
1

15 March, 2000 LHCb Computing 1

Software Review Panel

LHCb Answers to
Architecture, Data Model and
Program Infrastructure
Pere Mato for the LHCb Collaboration
15th March 2000

15 March, 2000 LHCb Computing 2

What requirements, current and future, have you identified
for your software architecture or 'framework'?

u A set of architecturally significant scenarios (“use-cases”) were
collected for the design of the architecture (Nov 98)
– http://lhcb.cern.ch/computing/offline/pdf/gaudiscenarios.pdf

u Scenarios provided from different “stakeholders” by means of
personal interviews.
– Users: physicist users, physicist developers, data production managers,

framework developers.
– Managers, libraries, etc.

u Scenarios capture the kind of functions and qualities the system must
satisfy.

2

15 March, 2000 LHCb Computing 3

What requirements, current and future, have you identified
for your software architecture or 'framework'?

u We divided the scenarios into four categories according to the type
of user:
– (A) Scenarios which deal with the use of applications built within the

framework. Functionality of the system.
– (B) Scenarios which deal with the development of components built within

the framework.
– (C) Scenarios which deal with configuration management.
– (D) Scenarios which deal with the interaction of the framework with the

environment and handling of the change.

u Architecture review (26th Nov 1998)

15 March, 2000 LHCb Computing 4

Requirements: How will they evolve?
u We have assumed that we will never know the complete set of

requirements.
– The traditional “water-fall” model does not work.
– We will discover the requirements during subsequent development iterations.

u We are convinced that the USDP software development process
easily copes with the evolution of requirements
– USDP = use-case driven, architecture-centric, iterative and incremental

u In each development iteration of the framework (release every 3 or 4
months) we refine and collect new requirements
– Sometimes even contradicting requirements !!

u Our philosophy: “start very simple and add the complication later if
needed”

3

15 March, 2000 LHCb Computing 5

Requirements: Language evolution?
u The current implementation of the architecture (GAUDI) is based on

C++.
u We did foresee the scenario of a possible change of programming

language during the design of the architecture.
u GAUDI was designed with “Java in mind”

– Use constructs which are possible to implement with Java (avoid multiple
inheritance, interfaces, avoid templates, …)

u We are currently doing an evaluation of Java
– Gather information for an eventual decision for migration to Java
– Translation of the GAUDI framework into Java

15 March, 2000 LHCb Computing 6

GAUDI Architecture

Converter

Algorithm

Event Data
Service

Persistency
Service

Data
Files

AlgorithmAlgorithm
Transient

Event Store

Detec. Data
Service

Persistency
Service

Data
Files

Transient
Detector
Store

Message
Service

JobOptions
Service

Particle Prop.
Service

Other
Services

Histogram
Service

Persistency
Service Data

Files
Transient
Histogram

Store

Application
Manager ConverterConverterEvent

Selector

4

15 March, 2000 LHCb Computing 7

GAUDI: Interface Model

ConcreteAlgorithm

EventDataService
IDataProviderSvc

IDataProviderSvc

IHistogramSvc

IMessageSvc

IAlgorithm IProperty

ObjectA ObjectB

DetectorDataService

HistogramService

MessageService

ParticlePropertySvc
IParticlePropertySvc

ApplicationManager
ISvcLocator

15 March, 2000 LHCb Computing 8

Interface Model (2)

Algorithm

IAlgorithm IProperty

Event
Loop

Service

Interactive
Component

Configurator

class IAlgorithm : virtual public IInterface {
 public:
 virtual StatusCode initialize() = 0;
 virtual StatusCode execute() = 0;
 virtual StatusCode finalize() = 0;

 virtual const std::string& name() const = 0;
 virtual StatusCode sysInitialize () = 0;
 virtual StatusCode sysFinalize () = 0;
};

class IProperty : virtual public IInterface {
public:
 virtual StatusCode setProperty (const Property& p) = 0;
 virtual StatusCode getProperty (Property *p) const = 0;
};

class Algorithm : virtual public IAlgorithm,
 virtual public IProperty {
public:
 ...
}

5

15 March, 2000 LHCb Computing 9

VCR Interface model

VCR

IEuroConnectorIRfInput

IUserInterface IInfraredInput

TV set

• Each interface is specialized in a
domain.

• Interfaces are independent of
concrete implementations.

• You can mix devices from
several constructors.

• Application built by composing.
• Standardizing on the interfaces

gives us a big leverage.

15 March, 2000 LHCb Computing 10

DLLDLL

Factories & Dynamic Loading

DLL

SvcFactory
IFactory

Service

{new}

ServiceService /
Algorithms /
Converters

SvcFactoryxxxFactory

FactoryTableApplicationMgr
getFactoryTable

Algorithm

{instantiate}

• Plug-and-Play
• Factory pattern to avoid

using concrete
implementation.

• Run-time discovery of
components.

• Only pure abstract
classes (interfaces) are
accessible.

6

15 March, 2000 LHCb Computing 11

Persistency

Event Data
Service Persistency

Service

Zebra data
Files

AlgorithmAlgorithm

ZebraCnvSvc

RootCnvSvc

Root data
Files

ConverterConverterConverter

ConverterConverterConverter

Ze
br

a F
Z

Ro
ot

 I/
OTransient

Event Store

• Various technologies available in the same program: Objy, Root, Zebra,…
• Converters transform objects from one representation to another.

15 March, 2000 LHCb Computing 12

User Interaction / Visualization

Transient
Data Store

Conversion
Service Representations

Store
(graphical,

textual)ConverterConverterConverterConverter

Data Item
Selector User

Interface
(GUI, scripting)

Selects objects
in store

Other
ServicesOther
ServicesOther
Services

7

15 March, 2000 LHCb Computing 13

Do you believe that your requirements for framework,
software build and release process and data persistency are
distinct and different from the other experiments?
u Framework

– NO

u Software build and release process
– NO

u Data persistency
– NO. Even less demanding than the other experiments.

u The requirements are the same (very similar), the implementation
framework could also be the same.
– Event and Detector data model and Algorithms are LHCb specific

u The GAUDI framework is not LHCb specific.

15 March, 2000 LHCb Computing 14

Do you believe that your requirements for framework,
software build and release process and data persistency
are distinct and different from the other experiments?

u Why are we not sharing a common framework?
– The list of conceptual requirements is probably the same but they are weighted

differently. Different starting assumptions.
– At the time you need a framework, the candidate does not exists or you are

unable to find.
– If embarked in a new design, you will end up with a different solution.

8

15 March, 2000 LHCb Computing 15

What do you mean by your data model? How is
your data model defined?
u In GAUDI

– We separate “data” from “algorithms”
– We separate between “persistent data” and “transient data”.
– Algorithms are “producers” and “consumers” of named data into transient data

stores (tree like structure).

u Event Data Model
– “Structure of the transient event data made available to Algorithms”

u How is the data model defined?
– Named objects inherits from DataObject and are typically collections of small

objects of a C++ class defined in a header file. In principle any class can be a
contained object. Relationships implemented using smart references (load on
demand)

15 March, 2000 LHCb Computing 16

Event Data Store

Transient Event Store

Event Data
Service

Persistency
Service

Algorithm

retrieveObject(“MCEcalHits”,...)

registerObject(“key”,...)

Direct
reference

Fetch()
Store()

creates

• Store objects for use of others
• Retrieve objects when needed
• Tree structure (file system)
• Identification by logical address

(“/Event/MC/MCEcalHits”)
• Store owns the objects.

Responsible for cleanup

9

15 March, 2000 LHCb Computing 17

How does this interact with the data persistency
mechanism? Language choices? Analysis tools?
u GAUDI separates “transient” and “persistency” data representations

– Physics code independent of the persistency technology
– Different optimization criteria.
– Transient representation as a bridge between various persistent representations.
– Possibility to change persistency solution with small impact.

u The Data Model is completely independent from the persistency
technology we are using or going to use in the future.

u The current Data Model definition is tighten to C++. Would be
better to define the data model using a programming language
independent object definition language.
– Code generation to various languages
– Mixing languages (Java, C++)

15 March, 2000 LHCb Computing 18

How does this interact with the data persistency
mechanism? Language choices? Analysis tools?
u Analysis tools

– Existing analysis tools are bounded to a specific object persistency solution.
– This is a problem.
– The current solution is to produce statistical data (histograms, n-tuples) on the

form the analysis tool require.
– It would be nice to be able to plug other object persistency solutions. The

experiment data model could be made available to the analysis tool.

10

15 March, 2000 LHCb Computing 19

What infrastructure will be used to assure that all conditions,
parameters and code which were used to create a data object
are codified and known?

u The current infrastructure is based on the configuration
management system and the bookkeeping database

u Configuration Management
– The version of the code and some input data files (particle decays, detector

description, etc.) is controlled using a set of configuration management tools:
CVS to manage code repository and CMT to manage the build and release of
versions of the software.

u Bookkeeping database
– Contains the list of all data sets available. Each data set is qualified with a set

of parameters to allow sophisticated selections. Based on ORACLE.

u Plan to enhance the system with a package similar to the Run
Control Parameter (RCP) of Fermilab.

15 March, 2000 LHCb Computing 20

What mechanisms are you using to assure that the core
infrastructure components of the software have broad
experiment input, validation and testing?
u Participation in defining the requirements

– Collected use-cases or scenarios by personal interviews.

u Weekly computing meetings between subdetectors and core team
– Framework & other projects status reports. Presentations from subdetectors.

u Incremental releases
– Early usage. Feedback from users.

u Software weeks (coinciding with releases of framework)
– Presentations and Tutorials.
– Planning with subdetectors what goes into the next release.

u Subdetector software reviews
– Feedback of framework. How it is used. New requirements.

11

15 March, 2000 LHCb Computing 21

What requirements do various software milestones, and other
experiment milestones, place on functionality and timescale for
delivery of core infrastructure components? Will these be met?

u The experiment milestones (mainly subdetector TDR’s) influences
requirements, priorities and timescale of infrastructure components.
– Availability of people for developing the new software
– Need to produce results for detector studies

u For the TDR’s to be submitted this year has been decided to use the
old FORTRAN algorithms “wrapped” into the new GAUDI
framework
– Requirements: wrapping FORTRAN should possible, production quality,

conversion of data from/to FORTRAN to/from C++.
– Detector description duplication (possible inconsistencies)

15 March, 2000 LHCb Computing 22

Schedule so far
u Sept 98 - architect appointed, design team 6 people assembled
u Nov 25 ’98 - 1 day architecture review

– goals, architecture design document, URD, scenarios

u Feb 8 ‘99 - GAUDI first release
– first software week with presentations and tutorial sessions
– expand GAUDI team

u May 30 ‘99 - GAUDI second release
– second software week …
– expand GAUDI team (GEANT4 simulation toolkit)

u Nov 23 ‘99 - GAUDI third release
– Functionally complete version (basic services, access to SICb data, detector

description framework, histograms, n-tuples, examples, …)

