,
messageService());

///

4 Algorithms

In this section skeletons and examples of typical Algorithms are presented. The
codes itself can be found elsewhere13.

12Example from $CALOROOT/Calo/Algorithm/CaloClusterizatorAlg.cpp
13All examples come from $CALOROOT/Calo/Algorithms

11

4.1 CaloDigitizerAlg

The implementation of digitisation algorithm CaloDigitizerAlg can be considered
as the simplest example of the Algorithm within Calo-package14.

This algorithm gets as input the sequence of MCCaloDigit* objects and provide
them with a correct (taking into account the noise, zero suppression and other
factors) value of ”measured” energy. Input sequence is declared to the algorithm
my its full path in the Transient Store15.

For output sequence we have 2 possibilities:

• One can declare the full path (address) in Transient Store, where the results
of digitisation procedure have to be registered.

• If the address of the output sequence is empty, algorithms interprets this
information as request for ”in-place” update of input sequence.

A several pairs of addresses of input/output sequences can be declared to this
algorithm. This is done via IProperty interface. This is done externally in jobOp-
tions.txt file, e.g.:

//
Digitizer.InputOutputSequences =
{ "/Event/MC/MCEcalDigs0#/Event/MC/MCEcalDigs1" };

Digitizer.InputOutputSequences +=
{ "/Event/MC/MCHcalDigs0" };

//

These lines implies that digitisation algorithm gets the object labeled as
/Event/MC/MCEcalDigs016 (of the type MCCaloDigitVector) and produce the out-
put sequence named ”/Event/MC/MCEcalDigs1”17 . Since in the second line the
address of the output sequence is absent, it implies that the input sequence will be
updated in memory.

Internally CaloDigitizerAlg is just a simple skeleton which gets the input data,
perform sequential looping over the sequence of MCCaloDigit*, invokes the real
digitisation functor for each MCCaloDigit*, and performs the output operations.

4.1.1 Digitisation Functors

Currently 3 types of digitisation functors are defined and implemented. Probably
they cover all possible needs. There is no attempts to describe the noise and all
other essential features. But as it seems to me , there will be no any problems with
implementation of such features within the current approach. All 3 functors are
defined in namespace CaloDigitizer18 :

Simplest Digitizer It performs just a trivial rescaling of the Monte-Carlo ”ac-
tive energy” (activeE()) into ”energy” (whatever it meant) of the output
digit using an constant rescaling factor. The functional form if eoutput =
activeE()× Scale.

Smarter Digitizer It applies the same function (or functor) to each ”active en-
ergy” of the input Monte Carlo digit to produce the ”energy” of the output
digit. The functional form is: eoutput = f(activeE()).

14Codes can be found in $CALOROOT/Calo/Algorithms/CaloDigitizerAlg.h and
$CALOROOT/Calo/Algorithms/CaloDigitizerAlg.cpp

15The default value is ”/Event/MC/MCCalodigitVector”
16The address of the input sequence is written before hash(#) symbol
17The address of the output sequence is written after hash(#) symbol
18Codes are available in $CALOROOT/Calo/Digitizer/

12

Clever Digitizer Probably the most general form of all possible digitisation meth-
ods. It applies the function which is ”channel-dependent” to each ”active
energy” of input Monte Carlo digit to produce ”energy” of the output digit.
The functional form is eoutput = fcellID()(activeE()).

In principle, it can be imagined that the full ”digitisation” is just a result of
the collaborative work between all 3 types of functors, e.g. an the first step a
simple correction to a visible energy is applied via Simplest Digitizer , then the
(probably random, energy-dependent, but channel-independent) noise correction
and correction to the finite ADC precision and non-linearity is applied using the
Smarter Digitizer and as the last step a some emulation of ”hot”,”dead”, and ”bad”
channels is performed using (channel-dependent) Clever Calibrator .

4.2 CaloCalibratorAlg

The implementation of calibration algorithm CaloCalibratorAlg can be considered
as the essential repetition of the concepts described in the previous sub-section
example19.

The only one essential difference between CaloDigitizatorAlg and CaloCalibra-
torAlg algorithms is that CaloDigitizatorAlg explicitly requires an MCCaloDigit*
objects on its own input, while CaloCalibratorAlg requires the objects of the type
CaloDigit* an input objects, and therefore it ”calibrates” the Monte Carlo and Data
in the same manner.

Internally CaloCalibratorAlg is just a simple skeleton which gets the input
data, perform sequential looping over the sequence of CaloDigit*, invokes the real
calibration functor for each CaloDigit*, and performs the output operations.

4.2.1 Calibration Functors

Essentially the same types of functors defined for digitisation are also defined for
calibration.All of them are defined in namespace CaloCalibrator20 :

Simplest Calibrator It performs just a trivial rescaling of the ””energy” (e()) on
input digit into ”energy” of the output digit using an constant rescaling factor.
The functional form if eoutput = einput()× Scale.

Smarter Calibrator It applies the same function (or functor) to each ”energy” of
the input digit to produce the ”energy” of the output digit. The functional
form is: eoutput = f(einput()).

Clever Calibrator Probably the most general form of all possible calibration meth-
ods. It applies the function which is ”channel-dependent” to each ”active
energy” of input digit to produce ”energy” of the output digit. The func-
tional form is eoutput = fcellID()(einput()).

The collaborative work of several such functors also looks quite reasonable, espe-
cially if one keeps in ming that usually ”calibration” is an iterative procedure. One
performs the calibration, then finds a new ”constants” or ”functions”, and again
performs the calibration.

19Codes can be found in $CALOROOT/Calo/Algorithms/CaloCalibratorAlg.h and
$CALOROOT/Calo/Algorithms/CaloCalibratorAlg.cpp

20Codes are available in $CALOROOT/Calo/Calibrator/ directory.

13

4.3 CaloClusterizatorAlg

This is a fist non-trivial algorithm. One can foreseen that the input of this algo-
rithm is the sequence of CaloDigit* objects and the output is just the sequence
of CaloCluster* objects; As it was implemented for previous Algorithms a several
pairs of input/output sequences can be defined using the same facilities in input
jobOptions.txt file:

//
Clusterizator.InputOutputSequences =
{ "/Event/Raw/EcalDigs#/Event/Rec/EcalClust" };

Clusterizator.InputOutputSequences +=
{ "/Event/Raw/HcalDigs#/Event/Rec/HCalClust" };

//

CaloClusterizatorAlg has more driving options from jobOptions.txt input file.
E.g. a some ”prepended” Algorithms can be forced to be executed as a sub-
algorithms of CaloClusterizatorAlg. CaloDigitizerAlg and CaloCalibratorAlg seem to
be good candidates for such ”prepended” sub-Algorithms. Also a some ”appended”
Algorithms can be forced to be executed as a sub-algorithms of CaloClusteriza-
torAlg. A ”S-Wave” correction algorithm looks like an excellent candidate for such
”appended” sub-Algorithm.

4.3.1 Clusterisation Functors

Currently only 2 ”Clusterisation functors” are defined and implemented - SeedFinder.
Both functors are defined in namespace CaloClusterizator Both functors seek the
local maximum. The difference between them is in the type of STL algorithms to be
used. The CaloClusterizator::Is A Local Maximum functor just selects the digits.
which are local maximums. It allows us to use this functor in conjunction with
std::find if, std::copy if, std::remove copy, std::copy algorithms, while the second
functor, CaloClusterisator::SeedFinder looks the local maximum and creates the
CaloCluster objects for found maximums. It is supposed to be used in conjunction
with std::transform algorithms. Example of usage the latter functor is here:

DigitSeq digits2;
/// 4a) create seed finder , at this point we need an object
/// with a fast access to the data using caloCellID as an index
/// and we need the source of geometry info
/// data access in "direct mode"

/* data service */
CaloDigitCollection digitCol (eventDataService() ,

/* address in the store */
input ,

/* to report a problems */
messageService());

///
/// 4b) locate the source of geometry info
const std::string calorimeterAddress =
"/dd/Structure/Calo/ECAL" ;
SmartDataPtr<DeCalorimeter> calo(detDataService() ,

calorimeterAddress);
if(!calo)
{
log << MSG::FATAL

<< " unable to locate detector information at address= "

14

<< calorimeterAddress << endreq;
return StatusCode::FAILURE; // RETURN!!!!

}
///
///
/// 4c) create the seed finder

/* source of geometry information */
CaloClusterizator::SeedFinder seedfinder(calo ,

/* random access to digits */
digitCol ,

/* to report problems */
messageService());

///
/// 4d) select the "seeds"
ClusterSeq preclusters;
std::transform(digits1.begin() ,

digits1.end () ,
std::back_inserter(preclusters) ,
seedfinder);

///
///
/// 4e) remove NULLs
ClusterSeq clusters;
std::remove_copy(preclusters.begin() ,

preclusters.end () ,
std::back_inserter(clusters) ,
(const CaloCluster*) 0);

///
///
/// 4f) sort the "seeds" according decreased energy
std::sort(clusters.begin() ,

clusters.end () ,
CaloDataFunctor::Greater_by_Energy<const CaloCluster*>());

///
/// at this point clusters is a sorted container
/// with "clusters" - local maxima

The implementation of the functor is so trivial that it it more simpler to list it
here than to describe:

///
/// The "sophisticated" functor
/// if the digit is a local maximum, creates the CaloCluster
/// object and fill it
/// if the digit is not a local maximum, return NULL pointer
///
class SeedFinder :
public std::unary_function< const CaloDigit* , CaloCluster*>
{
public:
///
/// constructor

SeedFinder(DeCalorimeter* det ,

15

CaloDigitCollection& digcol ,
IMessageSvc* messageSvc);

///
/// the only main and essential method
inline CaloCluster* operator() (const CaloDigit* digit)
{
/// NULL pointer is never local maximum!
if(0 == digit) { return 0; }

///
/// vector of neighbors cell IDs
const CaloNeighbors* CellIDs =

&detector->neighborCells(digit->cellID());

/// transform neighbour cell IDs container
/// into container of digits
typedef std::vector<const CaloDigit*> DigSeq;
DigSeq cells;
transform_ref (CellIDs->begin() , CellIDs->end () ,

std::back_inserter(cells) ,
// NB - it is an example of usage of
// "functor" properties of CaloDigitCollection class

*digitCollection);

///
/// try to find the neighbour with larger energy
///
DigSeq::const_iterator it =
std::find_if(cells.begin() ,

cells.end () ,
std::bind2nd(

CaloDataFunctor::Greater_by_Energy<const CaloDigit*>(),digit));
///
/// this digit is NOT local maximum
if(cells.end() != it) { return 0; }
///
/// this digit IS a local maximum!

///
/// this digit IS a local maximum!

CaloCluster* cluster = new(std::nothrow) CaloCluster();
if(0 == cluster) { return 0 ; } //RETURN???

/// add this digit into cluster with status = 1
cluster->addDigit(
CaloCluster::CaloDigitPair(digit , 1)); // as an example

/// add all other digits into cluster with status == 2
DigSeq::const_iterator iter = cells.begin();
while(cells.end() != iter)
{
cluster->addDigit(
CaloCluster::CaloDigitPair(*iter++ , 2)) ; } // as an example

/// set cluster status

16

cluster->setStatus(1) ; // as an example
/// return cluster

return cluster;
}
private:

///
/// source of detector information
/// about neighbouring cells
DeCalorimeter* detector;
///
/// source of digit information about energy
/// deposition for a givel cellID;
CaloDigitCollection* digitCollection;

};

5 Examples & Use-cases

A lot of examples were illustrated in previous sections. In addition the set of
examples and frequent ”use-cases” is presented here.

• How one can get the particle with maximum (active) energy deposition in the
given cell?

MCCaloDigit* mcdig = ... ; // get digit
/// extract the MCCaloDeposit with
/// maximal deposited active energy
MCCaloDeposit* dep =
*(std::max_element(mcdig->deposits().begin() ,

mcdig->deposits().end() ,
CaloDataFunctor::Greater_by_ActiveEnergy

<SmartRef<MCCaloDeposit> >()));
// extract the Monte Carlo particle
MCParticle* particle = dep->particle;

• What is the total deposited energy in the Calorimeter?

// here "digits" is a pointer to container of digits
double EnergyInCalorimetry =
std::accumulate(digits->begin() ,

digits->end() ,
0.0 ,

CaloDataFunctor::Accumulate_Energy<CaloDigit*>());

• What is the summed energy of all clusters ?

// here "clusters" is a pointer to container of clusters
double EnergyOfallClusters =
std::accumulate(clusters->begin() ,

clusters->end() ,
0.0 ,

CaloDataFunctor::Accumulate_Energy<CaloCluster*>());

• What is the number of digits with energy larger then 10 GeV?

17

// here "digits" is a pointer to container of digits
unsigned long NumberOfDigitsOverThreshold =

std::count_if(digits->begin() , digits->end(),
CaloDataFunctor::Over_Threshold<const CaloDigit*>(10.0*GeV));

• What is the number of clusters with energy lower then 50 GeV?

// here "clusters" is a pointer to container of clusters
unsigned long NumberOfclustersBelowThreshold =

std::count_if(clusters->begin() ,
clusters->end(),

std::not1(CaloDataFunctor::Over_Threshold<const
CaloCluster*>(50.0*GeV)));

• What is the number of clusters with less or equal 2 assocoated digits? They are
potential candidates to be identified as MIPs. Since there is no ”standard”
predicate(functor), we should first define it, and then use:

// define predicate(functor)
template <class T>
class size_less_or_equal:
public std::unary_function<T,bool>
{
unsigned int s;

public:
explicit size_less_or_equal(unsigned int i): s(i){};
inline bool operator() (const T& x) const

{ return x->size() <= s ; }
};
//
// here "clusters" is a pointer to container of clusters
unsigned int NumberOfClustersWithLowMultiplicity
= std::count_if(clusters>begin() , clusters->end() ,
size_less_or_equal<const CaloCluster*>(2));
\item {\it What is the mean x-value for

• How to print all valid digit pointers to std::cout using comma as a delimiter?
It is good illustration of STL algorithms.

// here "digits" is a pointer to container of digits
std::copy_remove(digits->begin() ,

digits->end() ,
std::ostream_iterator<std::ostream>(std::cout,","),

(const CaloDigit*) 0);

18

