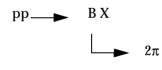


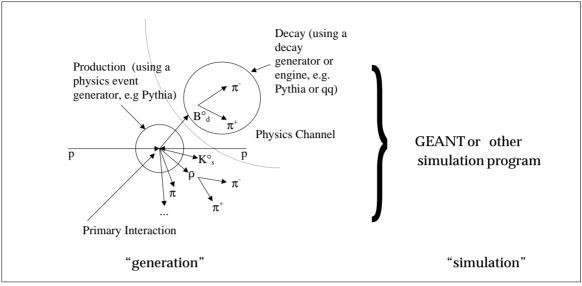
European Laboratory for Particle Physics - LHCb Laboratoire Européen pour la Physique des Particules CH-1211 Genève 23 - Suisse

Book-keeping

Database model


Document Version: Document Date: Document Status: Document Author: Document Reviewed by: 6 5 August 1999 Draft Joël Closier A. Jacholkowska, E. Van Herwijnen

Abstract


This is a proposal for a model.

Generation of MC data

The following picture indicates very schematically how MC events are generated, for example

Glossary

• Beam angle

Angle of the beam used.

The beam angle is an attribute of "**runset**".

• Beam energy

Value of the beam energy used.

The beam energy is an attribute of "runset".

• Dataset

Data of the same type and format, created in a single job and stored in a single file. The data in the dataset consists of events. Events are grouped in a run. One dataset contains several runs. A dataset resides on tape. A dataset should be roughly 1 Gbyte and contain 1000 events.

• Datatype

For the moment, runset will contain the following types of data (GEN, MC and DST):

- GEN: event after generation
- MC: event after simulation
- DST: event after digitisation and reconstruction

The datatype is an attribute of "runset".

• Decay generator code

A number that identifies the decay generator that was used to produce a dataset. In sicb, at present this is 4001.

The decay generator code is an attribute of "physics and generator data".

• Decay generator name

Name that identifies the decay generator that was used to produce a dataset. For example, Pythia 6.125, qq, or a home-made generator.

The decay generator name is an attribute of "physics and generator data".

• Description of the generation

Description of a primary interaction and decay generators. For example, Pythia 6.125 for production with $p_T \text{ cut} = 3.47 \text{ GeV}$ and decay with qq. Today, the embedded Pythia parameters are stored in pythia.cdf.

The description of the generation is an attribute of "physics and generator data".

• Event Description

The event description is an attribute of "runset".

• Event Type

The event type is an attribute of "runset".

• File sequence number

The file sequence number occupied by a dataset on a tape.

The file sequence number is an attribute of "runset".

• Filesize

Size of the file on tape in MegaBytes. For example, 1100.

The filesize is an attribute of "runset".

• First Event

First event of a runset

The first event is an attribute of "runset".

• Generator parameter name

Name of a parameter used by a generator. For example, a $p_{\rm T}$ cut. Today, the embedded Pythia parameters are stored in pythia.cdf.

The generator parameter name is an attribute of "generator parameters".

• Generator parameter value

Value of a given generator parameter. Example for $p_T \text{ cut} = 3.47 \text{ GeV}$.

The generator parameter value is an attribute of "generator parameters".

• Kinematic parameters

Cuts can be imposed on the momentum of a particle of interest (pmin, pmax). Geometrical and kinematic parameters are stored in a table called "**kinematics**".

Kinematic parameter name

Name of a kinematic parameter. For example, Phimax.

The kinematic parameter name is an attribute of "kinematics".

• Kinematic parameter value

Value for a kinematic parameter. For example, 0.

The kinematic parameter value is an attribute of "kinematics".

• Laboratory

A number indicating the name of the laboratory and the platform where the production was done, or where the real data was created.

Possible values are:

Table 1

ID	Centre	Platform	os	Comment
1	CERNSP,RSBATCH	IBM	AIX	
2	CERN/CSF	IBM	AIX	not likely to be used any more
3	Lausanne/Alpha	Digital		not likely to be used any more
4	Heidelberg/Alpha	Digital		not likely to be used any more
5	RAL/CSF			
6	Lyon			
7	CERN/CS2			not likely to be used any more
8	CERN/PCSF	Intel	NT	
9	CERN/LHCb LSF cluster	Intel	NT	PC corridor cluster

Last Event

This is the last event of a runset

The last event is an attribute of "runset".

• Luminosity

Luminosity of the beam used.

The luminosity is an attribute of "runset".

• Number of events

Number of events in the runset. The number of events should normally be 1000 per run.

The number of events is an attribute of "runset".

• Physics channel

The physics channel defines the final state of a pp interaction. For example, minimum bias (all possible events), bb inclusive (all possible events, with a B; for example in sicb this is indicated by the event type 350000), $B_d \rightarrow 2\pi X$, etc.

The physics channel is an attribute of "physics and generator data".

• Primary interaction generator code

A number that identifies the primary interaction generator that was used to produce a dataset. In sicb, at present this is 4001.

The primary interaction generator code is an attribute of "**physics and generator data**".

• Primary interaction generator name

Name of the primary interaction generator. For example, Pythia.

The primary interaction generator name is an attribute of "**physics and generator data**".

• Production year

Year and version of the detector geometry. For example, 99-07-1.

The production year is an attribute of "physics and generator data".

• Program version

Version number of the program. For example, 200.

The program version is an attribute of "runset".

Reconstruction version

Version number of the reconstruction program. For example, 1.2. The reconstruction version is an attribute of "**runset**".

• Run

A run is a collection of events.

• Run Description

For a run, we will describe how this run have been generated. The run description is an attribute of "**runset**".

Run number

Number of the run. A run number is unique. For example, 1002. The run number is an attribute of "**runset**".

• Run Type

The run type is an attribute of "runset".

• Seed name

Name of the random number seed. For example, seed1, seed2 etc. The seed name is an attribute of "**runset**".

• Seed value

Value of the random number seed. For example, 123456789. The seed value is an attribute of "**runset**".

• Simulation version

Version number of the simulation program. For example, 4. The simulation version is an attribute of "**runset**".

• Tape location

Place where the tape can be found.

Tape location is an attribute of "runset".

• Tape support

Support of the tape (redwood, CD-Rom, DLT,..).

• Vertex smearing

The type of vertex smearing used.

The vertex smearing is an attribute of "runset".

• Volume serial number

A unique number written onto the label of a magnetic tape. This number is used to call the tape up from the vault by the SHIFT system. For example, y21345.

The volume serial number is an attribute of "runset".

Proposal for a database model for MonteCarlo

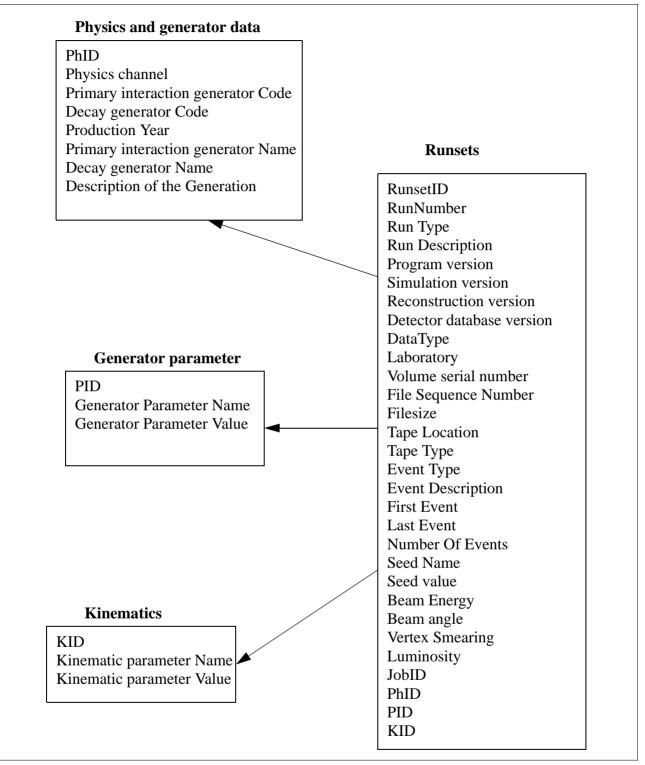


Figure 2

