6

LHCb LCG-1 middleware selection requirements

This document describes the current LHCb production system, how it is implemented, the use cases that represents, and what we expect from the LCG-1 middleware.

Contents

1LHCb LCG-1 middleware selection requirements


1Contents


2Architecture of the LHCb production system


3Functional overview and scale


3Installation procedure


4Technology used


4Use cases


5LCG-1 requirements


6Testing LCG-1 and EDG




Architecture of the LHCb production system

The architecture of the LHCb production system is shown in Figure 1.

[image: image1.wmf]
Figure 1 LHCb distributed production system

The system is based on the following components:

1. A number of distributed production centers, each with

a. CPU’s (compute elements) accessible via a batch queing system

b. Local storage (storage elements) 

c. The pre-installed LHCb production sw environment

d. A production agent, software that manages the local production

2. Some databases at CERN:

a. The production database where requests for production and their status are stored

b. Castor, where output datasets are stored for further physics analysis

c. The metadata catalog linking output datasets to production parameters

d. The software release area

3. Some services at CERN to access the databases:

a. The monitoring service which checks the production database for outstanding requests for jobs, upon request from a production agent

b. The production service which takes an outstanding request from the production database and creates a set of scripts, upon request from a production agent

c. The meta data catalog service which updates the meta data catalog when an output dataset has been successfully created

Functional overview and scale

The numbers in the list correspond to the numbers in Figure 1.

1. A production request is created and added to the production database via a Web page.

2. When the occupancy of the batch queues in a production center drops below a given level, the production agent interrogates the monitoring service to see if there are outstanding production requests. 

3. If this is the case, a number of job scripts are created and the jobs are submitted to the production center. The running job checks if the required version of the software is available; if not it will automatically fetch it from the release area at CERN and install it.

4. The job writes its output to the local storage system. 

5. Upon completion of the job, the production agent ensures the output datasets are transferred to Castor at CERN.

6. When the datasets have been successfully transferred, the metadata catalog is updated, thus making the dataset available to the collaboration for analysis.

The following remarks can be made about the system:

1. It has been used in production for several months.

2. It is installed at about 20 sites.

3. It requires at least one static account per production center.

4. It does not use any Grid technology; the DataGrid is used as a separate production center.

5. There is no resource scheduler, but the ‘pull’ strategy implemented by the production agent assures that optimal use of the system is made when required. A full fledged resource broker as proposed by EDG/WP1 would make life easier in the sense that one production agent would then suffice for the whole Grid.

Installation procedure

For a first time installation, a script is downloaded from a web page. This script creates the required directory structure and downloads the latest software environment. Local customizations are kept in a single script, this concerns mostly the interface to mass storage. Subsequent releases of scripts are installed on top of currently installed ones, except the locally modified ones. Subsequent releases of executables are fetched from the release area at CERN automatically when a running job detects that the required software is not installed.

This installation procedure is very simple and scales very well. 

It is compatible with the DataGrid, the initial release being installed via an rpm.

Technology used

The following technology was used to implement this system:

· The job submission UI is an HTML page with a java servlet.

· The data production and meta data catalog databases are provided by the central CERN Oracle service.

· The production service and the monitoring service are written in C++. 

· The meta data catalog service is written in java.

· The production agent and the scripts controlling the production are written in python. 

· The communication protocol between the scripts/agents and the services is xml-rpc.

Use cases

In a Grid environment, the LHCb system can be described by the “top-ten” HEPCAL use cases listed in Table 1.

	
	Use case
	Technology used

	1
	Obtain Grid authorization.
	At every production center we need an ‘lhcbprod’ account. Jobs are submitted under this account. The Grid would make this easier, provided ‘certificates’ last long enough for the job to terminate.

	2
	Grid login. Only once, and with a never expiring certificate for any submitted job. 


	

	3
	Job submission.
	LSF, PBS or Condor job submit commands. The Grid would make this easier as we would be able to use the same command everywhere.

	4
	Job output access or retrieval
	Stdout written to disk or mailed back to user. Impossible to not get it back. Data written to local disk or straight to mass store.

	5
	Error recovery for failed production jobs
	Failed jobs are moved to an error directory and resubmitted by the agent.

	6
	dataset upload
	Files are read from Castor

	7
	dataset registration (together with 7) 


	Files are written to Castor or to some other mass store. For non CERN sites (including DataGrid) files are copied to Castor using bbftp.

	8
	dataset transfer to non-grid storage
	Files must be copied from the Grid to Castor using GDMP, or if this doesn’t work, bbftp.

	9
	job monitoring
	LSF, PBS or Condor job submit commands.

	10
	software publishing
	Automatically done by python scripts via http.


Table 1Top ten HEPCAL use cases
LCG-1 requirements

We expect the above use cases to be implemented using the middleware selected by LCG-1. These use cases represent the minimum of what LHCb requires of a Grid.

We expect the system to handle of the order of tens of thousands of jobs of 500 events (lasting about 48 hours) per production run.

The size of 500 reconstructed LHCb events is of the order of 150 Mb; this requires generation of 500 channel events (500 Mb) and 1000 minimum bias events for spillover (600 Mb).

We must be able to write the datasets created by our jobs onto Castor, and be able to read those datasets from jobs not running on LCG-1.

We expect LCG-1 to propose the technology that will implement the 10 use cases, be clear about what might work or not, what we are expected to test and to indicate a workaround incase the technology fails.

Testing LCG-1 and EDG

Certifying both LCG and EDG activities might put too much load on our

limited resources, and may not be the optimal use of time if LCG decides not

to deploy the EDG tools.
Automatic software update





Sw release


area














Production


Sw


environment





1





6





5





4





3





2





1 Production center





Job


submission


UI





Catalog


XML files

















2 Production center





Meta data catalog


service





<BBFTP>





<XML-RPC>





<XML-RPC>





Production


service





Job scripts

















<BBFTP>





<XML-RPC>





Castor














Monitoring


service





CERN





Data Production


DB





Meta data


catalog





Production


agent





Local


mass 


storage


























…n Prod. centers














