
LHCb Tracking Software

– A writeup to guide the design review –

Rutger van der Eijk,
Rutger Hierck,

Marcel Merk,
Matthew Needham

March 21, 2000

1

Track Seeding Track Following Track Fitting

Digitizations Output = Tracks

pass 1: seed T7-T11 follow upstream, cleanup
pass 2: seed vertex, T1-T2 follow downstream
pass 3:

Multiple passes:

Figure 1: General overview of the track reconstruction

1 Tracking Overview

The task of track reconstruction is to reconstruct the particle trajectories
from the measurements of several subdetectors. This task can be split in
track finding (Pattern Recognition) and track fitting. The tracks are fitted
to a track model and result in a set of track parameters and their covariances
specified at several predetermined positions in the experiment (e.g. at the
track vertex, at the entrance and exit points of the RICH detectors, etc.).

1.1 General procedure

Figure 1 shows the general procedure in track reconstruction.
The pattern recognition task of trackfinding is split in the subtasks of

track seeding and track following. In addition the pattern recognition is
executed in several passes. In the current philosophy these passes are:

pass 1: Track seeding in the field free region from station 7 to station 10
followed by upstream track following through the magnet towards the
vertex detector.

pass 2: Track seeding in the vertex detector followed by downstream track-
following through the magnet towards the calorimeters and muon de-
tectors.

We foresee that pass1 and pass 2 will be followed by additional passes,
trying to find more complicated trajectories, e.g. those containing kinks or
electrons with hard bremsstrahlung.

2

Each found track is refitted in order to provide the best possible set of
track parameters and covariances. In the refitting process information of
various (non-tracking) subdetectors will be used (e.g. particle ID, particle
energy).

Notice that track reconstruction uses as input the reconstructed sub-
detector data, e.g. silicon clusters, RT-calibrated drift times, particle ID.
Track reconstruction is therefore of higher abstraction compared to a typical
subdetector reconstruction task.

1.2 Current Implementation

In the current “released” version of the tracking code includes only realistic
track refit. The pattern recognition is assumed to be ideal, i.e. it is simply
taken from Monte Carlo truth. Fig 2 shows how the tracks are built and
stored in the Transient Data Store. In this version the following ”blobs” in
the diagram are implemented:

• The LayersOfHitsCreator takes the the subdetector digitizations and
stores these into the logical detection layers.

• The TracksCreator represents the ideal pattern recognition. On output
the track object is a list of hits that are assigned to it.

• The FitInitializer provides a first estimate of the track parameters.
Once realistic pattern recognition is implemented, the result of that
will provide the input to the parameters x, y, tx, ty. The initial estimate
of the momentum is obtained using the so-called pt kick of the magnet.

• The TrackFitter performs the actual track fit.

In the optimal fit the input of almost all LHCb subdetectors is required.

Digitizations
Tracks Tracks TracksMeasurements

Measurements
Layers of

Layers of
Tracks Tracks

LayersofHitsCreator TracksCreator TracksFitter

Transient Data Store

FitInitializer

Figure 2: Current Implementation of the Fitting Code.

3

2 Tracking Concepts

Within track reconstruction several concepts are frequently used. Below the
physics of a few important concepts are briefly explained. From a computing
point of view they can be identified as tools, i.e. global algorithms.

2.1 Kalman Filter

The Kalman filter is a general mathematical technique to update the knowl-
edge of a system state with measurements as they become available. The
technique identifies two steps, prediction and filtering. The prediction step
describes how the state evolves in time (space). The filtering step describes
how to update of the best estimate the state with a new measurement.

Identifying the track parameters of a particle trajectory as the state, we
can use the kalman filter technique as a progressive track fit. The hits in the
detectors are the measurements. The extrapolation of the track parameters to
a new measurement position can be seen as the prediction step. Furthermore
updating the track parameters with the hits can be identified as the filtering
step.

The kalman filter is equivalent to a least squares fit. Advantages over a
global fit are: multiple scattering can elegantly be taken into account, it is
fast, and it can be used in pattern recognition.

2.2 Extrapolation

Extrapolation (or “transport”) is the prediction of track parameters (includ-
ing covariance matrix) at a certain position along a trajectory from another
position.

In the extrapolation the effects of an inhomogeneous magnetic field, of
multiple scattering and of energy loss are appropriately taken into account.
The extrapolation tool relies on the navigation tool to retrieve information.

2.3 Hit Clustering

Hit clustering is the process of grouping hits together that share a common
property. One obvious common property of all hits created by a passing
particle is that they are close to the particle trajectory. Hence the distance
to a (predicted) track will be roughly the same for all hits on that track. We
can use this fact to find hits belonging to a track.

4

2.4 Navigation

Several algorithms need quick access to information. This information can
be subdetector event data or information from a datebase.

Specific examples are:

• To predict the trajectory of a particle through the magnet there must
be fast access to the magnetic field value at a given position in space.

• In the extrapolation from position A to position B a trajectory might
intersect with one or more material objects. The intersections and the
thickness (in X0) of the material must be accessed in a navigation tool.

• To assign candidate hits to tracks in pattern recognition, fast access
is needed to subdetector data (“hits”) inside a geometrical region of
interest (e.g. x ± δx, y ± δy, z ± δz)

In general what is needed is some mechanism to navigate through the ex-
periment. Navigation is a key concept in track reconstruction. Frequent use
of navigation tools makes track reconstruction one of the main consumers of
CPU time. Therefore the navigation tools have to be fast.

5

3 Algorithm Description

As background information to this design review a short summary of the
algorithms is given. The track seeding and trackfollowing serve to provide
optimal assignment of hits to tracks (pattern recognition), while the refit
serves to provide the best possible track parameters. Although the sepa-
rate algorithms share tools described in the previous section, they might be
applied in a course (fast) or precise (slow) way to provide the desired result.

To provide an example of how the tools in the previous section are used
one of the algorithms (trackfollowing) is described in more detail.

3.1 Track Seeding

The first part of pattern recognition searches for segments of tracks which
can be used as a seed to the track following algorithm. In pass 1 it finds
tracksegments in the (almost) free field region from station T7 to T10.

Currently two algorithms are under development. Both initially create a
2-dimensional seed in the precision (i.e. bending) plane and subsequently a
3-dimensional seed by adding information of the stereo measurements.

• The first algorithm creates line segments inside a station, and subse-
quentially links those to form the track seeds.

• The second algorithm considers all hits in the finding stations and
applies a global clustering method to create the seeds.

3.2 Track Following

The second part of pattern recognition starts from the track seeds at a given
z position and follows the track from station to station, either in the up-
stream or downstream direction. While doing so the track parameters are
progressively updated with increasing precision.

In some more detail, the following procedure is used:

• From the seed position extrapolate the track to the nearest station of
interest.

• Open a search window (Region of Interest (RoI)), the size of which
depends on the precision of the extrapolated track parameters.

• In the station, select all hits which are inside this RoI. Fast access is
needed to these data using the navigation tool.

6

• Calculate the signed 3D distance (residual) from the measurement to
the extrapolated track trajectory. Put the hits in the RoI in a vector,
sorted in increasing distance parameter.

• Apply a cluster algorithm, grouping hits with alike distance. Each
cluster forms a candidate for track continuation. Selection parameters
considered are:

– size of the cluster: i.e. the number of hits on the track continua-
tion.

– width of the cluster: i.e. compatibility of the hits to belong to one
track extrapolation.

– distance of the cluster: i.e. average distance of the hits to the
track extrapolation.

The exact numerical value of the selection parameters depends on the
hit quality and track extrapolation precision.

• The hits of each clustered are filtered into the track using the Kalman
procedure.

• In case more than one acceptable track continuation candidate is found
the track following procedure will branch and all trajectories will be
followed. Each track candidate has a quality defined based on the
following

– number of hits on the track

– number of faults (i.e.: hits that are missed) on the track.

– the χ2 residuals of the hits

Based on its quality track candidates can be defined dead or alive.

3.3 Track (re-)Fitting

The pattern recognition provides already fitted tracks. However a more de-
tailed, and thus slower, refit procedure is needed to find the optimal track
parameters and errors.
Typically track extrapolations will be more precise (slower) as compared to
the pattern recognition algorithms. In addition, separate fits might be used
for different particle ID’s. (e.g. electrons)

7

4 Data Model

4.1 Objects

We can identify the following data objects:

• Digitizations (e.g. classes OTDigi, ITDigi) — ‘Raw’ Data from the
detector, i.e. uncalibrated TDC counts.

• Hits (e.g. classes OTHits, ITHits) — Hits are the output of the subde-
tector reconstruction and hence the input for the track reconstruction.
Hits know both about a digitization and the corresponding detector
properties (geometry, calibration, alignment....).

• Measurements assigned to tracks (classes OTHitOnTrack, ITHitOn-
Track) — Knows about a hit but also contains information that is only
relevant because a hit is on a given track (e.g. solution of drift am-
biguity in case of outer tracker and χ2 contribution of hit to track).
Each hit-on-track class is derived from the TrMeasurement abstract
base class which specifies all information a measurement needs to be
filtered.

• Layer of hits (classes TrOTLayer, TrITLayer) — Container of hits. In
the data store we store an ObjectVector of TrOTLayers and one of
TrITLayers for the outer and inner trackers respectively.

• Detection cell (classes OTDetectionCell, ITDetectionCell) — A detec-
tion cell is the detector element (e.g. wire and strip) that performed
a measurement. It provides geometry, alignment and calibration infor-
mation.

• Detection layer (classes OTDetectionLayer, ITDetectionLayer) — Pro-
vides geometry/alignment information for a given layer. It is a con-
tainer of detection cells.

• Track State (class TrState) — A snapshot of track. Track parameters
and covariance matrix at a given z position on the track trajectory.
Some examples are: (x, y, tx, ty), (x, y, tx, ty, Q/pt), (x, y, tx, ty, Q/p).

• Track (class TrTrack) — Container of information determined about
the track. As the track reconstruction proceeds the information in the
container. At the moment the track finally consists of:

– List of pointers to measurements (TrMeasurements)

8

– List of pointers to track states

– Track charge

– Track χ2

– Particle Type

Notice that in order to fit electrons correctly the particle type needs to
be supplied from somewhere. At the moment we cheat from the Monte
Carlo truth. In the future this should come from RICH/calorimeter
information.

• TrNode — Temporary container class for all information needed to do
smoothing (HitOnTrack, transport matrix, track states)

9

4.2 Data model from the viewpoint of the Hits

Fig. 3 illustrates the data model from the point of view of the hits. A hit
is an aggregation of a digitization and a detection cell. Knowledge of the
detection cell allows the digitization to be aligned and calibrated. The hits
are then stored by layer in TrOTLayers and TrITLayers for the outer and
inner tracker respectively. At the moment to allow access to the Monte Carlo
truth a derived OT/IT MCHit class is used. Notice that since in the case
of the inner tracker clustering of digitizations is likely to be done the Monte
Carlo truth information related to the digitizations and hits may be different.
We strongly believe that it is essential to have a pointer from the hit directly
to the MCTrackingHit rather than to the MCParticle as at present.

detectionCell

ITMCDigi

OTMCDigi

OTMCHit ITMCHit

MCParticle

McTrackingHit

OTDetectionCell

OTDigi

TrOTLayer

OTHit

ITDetectionCell

ITDigi

TrITLayer

ITHit

Also needs to
know about true
resolution of drift
ambiguity

File: /afs/cern.ch/user/m/mneedham/public/rose/idealclasses2.mdl Wed Nov 17 10:56:10 1999 Class Diagram: Logical View / Main Page 1

Figure 3: Class Diagram from the point of view of the Hits.

10

4.3 Data model from the viewpoint of a Track

Fig 4 shows the data model from the point of view of the tracks. All tracks
are derived from the interface class TrTrack. One concrete implementation
of a track is a TrMCTrack track which has a pointer to the Monte Carlo
truth. Each track is an aggregation of states (track parameters at a given z)
and measurements which in this case means things that can be fitted using
the Kalman filter. Concrete implementations of the measurements are the
IT/OT HitOnTrack classes.

TrStateLTrStateQPt

z position
state,
covariance
matrix

x,y,tx, tyx,y.tx.ty,Q/pt

TrState

TrTrack

+1

+1..*

TrMeasurement

+0..*

+2..*

TrMCTrack

pointer or
associater

Especially in case
of outer tracker
measurement
depends on which
track the hit is on

OTHit

OTHitOnTrack

ITHit

ITHitOnTrack

File: /afs/cern.ch/user/m/mneedham/public/rose/newclasses4.mdl Wed Nov 17 13:33:40 1999 Class Diagram: Logical View / Main Page 1

Figure 4: Class Diagram from the point of view of the Tracks.

11

5 Some Design Choices

Now we will discuss some problems we have encountered and the solutions
we have chosen.

5.1 Track States

A track consists of a list of hits and a state. In our data model we have sev-
eral types of states (see Section 4). Also different extrapolators can be used;
for example linear, Runge-Kutta, parabolic and linear. Both the concrete
extrapolator and concrete state classes have an interface base-class (resp.
TrExtrapolator and TrState). This allows to implement a track reconstruc-
tion algorithm in terms of these interfaces without explicit knowledge of the
concrete states and extrapolators used.
In order for this to work we use the so called “visitor” (or double dispatch)
design pattern. This works as follows (see Fig. 5):

• Each state has an extrapolate member with a extrapolator as an ar-
gument. The state will choose the apropriate execute member of the
extrapolator. (“The extrapolator visits the state”)

• This is fine as long as the number of states is small. For every new
state N new execute members must be written (with N number of
implemented extrapolators)

A similar situation occurs when we want to project the state into the mea-
surement space and a similar solution is chosen.

TrParabolicExtrapolator

getters/setters

extrapolate(
TrExtrapolator*, z)

getters/setters

extrapolate(
TrExtrapolator*, z)

getters/setters

extrapolate(
TrExtrapolator*, z)

execute(TrStateL*,z)

execute(TrStateQPt*,z)

TrLinearExtrapolator

TrExtrapolator

execute(TrStateL*,z)=0

execute(TrStateQPt*,z)=0

execute(TrStateL*,z)

execute(TrStateQPt*,z)

TrRKuttaExtrapolator

(What the track fitter should know)

execute(TrStateL*,z)

execute(TrStateQPt*,z)

TrStateQPtTrStateL

TrState

Interface

Instances

Figure 5: Visitor pattern.

12

5.2 Dealing with MC

For the performance of the tracking code to be understood and monitored
fast and easy access to the Monte Carlo truth information is essential. For our
hits and digitizations we have implemented this by deriving a MCHit from
a normal hit class. This class has the same properties as a normal hit but
in addition has a pointer to the Monte Carlo truth. We have done a similar
thing in the case of the Tracks. Obviously this type of solution works well
when the relationship between data and Monte Carlo is one-to-one. With
full pattern recognition there will be no one-to-one correspondence between
the reconstructed tracks and Monte Carlo particles. Therefore, at least in
this case a different solution needs to be found. For example an associator
or a SmartReferenceTable. We have considered using SmartReferenceTables
but have found the syntax somewhat daunting!

From the point of view of the tracking since we have inputs from many
sub-detectors a common detector solution to dealing with Monte Carlo truth
is highly desirable.

13

6 Some problems encountered

In this section we discuss some of the remaining software problems we have.

6.1 Serialization of ObjectVectors

For persistancy reasons ObjectVectors now have a serialize member. For this
member to work if you have an ObjectVector of (for example) TrTrack you
must provide a default constructer for the TrTrack class. In our case this is
not possible since the TrTrack is an interface class. To overcome this problem
Gaudi needs to have a dictionary like in ROOT. At the moment to ‘solve’
this problem for our private use we have simply removed the serialize from
the ObjectVector class.

6.2 Tools

In our different algorithms, seeding, following, fitting, we use some common
‘subalgorithms’ like the Extrapolator and Kalman filter. At the moment for
each algorithm that uses the Kalman filter algorithm we make a new instance
of the subalgorithm. This does not make sense — why are two instances of
a class needed with the same functionality? A more natural implementation
of this would be a ‘tool service’ where you have one instance of the subal-
gorithm. In our opinion a general concept of tools (i.e. global algorithms)
in the Gaudi framework is needed. Recently there has been discussion on
implementing a ”Transport Service”, which we consider an improvement.

6.3 Separation of data and algorithm

The separation of data and algorithm in the Gaudi framework has caused us
some problems and complications — mainly related to sorting. Two examples
are given below.

6.3.1 Quality Factor

In our cluster algorithm for the trackseeding/trackfollowing we define a qual-
ity factor for the ‘goodness’ of the cluster. There are several types of quality
factors which we want to try. A quality factor has several properties (see sec-
tion 3), which depend on, for instance, which station you are, what ”type” of
cluster you have (Inner or Outer Tracker). In your track following you want

14

to sort your clusters on quality factor (for example using the standard STL
sort algorithms). So you would want to do something like:

sort(clusterList.begin(),clusterList.end(),sortByQualityFactorOne())

However, this implies that one property of your cluster is the ability to calcu-
late this quality factor, but this implies the cluster knows more ‘algorithm’-
like details like what station it is in. So how do we proceed. Do we sort the
list ourselves ? Are we doing something wrong ?

6.3.2 Ordering of hits in a track

Simply ordering by z does not work in the case of curling or steep tracks.
This means a track cannot sort itself (as it would need algorithm related
things like extrapolators). Therefore the only reasonable procedure to follow
is to say that the relative order of hits determined by the pattern recognition
is final and can not changed (though of course you are allowed to order in
increasing or decreasing z). This then has other implications — for instance
the container of hits should then remain hidden to the user to prevent them
from ever trying to sort the container.

A related issue is that in the patten recognition we intend to seed tracks in
both the up and downstream directions. For the re-fit all tracks will be fitted
upstream. Should a track know if it was found in an upstream or downstream
pass ? Note, upstream and downstream fitting is different because of energy
loss via dE

dx
.

15

7 Future Plans

A first version of the track fitting software exists in SICb providing the same
functionality as in SICb. At present this code is not available in the standard
public release of Gaudi. With the growing number of users (at present 7) we
would like to make this code publically available as soon as possible. This
requires some work in stupid things like making sure our histogram IDs,
class IDs and where we put things in the Transient Data Store does not
cause clashes with other subdetector code. We are also currently working on
two notes (a developers and userguide) to document how to use the code.

For the fit to have completely the same functionality as SICb the use of Velo
information in the fit needs to be implemented. With the data model we have
this presents no technical difficulties once both the Velo data and geometry
model exists.

Also at present we use a wrapped version of the SICb transport. In the
near future we hope to replace the bulk of this FORTRAN with new C++
routines. Again, we foresee few difficulties in doing this in the framework of
the current design. One complication is that at present the SICb transport
makes use of a database containing a simplified description of the material
geometry. When all detectors have a OO description of the database this
database can be replaced with the tool provided in the transport service.
Until then this part of code must remain wrapped FORTRAN.

The track seeding studies are at a very early stage. The actual algorithm (or
algorithms) to be used are at a very developmental stage. Work will continue
in this direction over the next few months.

The track following studies are at a much more advanced stage. Algorithms
exist that starting from a seed (cheated using the Monte Carlo truth) allow
us to attempt to follow the track through the detector and try to find track
continuations (clusters). Obviously realistic track following brings new chal-
lenges and problems. For example you need to decide what you should do
if you get two or more possible continuations from one track. At the mo-
ment we envisage that we keep the best N continuations from one seed in
a container. Then at the end of the track fitting we simply select the best
candidate one. Again in the coming months the track following studies will
continue.

16

