Contents

Introduction

1 The Problem

1.1
1.2

1.3

Event Building Overview
Data Acquisition Strategies and Requirements
1.2.1 Partial Event Building versus Full Event Building .
1.2.2 Data Flow Requirements
1.2.3 General requirements for trigger/DAQ
Size of the Problem

2 Event Building

2.1

2.2

2.3
2.4
2.5

Event Building and Interconnection Networks
2.1.1 Time-Shared Bus Architectures
2.1.2 Multiple Bus Interconnection Network
2.1.3 Multi-port Memory,
2.1.4 Crossbar and Other Switch-Based Interconnection

Networks
2.1.5 Integrated Processor Interconnection Network . . .
Event Building and Switching Technologies
2.2.1 Circuit-switched Event Builders
2.2.2 Packet-switched Event Builders
Data Flow Options
Readout Protocols
Problem of Effective Throughput
2.5.1 Effective Throughput of Point to Point Links

i

19
19
20
21
22

23
25
26
28
30
32
34
35
36

i

3

CONTENTS

2.5.2 Effective throughput of Network 38
Technology 43
3.1 Industry Standards versus Dedicated Systems 43

31,1 ATM 44

3.1.2 FEthernet oL 46

3.1.3 Myrinet oo D2
3.2 Summary 54
Case Study: LHCb Event Building 57
4.1 LHCb DAQ Architecture and Requirements 58

4.1.1 DAQ Implementation and Functional Model 59

4.1.2 Trigger/DAQ Performance Requirements 62

4.1.3 Data Rates and Detector Partitioning 63
4.2 Network Implementation 63
4.3 Implementation of Readout Units 65

4.3.1 Requirements 66

4.3.2 Determination of the Number of Readout Units . . 66

4.3.3 Meeting the Performance Requirements 68
4.4 Implementation of Sub-Farm Controllers 70

4.4.1 Requirements 70

4.4.2 Number of Sub-Farm Controllers and CPUs per SFC 71

4.4.3 Meeting the performance requirements 73
4.5 Boundaries of This Work 74
Event Building Protocol 75
5.1 General Concepts, 75

5.1.1 Sending an Event Fragment 76

5.1.2 Receiving an Event Fragment 79

5.1.3 Event Building Completion 80
5.2 Implemented Algorithms 83

5.2.1 Event Fragment Generation 85

5.2.2 Notime-out 87

5.2.3 Simple Time-out 89

5.2.4 Automatic Adjustment 95

CONTENTS

5.3 Performanceon a PC

6 Embedded Event Building
6.1 What is an Embedded System?
6.1.1 History and future
6.1.2 Real-Time Systems
6.2 Role of Embedded Processors
6.2.1 Video Game Player
6.2.2 Digital Watcho
6.2.3 Mars Explorer L.
6.2.4 Conclusions
6.3 Embedded Event Building Justification

7 A Gigabit Ethernet smart NIC: Tigon 2
7.1 Tigon 2: Architecture
7.1.1 PCI Supported Features
7.1.2 Local Memory
7.1.3 Internal Processors
714 Events
715 Flash.
7.1.6 Mailboxes
7.1.7 Ethernet Transmit Interface
7.1.8 FEthernet Receive Interface
7.1.9 Gigabit Ethernet MAC
7.2 Host/NIC Software Interface
7.2.1 Shared Rings
722 Datarings Lo
7.2.3 Transmit Flow Diagram
7.2.4 Receive Flow Diagram
7.3 NIC Performance Evaluation

8 Event building on the NIC
8.1 Frequency of Fragments,
8.2 Embedded Event Building Implementation
8.2.1 Source Model,

il

99

107
107
109
109
110
113
114
115
115
116

119
120
122
122
123
124
124
125
126
129
132
133
135
136
138
140
141

iv CONTENTS

8.2.2 Destination Model 156

8.3 Performance Results 159
8.3.1 Comparison with Host to Host Event Building . . . 163

8.4 Performance of Event Building 165
Conclusions 168

Acknowledgements 174

List of Figures

1.1
1.2

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10

2.11
2.12
2.13
2.14
2.15
2.16
2.17

3.1
3.2

Principle of event building 10
General architecture of the trigger and data acquisition

system for the LHCb experiment 13
Generic Interconnection Network 20
Shared Bus Interconnection Network 21
Multiple Bus Interconnection Network 22
Multi-port Memory Interconnection Network 23
Dual-Port Memory Interconnection Network 24
I/O Buffered Crossbar Interconnection Network 25
Mesh Interconnection Network 26
Logical model of an event builder 27
A circuit switched “barrel shifter” event builder 29

A packet switching event builder with permanent virtual
connections fully interconnecting all sources and destinations 31

Connect overheads in connection switching 32
Technology overheads 37
Software overheads 37
Example of “packetisation” overheads 38
Bad solution between data submission and data preparation 39
Pipeline of data submission and data preparation 39
Different throughput between pipe-lined and no pipe-line

data submission and data preparation 40
An Ethernet Frame 47
Host and network interface architecture of Myrinet 53

v

vi

4.1
4.2
4.3

5.1
5.2
2.3
0.4
2.5
2.6
2.7
2.8
2.9
5.10
5.11
5.12
5.13
5.14
5.15

5.16
5.17
5.18
5.19
5.20

5.21

5.22

6.1
6.2

LIST OF FIGURES

The LHCb detector 58
Functional Model of the event builder 60
Sub-event size versus link bandwidth 68
Event Fragment PDU 0. 76
Static destination assignment 7
Dynamic load balancing 78
Event descriptorso oo 80
Fragments generation 86
Event generation 0oL 87
Structure of the descriptor table 88
No time out algorithm 89
Structure of the descriptor table 90
Simple time-out: Case 1 92
Simple time-out: Case 2 93
Simple time-out: Case 3 94
Start up 96
New fragment 97
Remaining sources counter updating when a new event

fragment arrives Lo 97
Effects of events in time-out on source arrays 98
Measurement of event building overhead 100
Performance measurements of no time-out algorithm (in

logarithmic scale) o oL 101
Performance measurements of simple time-out algorithm

(in logarithmic scale) 102
Performance measurements of simple time-out algorithm

(in logarithmic scale) with data losses 103
Performance measurements of automatic adjustment algo-

rithm (in logarithmic scale) 104
Performance measurements of automatic adjustment algo-

rithm (in logarithmic scale), with data losses 105
Generic embedded system00 111

Architecture of the RU model 118

LIST OF FIGURES vii

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

Tigon 2 architecture 121
Ethernet transmit descriptor L. 127
Ethernet receive memory layout 130
Ethernet receive descriptor 131
Memory model 134
Producer-consumer modelo 137
Producer-consumer model 138
Transmit Flow Diagram 139
Receive Flow Diagram 140
Testsetup 142
UDP performance measurements 143
TCP performance measurements 144
Raw Ethernet performance measurements 146
Case 1: trogd <tlop - - v v v v v i e e e 151
Case 2: tread > top « « o v v v e e 151
Diagram of fragment frequency as function of fragment size 152
Event fragment structure 153
Example of fragmented memory 158
Measurements of overhead per fragment 161
Tested values for last event fragments 161

Embedded event building performances, as function of num-
ber of sources (in logarithmic scale) 163

viii LIST OF FIGURES

List of Tables

1.1

2.1
3.1

4.1
4.2
4.3

4.4
6.1

7.1
7.2

Trigger and data acquisition parameters of the four LHC

experiments Lo 15
Detector partitioning 28
Network Technologies 55
Detector partitioning L. 63
Estimate of network size 64

Allocation of FE links to sources for various technologies

(full event building).

Cell contents: (De)-Mux Factor - Link load (%) - Number
oflinks oo 69
Destination module design considerations 73

Interrupt latency and scheduling latency versus CPU power117

Shared Configuration Block 135
General Information Block 136

1X

LIST OF TABLES

Abstract

In a high energy physics experiment, event building is the process of col-
lecting data fragments, spread among many buffers, in order to reassem-
ble the original event. Each assembled event is assigned to a processor
in a large farm for on-line analysis.

The goal of the present work was to demonstrate the feasibility of
implementing event building protocol in the processors embedded in the
new generation of Network Interface Cards (NIC), in particular for Gi-
gabit Ethernet technology. This implied the software implementation of
the event building algorithms, their adaptation for their operation in the
embedded processors, the development of a model of the event building
conditions and the measurement and interpretation of performance of
this solution. A comparison with the standard implementation on host
processors provides the yardstick to judge the suitability of the proposed
method.

This development was carried out within the team developing the
Data Acquisition (DAQ) system for LHCb, one of the four experiments
that have been approved for the future high energy collider LHC (Large
Hadron Collider) at CERN.

The work requirements were to provide event building for a data
acquisition system, which must sustain an input rate of 40 kHz, with
some 100 data sources providing event fragments with a size of ~ 1
kByte. The aggregate data acquisition rate is 4 GByte/s.

It has been demonstrated that event building on a Gigabit Ethernet
smart NIC (the Tigon 2 Network Interface Card, by Alteon WebSystems)
at a frequency of almost 100 kHz is sustainable for fragments with a size
up to 1465 Bytes.

Abstract

Introduction

In the 20th century the need of gathering, processing and distributing
information has become a dominant feature of our society.

“Among the other developments, we have seen the installation of
worldwide telephone networks, the invention of radio and television, the
birth and unprecedented growth of the computer industry, and the launch-
ing of communication satellites.

Because of the rapid technological progress, these areas are rapidly
converging, and the differences between collecting, transporting, storing
and processing information are quickly disappearing.” [34]

Although the computer industry is young compared to the other in-
dustries, computers have made incredible progress in a very short time
and they are now one of the leading system for handling information,
besides telephones, televisions and radios.

The idea of the “computer centre” as a room with a large computer
where users bring their work for processing has now totally disappeared.
The old concept of a single computer serving all the needs of an organ-
isation, like an university or a news agency, has also disappeared. It
has been replaced by a model in which a large number of single-purpose
computers, interconnected one to each other, works together and accom-
plishes jobs for many users.

These systems are called computer networks and they are one of the
biggest challenges, in which the computer industry invests more. In few
years we have migrated from small networks with a transfer power of few
bits per second to wide area networks with gigabits transfer capabilities.

Due to this rapid and large development, networks have become quite
common in many ordinary life aspects. Almost all business companies,

3

4 Introduction

all universities, all researching activities have their network in order to
share information inside the system and also outside, with the rest of
the world. New buildings or transport systems (like trains) are built also
with the network cabling prearrangement, beside the telephone cabling.

Nowadays, network capabilities can be used in many different fields
but always with the same purposes: handling and moving around infor-
mation.

Since few years, the possibility to take advantage of switching net-
works has been considered by the physics scientific community, in order
to collect and store the data coming out from the physics experiments.
New systems of data acquisition based on switching networks have been
being studied. These are sort of “dedicated systems”, because the initial
requirements are usually very restricted and rigid, and the data rate is
always high. Therefore, a data acquisition system must be perfectly stud-
ied, designed and developed, in order to be able to fulfil all the physics
needs and to assure the experiments results.

The main topic of this work is to understand and explain what the
event building really is, analysing its purposes, its general requirements
and its typical solutions.

Then, a case of study will be proposed: the event building of the
LHCb experiment. It will be analysed thoroughly in detail and the pos-
sibility to apply network capabilities to its requirements will be studied.
Finally a data acquisition system, based on the new Gigabit Ethernet
technology, will be proposed as a possible solution to the LHCb event
building problem.

Working Environment

This work has been developed at CERN (European Laboratory for Par-
ticle Physics) [12], in Switzerland. The next future project of CERN is to
build a new particle accelerator, the LHC (Large Hadron Collider) [13],
which will start operating in 2005.

A collider is a machine which is designed to make bunches of particles
circulate in opposite directions and to accelerate them until they achieve
the desired energy. At this point, the trajectories of the two beams are

Introduction)

deflected by means of magnetic fields so that the particles collide. Sur-
rounding the interaction points, experiments are built in order to detect
the outcoming particles produced in the collision of the primary parti-
cles which the two beams consist of. The number of interesting physics
interactions (signal events), which an experiment sees every second, is
proportional to the so called luminosity of the accelerator. The luminos-
ity L is defined by the following formula:

kEN*?
L= /
Aro,oy
where:
e f is the revolution frequency of the bunches

e k is the number of bunches circulating in the machine

N is the number of particles in each bunch
e 0, and o, are the transverse dimensions of the bunches

LHC is a circular accelerator which will take the place of LEP (Large
Electron-Positron collider), inside the 27 Km underground tunnel in the
Geneva area. It will bring protons into head-on collisions at the highest
energies ever achieved; part of the LHC program will be dedicated to
collide heavy nuclei. Inside LHC 2835 bunches of protons will circulate
in each direction with an energy of 7 TeV, for a bunch crossing frequency
of 40 MHz. Most of the 40 million interactions per second which will
occur at LHC are not of interest from the physics point of view and they
are referred to as background interactions. Therefore, each experiment,
depending on its particular research field, will have to select among this
big number the few thousands interesting events by means of a complex
of hardware and software tools, called trigger. The data belonging to
the events selected by the trigger are thus stored on tape for the physics
analysis.

Four main experiments will exploit the LHC: the CMS experiment
and the ATLAS experiment, mainly devoted to the research of the Higgs

6 Introduction

boson, the ALICE experiment, which will study heavy nuclei interactions,
and the LHCb experiment, whose physics motivation is shortly explained
below.

Event Building and LHCb DAQ system

As previously mentioned, in high energy physics experiments, not all
the collisions generate useful data for the analysis. Therefore, decision
criteria must be immediately applied to the data at each collision time,
in order to decide if either the produced event is an interesting one, from
the physics point of view, and thus it has to be stored, or if it is an event
which can be discarded, due to its lack of physics interest.

Because of the large amount of data and the high complexity of the
decision criteria, the evaluation of an event is accomplished in several
steps, or trigger levels. Depending on the experiment, one or two decision
levels, based on simple topology and energy criteria, will be implemented
in dedicated hardware logic, while one or more levels of software decisions
are then applied to the remaining data for the final storage.

Only a small fraction of the total amount of data from each event is
required for use in the initial decision. The rest of the data is scattered
over many buffers and must be then collected in one place for the software
analysis. The process of collecting the data fragments, spread among
several buffers, into one destination, in order to reassemble the original
physics event, is called event building.

LHCD [21] is the most recently approved of the four experiments which
will run on the CERN’s LHC accelerator. It is a special purpose exper-
iment designed to study the CP violation ! in the decay of b quarks.
It has four levels of decision: Level-0 and Level-1, which are hardware
driven, and Level-2 and Level-3, which are software decision level.

The role of the data acquisition (DAQ) system is to read data coming
out from the Level-1 decision, to assemble complete events and to pro-
vide sufficient CPU power for the execution of the Level-2 and Level-3

ICP violation was first discovered in neutral kaon decays in 1964. Its origin is
still one of the outstanding mysteries of elementary particle physics. More details
regarding the LHCDb physics motivation can be found in [21], Chapter 1.

Introduction 7

algorithms. The flow of data through the DAQ system is being studied
using simulation data. The input rates are determined by the average
event size, which is 100 kByte, and the Level-1 accept rate, nominally
40 kHz. This result in a total data acquisition rate of 4 GByte/s.

The current design contains the following functional components. The
Readout Units (RUs) receive data from one or more Level-1 decision links
and assemble the fragments belonging to each event into sub-events.
Full event building is achieved by having all RUs dispatch their data
into a readout network such that the fragment belonging to the same
event arrive at the same destination. Complete events are assemble at
the destination by a unit called the Sub-Farm Controller (SFC). This
unit also has the role of allocating each event to one of the free CPUs
it manages, and the Level-2 and Level-3 algorithms are executed on this
CPU. Accepted events are written to storage devices.

Our Contribution

This work aims at studying and possibly realising a solution for the LHCb
DAQ system, in order to manage the flow of data and to ensure events
are assembled correctly. It is principally focused on the readout network
and on its interfaces with the RUs (sources) and the SFCs (destinations).
It is based on a full-readout protocol, where data are immediately routed
through the readout network to the destinations as soon as they appear
at the RUs.

This work will concentrate on a particular network technology: the
new Gigabit Ethernet standard. In particular, we will work with a spe-
cial Gigabit Ethernet Network Interface Card, which has an embedded
processor inside. This choice is made in order to verify the possibility
to develop a new data acquisition system in which the event building
functionalities are executed inside the network interface. The final aim
of the work is to study and realize this new embedded event building ar-
chitecture and to verify that it is a feasible solution for the performance
requirements of the LHCb DAQ system.

8 Introduction

Structure of the Work

Before going into the detailed treatment of the argument, we summarise
the work structure.

The first two chapters introduce the general concepts and require-
ments of the event building problem. The different strategies adopted in
the past in order to face it are then described and some considerations on
the applicability of switching network capabilities to the event building
system are discussed.

In the following chapter, Chapter 3, the possible network technology
competitors for the event building system are quickly described: ATM,
Ethernet and Myrinet. More emphasis is given to the description of the
Gigabit Ethernet standard, because it will be the baseline technology of
the embedded event building project.

Chapter 4 introduces in all details the case of study of this work: the
LHCb event building. The DAQ architecture and requirements are fully
analysed, with the description of the RUs, the readout network and the
SFCs and their corresponding roles and tasks. At the end of the chapter
the boundaries and the scope of the work are specified.

In Chapter 5 there is the description of three different event building
protocols developed and their overhead measurements are shown.

Chapter 6 and 7 are dedicated to the description of embedded sys-
tems, especially the one used for our purposes. The motivations for the
embedded event building project are specified and the performance of
the studied Gigabit Ethernet “smart” NIC are shown.

Finally, in Chapter 8, results are presented which show that embedded
event building on a Gigabit Ethernet technology is feasible and fulfil the
LHCb DAQ system requirements.

Chapter 1

The Problem

The demands on data acquisition systems for high-energy physics have
been increasing at a rapid rate due to the higher luminosities and in-
teraction rates. From the early days of high energy physics to some of
present-day’s experiments, when readout of a physics event is initiated,
triggering on subsequent events is disabled until the readout is complete.
Other factors in an experiment contribute to the experiment “dead-time”
but readout is the dominating factor. The “dead-time”, measured as a
percentage, is approximately equal to the product between event readout
time and trigger rate. Whenever possible it is held to less than 10%.

Now, with very high interaction rates and consequently very high
trigger rates, readout time is an even larger fraction of the time between
triggers. New techniques for physics event readout are now essential if
we are to minimise dead-time. Several events worth of data must be
buffered on or near the detector during triggering, such that when the
readout is triggered the buffered data for that event may be readout
quickly, without disabling the trigger (pipe-line).

1.1 Event Building Overview

Only a small fraction of the total data from each event is required for use
in the initial trigger decision. The remaining data is scattered over many
front-end buffers and must be collected in one place for detailed analysis.

9

10 CHAPTER 1. THE PROBLEM

An event builder is the device in a data acquisition system which provides
a connection between the individual data sources (detector front-end elec-
tronics) and the data destinations (high-level event processors or online
data storage). The process of collecting the data fragments coming from
all sources into one destination is called event building (independently of
whether or not the complete set of fragments is assembled). Figure 1.1
summarises the main principles of event building.

Detector
elements

Controller
(destination
assignment)

Communication
Network

Farms of processors

® b ® 2

Figure 1.1: Principle of event building

Event builders have evolved in time from simple single channel ‘fun-
nels’ through a minicomputer bus, to multiple parallel channels (each

1.2. DATA ACQUISITION STRATEGIES AND REQUIREMENTS11

with their own ‘funnel’ or characteristics) feeding arrays (farm) of pro-
cessors. Regardless of the implementation, all event builders function as
a data multiplexer. If data rates are low, this multiplexing operation can
take place over a single time-shared bus using software controlled selec-
tion of source and destination. This is the technique used in the majority
of data acquisition systems in the past. High-speed event builders were
not necessary because the data rates which could be supported by the
sources and destination were limited. This situation have changed in re-
cent years. The ability to acquire, digitise and buffer data has increased
and, similarly, the performance of high-level processors and the density of
on-line data storage have been both improved. Unfortunately, the speeds
of standard buses used for event building have not improved at the same
rate and so the event builder has become the bottleneck in the data flow.

There are two possible solutions to this problem. Either the trigger
efficiency can be increased, limiting data rates to the bandwidth of the
event builder, or the event builder bandwidth can be increased. Tech-
niques for improving trigger efficiency are dependent on the experiment.
Techniques for improving event builder bandwidth can be considered in-
dependently.

1.2 Data Acquisition Strategies and Require-
ments

Nowadays the search for rare processes at the Large Hadron Collider *

(LHC) experiments will require operation at very high luminosities. For
example, for proton-proton collisions, the expected background interac-
tion rate will be 10° Hz at the full luminosity at one collision point of

!The Large Hadron Collider (LHC) is the new CERN accelerator which will start
working in the year 2005. It will bring protons and ions into head-on collisions at
higher energies than ever achieved before. This will allow scientists to penetrate
still further into the structure of matter and recreate the conditions prevailing in
the early universe, just after the “Big Bang” (more information about LHC can be
found in [13]). Four big experiments will run on the LHC accelerator and they are:
the ATLAS experiment, the ALICE experiment, the CMS experiment and the LHCb
experiment.

12 CHAPTER 1. THE PROBLEM

the LHC. Bunch crossing occurring at a frequency of 40 MHz approxi-
mately, 25 interactions will occur per crossing. The average volume of
zero-suppressed data associated with each bunch crossing (or event) is
expected to be 1 MByte. Under these conditions a rejection factor from
the trigger and data acquisition systems better than 10° is required in
order to limit to reasonable volumes the data recorded on mass storage.
To achieve the required rejection factors the experiments are adopting
multi-level trigger strategies 2.

Depending on the experiment, one or two levels of trigger decisions
(Level-1 or Level-0 plus Level-1), based on simple topology and energy
flow criteria, will use coarse granularity data and will be implemented in
dedicated hardwired logic. The fine granularity data from those bunch
crossing that are accepted will be locally readout, formatted into event
fragments and stored in readout buffers. The background rejection ratio
will be further improved on-line by applying one or more levels of software
triggers using the full-granularity data held in these readout buffers.

The required CPU power will be provided by a scalable farm of pro-
cessors. Each successive event candidate is to be assigned to a different
processor, which will access the distributed fragments of the assigned
event and execute the filtering algorithms. A switching network will in-
terconnect the readout buffers with the members of processor farm in
order to allow the assembly of event fragments into (partial or complete)
event records accessible by the processors.

Figure 1.2 [21] shows the complete architecture of the trigger and data
acquisition system of the LHCb experiment and gives an idea about the
dimensions of these complex kinds of apparatus.

2The trigger is a function of:

T Eventdata& Apparatus N REJECTED
Physiscschannels& Parameters ACCEPTED

Since the detector data are not all promptly available and the function is highly
complex, T(...) is evaluated by successive approximations called: TRIGGER
LEVELS® 123 (possibly with zero dead-time).

1.2. DATA ACQUISITION STRATEGIES AND REQUIREMENTS 13

(N\
LHCb Detector Data

VDET TRACK ECAL HCAL MUON RICH | rates

.

| | | 40 TB/s

Level 0
Trigger
o e, (000 000
Fixed latency Py |
32us Front-End Electronics
" aokz| P ||| BHE BHE 1TBls
Level1 N »| Control 'I',Y] I','] I','] I{]I{] If]
T?i\gl;?;er 1 MHz —=x =3 £=4q Front-End Multiplexers (FEM)
Variable latency Front-End Links <Z(
<256 us il i -| 4GBs
I

'JF-iIL_J RU Readout units (RU) —¢

¥ & ¢ ¢ ¢

v
[>< >< >< >< Readout Network]—< 2-4GB/s
I T

Sub-Farm Controllers (SFC) 1

Variable latency
L2 ~10 ms
L3 ~200 ms «

Figure 1.2: General architecture of the trigger and data acquisition sys-
tem for the LHCb experiment

Trigger Level 2 & 3 Control
Event Filter &

Monitoring

20 MB/s

1.2.1 Partial Event Building versus Full Event Build-
ing

Very high (Level-0) Level-1 trigger rates and large event sizes can pre-
clude the use of complete event data in the Level-2 triggers and force the
choice of algorithms that operate on a subset of event data. This fact
leads to what is called partial event building, which can be implemented
in two different ways depending on the trigger strategy.

For example, the Level-1 trigger of CMS [16] is based on: a static
subset of event data, the calorimeter and muon detectors, but does not
use the tracker (which produces the largest part of event data). For
the events accepted by the Level-2 trigger (at least an order of magni-
tude fewer than those that pass Level-1) the tracker data is then read

14 CHAPTER 1. THE PROBLEM

out and the more time-consuming and selective Level-3 algorithms are
subsequently executed on the whole event data.

An other solution, implemented by the ATLAS experiment [22], con-
sists in employing a dynamic partial event building strategy. In this
architecture all detectors may contribute to the Level-2 trigger decision,
but the algorithms are to be executed on subsets of event data guided
by Regions of Interest (Rol) containing the physics features that caused
the acceptance by the Level-1 trigger. The Rols, which change for each
event are located via pointers passed from the Level-1 trigger system. A
sophisticated system is required to collect the data for the Level-2 trigger.
Several solutions have been proposed regarding this topic and they can
be found in [26] or in [22] (last review 31 March 2000, ch. 5 “DAQ/EF-17",
pp. 27-56).

In the case of the LHCb experiment, a lower luminosity and the im-
plementation of two levels of triggers (Level-0 and Level-1) on partial
data allow to envisage to transfer all the data of accepted events to a
processor executing the trigger of Level-2, taking advantage, in this way,
of the standard full event building technique.

1.2.2 Data Flow Requirements

Table 1.1 gives the design requirements for the triggers and the data
acquisition for the four LHC experiments.

As we can see, the required aggregate bandwidth spans a wide range
depending on the experiment target and the strategy adopted for the
trigger. An estimated minimum aggregate throughput of 16 Gbit/s is re-
quired for the LHCDb architecture, while at the other end of the spectrum
a bandwidth of 600 Gib/s is required by the CMS architecture.

1.2.3 General requirements for trigger/DAQ
General requirements for an event builder are:

o Fvent building rate and latency:
In CMS experiment for example, the event building bandwidth is

1.2. DATA ACQUISITION STRATEGIES AND REQUIREMENTS 15

PARAMETER ALICE ATLAS & CMS LHCb
Event size 40 MByte 1 MByte 100 kByte
Level-0 output rate not applicable | not applicable 1 MHz
Level-1 output rate 1 kHz 100 kHz 40 kHz
Level-2 output rate 50 Hz 1-10 kHz 5 kHz
Level-3 output rate not applicable 100 Hz 200 Hz
Switching bandwidth 30 Gbit/s 20-600 Gbit/s | 16-32 Gbit/s
Data storage 10 Gbhit/s 1 Gbit/s 160 Mbit/s

Table 1.1: Trigger and data acquisition parameters of the four LHC ex-
periments

planned to be handled by a 1000 x 1000 switch. Thus, each of the
1000 destinations must be capable of sustaining an average event
building rate of ~ 100 Hz for the Level-2 and at the same time ~10
Hz for the Level-3.

Achievable load factor:

In order to minimise the required hardware investment, the system
design should be balanced such that, at maximum system through-
put, the event builder aggregate bandwidth is used in a efficient

way (>50%).

Commercial products:

The use of commercially available components is preferred wherever
possible in order to minimise development costs, to profit from
lower prices due to high volume production and to ensure long-
term maintenance.

Open Standards:

In order to offer a good choice of suppliers and to ensure interop-
erability between components from different sources, the network
technology should be open international standard that is widely
adopted by industry.

Technology life-cycle:

16 CHAPTER 1. THE PROBLEM

If possible, the life cycle of the chosen technology should match the
one of the experiments, being sufficiently mature at the start of the
experiments to ensure low prices, adequate performance and high
reliability, and being still supported by industry at the end of the
experiments (10-15 years later).

e Scaling:
The event builder architecture (hardware and software) must be
scalable, so that it can be expanded (in dimensions and/or speed)
without encountering bottlenecks that limit the growth in perfor-
mance.

o Partitioning:
In order to support parallel development and testing of the different
detector sub-systems, it must be possible to partition the event
builder into a number of independent, concurrently running data
acquisition systems.

e Operations and Management aspects:
Due to the large scale of the event builder it will be indispens-
able that the system incorporates features to ease its operation
and management; for example, fault location, fault isolation, good
monitoring and diagnostic tools, etc.

1.3 Size of the Problem

In order to estimate the magnitude of the problem that an event builder
must cover and solve, it can be useful to compare event building require-
ments with some other parameters, more common and understandable.
For example, a comparison between event building needs and telephone
traffic requirements could be helpful to realize the size of the problem.
If we focus in particular on the LHCb event building requirements
(which are the real aim of this work), we can see that the requested
aggregate switching bandwidth is at maximum 4 GByte/s. Because data
will go only one-way, from readout sources to processor destinations,
the event building protocol will use the network bandwidth only in one

1.3. SIZE OF THE PROBLEM 17

direction but the network itself would be able to support, in principal,
two-way traffic of 8 GByte/s.

Now telephone speech, when digitised, creates 64 kbit/s in each di-
rection, or a total two-way digital traffic of 128 kbit/s. Thus, with an
aggregate switching bandwidth of 4 GByte/s and a data traffic of 64
kbit /s, a maximum of 500.000 people can communicate by telephone in
one direction and at the same time:

4% 10° x 8 (bits)

= 5x 10° = 500,000
64 % 10° (bits) s ’

Of course, telephone communications involve people from both sites of
the line and so we can conclude that a switching bandwidth of 4 GByte/s
would cover a telephone communication for 1 million people.

If we assume that during the day 20% of the whole population of
a country is occupied in telephone communications at the same time?,
our switching bandwidth of 4 GByte/s, that will be used for the LHCb
data acquisition system, will cover the needs of 5 millions people, which
are, for example, the needs of more or less the 10% of the whole Ttalian
population.

3This assumption could be overestimated, but we believe that 20% of a country
population involved in telephone calls at the same time is not so far from reality, at
least in some times of the day.

18

CHAPTER 1.

THE PROBLEM

Chapter 2

Event Building

Event building is faced with a lot of problems which can meet different
solutions, according to the available technologies and the physics needs
claimed by each specific experiment. Big difficulties are related to the
event traffic management: the choice of which connection solution be-
tween data generators and data analysers is the most suitable, the choice
of which kind of system architecture and communication protocol are
the right ones to obtain the best performance, are really hard and, at
the same time, decisive choices. Much effort have been spent to pro-
pose new and different solutions and to better exploit the new emerging
technologies.

This chapter deals with these topics and tries to explain all the distinct
solutions considered in the past and nowadays, paying special attention
to still unresolved problems.

2.1 Event Building and Interconnection Net-
works

Figure 2.1 shows a generic Interconnection Network (IN) used in multi-
processor and telecommunications systems. In high energy physics, the
data source (S) is typically a detector subsystem and the destination
(D) is a single or a farm of programmable processors. The IN and its

19

20 CHAPTER 2. EVENT BUILDING

associated control is referred to as an “event builder”. Because the pat-
tern of data flow is well defined (unidirectional and evenly distributed),
a general-purpose IN can often be simplified for use as an event builder.

4 ™
(s) , ©
mta (5D Interconnect ion (D) pata
Sources (s) Retwork (D)) Destinations
© 9) ©,

Figure 2.1: Generic Interconnection Network

Various kinds of techniques have been developed to improve the effects
of using an IN on data acquisition systems and the following subsections
give a brief overview about some of these historical architectures (further
and in-depth information regarding this topic can be found in [9]).

2.1.1 Time-Shared Bus Architectures

The shared bus, shown in figure 2.2, is the most common method of
interconnecting multiple sources and destinations. Bus bandwidths of
several tens of MBytes can be supported during block transfers, but the
average data rate is usually much less due to the overhead of processor
setup and bus access protocols.

A single shared bus has the advantage of simple control and low cost.
It also provides bidirectional transfer capability for down-load and ini-
tialisation. With repeaters it can scale indefinitely, although the total
bandwidth does not increase and will usually decrease. The main cost
element is the need for high-speed interface circuitry, which must be de-
signed to support the full transfer rate of the bus even if each module is
connected for only a small fraction of the total readout time. Failure of

2.1. EVENT BUILDING AND INTERCONNECTION NETWORKS21

the bus itself will disable the entire system, but failure of an individual
module is usually not critical.

©
PO

Figure 2.2: Shared Bus Interconnection Network

In most cases, data readout is controlled entirely by the processor. A
processor will arbitrate for the bus and then read event data from each
of the front-end buffers before releasing the bus to the next ready pro-
cessor. In more complicated system, an intermediate event builder will
read the front-end buffers and then write data directly into the memory
of a selected processor. In some architectures several independent busses
may operate in a tree-like structure to reduce dead-time at the front-end.
However, without intermediate data compression, the net bandwidth in
a tree-structured system is always equal to that of a single bus.

2.1.2 Multiple Bus Interconnection Network

Many standard bus specifications and multiprocessor implementations
define a second or third bus (figure 2.3), which can operate in parallel
with the main system bus. Additional bandwidth is gained only if pro-
cessors do not contend for the same global resources. This approach is
usually limited to one or two additional busses by the physical packaging
constraints of standardised systems. A multiple bus architecture can be
very reliable since failure of any single bus has no adverse effect other

22 CHAPTER 2. EVENT BUILDING

than a reduction in total system bandwidth.

()
A

S ¥ { D
S} { D

()

Figure 2.3: Multiple Bus Interconnection Network

With multiple busses, several events can be read out simultaneously.
If events are assigned to specific buffers, then simple bus arbitration can
be used to control readout sequences. Otherwise, a small amount of
centralised control is necessary. As in any parallel system, the front-end
buffers must be able to hold more than one complete event.

2.1.3 Multi-port Memory

Both the data sources and the destinations in the multiple bus archi-
tecture are multi-ported, but the same bandwidth can be obtained with
multiple ports on only one side of the interconnect as shown in figure 2.4.
Reliability is reduced because there is only one path from a particular
source to a particular destination. Arbitration is handled by the multi-
ported module rather than the bus.

This approach is still limited by the number of physical ports which
can be supported by a module.

To allow greater expansion, multi-port memories can be further sub-
divided into an array of independent dual-ported buffers as shown in
figure 2.5

2.1. EVENT BUILDING AND INTERCONNECTION NETWORKS23

0O

Figure 2.4: Multi-port Memory Interconnection Network

Dual-ported memory is easier to implement since it is available in the
form of commercial integrated circuits (dual-ported static RAMs, FIFOs
or video DRAM).

With dual-ported memory, the limitation now becomes the total num-
ber of buffers required in a large system instead of the number of connec-
tions per buffer. The number of buffers can be reduced by using higher
speed output busses, (allowing a rectangular instead of a square array) or
possibly by implementing some kind of multistage memory architecture.

In the dual-ported memory architecture, the fragments of a given
event are transmitted in parallel from the front-end subsystem to buffers
in a selected row. These fragments are then readout sequentially by a
processor while the next event is being transmitted to another row buffer.

2.1.4 Crossbar and Other Switch-Based Intercon-
nection Networks

The dual-ported memory architecture in figure 2.5 is actually a form
of buffered crossbar switch. A crossbar switch provides a complete,

24 CHAPTER 2. EVENT BUILDING

GO0
CEEE
CEEE
SR
CXCXOXC,

&

©
©
©

Figure 2.5: Dual-Port Memory Interconnection Network

non-blocking! interconnection between all inputs and outputs. It is an
ideal interconnection network in terms of bandwidth efficiency. Crossbar
switches, used in packet-switching networks, can be classified by the loca-
tion of buffering (input, output, embedded) with respect to the switching
matrix. If the buffers are moved to the inputs or outputs (figure 2.6) the
switching matrix itself can be confined to a very small area. As an added
advantage, only 2N large dual-ported buffers are required if the buffers
are positionated at the inputs and outputs, whereas N? smaller buffers are
required if they are embedded in the switching matrix. The total amount
of memory required is the same regardless of where it is positioned, but
as a practical matter it is easier and less expensive to implement a small
number of large dual-ported buffers compared to a large number of small
dual-ported buffers.

The full crossbar requires N? crosspoints, which may be impractical
for larger systems. For systems with twenty or more data channels, a

1A network can be either blocking or non-blocking. Blocking occurs when infor-
mation cannot be transmitted through the network due to the competition for the
same internal or external data-path. When this feature can be avoided, the network
is called non-blocking

2.1. EVENT BUILDING AND INTERCONNECTION NETWORKS25

multistage network can provide essentially the same non-blocking char-
acteristics as the crossbar switch, using fewer crosspoints.

O

Figure 2.6: 1/O Buffered Crossbar Interconnection Network

2.1.5 Integrated Processor Interconnection Network

The mesh interconnection network (figure 2.7) is popular in the construc-
tion of large multiprocessor systems. These INs are formed by overlaying
an array of processors on the dual-ported memory array of the buffered
crossbar switch. Some cost reduction may be possible with this approach.
The mesh also allows direct processor to processor communication, not
normally a requirement in event building but potentially useful in the
analysis of overlapping events or methods of event building which divide
the analysis software into stages, where each stage resides in a differ-
ent processor. Reliability can be higher for a mesh interconnect since
there are multiple paths for each packet transfer. In practice though,
the control complexity and possibility of message deadlock allows only
orthogonal routing. Otherwise a packet may inadvertently be routed into
a circular path and lost or delayed. Intelligent buffered routers are nec-
essary for event builders applications because there is nearly continuous
traffic on all links in the network. If the processor managed the inter-node
communication directly, there would be little time left for processing the
data.

26 CHAPTER 2. EVENT BUILDING

CHHHE

Figure 2.7: Mesh Interconnection Network

2.2 Event Building and Switching Technolo-
gies

Figure 2.8 shows the logical model of 3 x 3 event builder. By generalising
the figure to a N x N event builder, it can be seen that each N sources
contains N queues, one per destination, containing the fragments of those
events that have been assigned to that destination. FEach destination
contains NN receive buffers, one receive buffer per source. Each destination
receives its event fragments over N logical connections between its N
receive buffers and their corresponding queue in each of the N sources.
Thus, a total of N? logical connections are required by the event builder,
and at each source and destination module N different connections have
to share a single interface and link to the network.

Each queue in the source can be considered as an independent “user”
that transports data to another user (a destination receiver buffer) via a
logical connection over a shared medium (the link) and switch. Three dif-
ferent transport modes can be applied to the links, namely synchronous
Time Division Multiplexing (TDM), asynchronous TDM and dedicated
point-to-point connections (i.e. no TDM). When synchronous or asyn-
chronous TDM is used, the corresponding transport modes are known as
Synchronous Transport Mode (STM) and Asynchronous Transport Mode

2.2. EVENT BUILDING AND SWITCHING TECHNOLOGIES 27

Sour ces Parallel De.stmatwns
{aqueue of fragments Inter connect (areceive buffer per
per destination) Sy sourcel
Eoa,
i] e — -
% 4 T i+3
B e | fiom sowre 3|
Y r’f
L -, - »
\‘ \k /) rJ
M .'
AN,
3
T . s - L .
S AR A A] | Eretit,
-~ . N s . +
i+s i+ L
 F Wt
h
WY
I“’.l : \\\ ‘1
- A s W Y
AR Lo BN - .
- - e L . -~
i+

Figure 2.8: Logical model of an event builder

(ATM) 2 respectively. In the STM the data are transported on the link
inside a fixed length frame which repeats indefinitely. The frame is di-
vided into equal length time slots and each logical connection is allocated
a fixed time slot in which it can transport data. Such technology was
developed for telephony applications, where a constant bit-rate service is
suitable to transport voice samples between subscribers at a fixed rate.
In the ATM the data are segmented into packets, which may be fixed
or variable length, and the source sends packets over the link whenever
it has data to transmit and can accesses the link. The identity of the
logical connection to which the packet belongs has to be carried with it

2The use of ATM to describe a generic transport mode should not be confused
with the specific implementation of this transport mode in a standard technology,
which is also called ATM, using fixed-length 53-Byte cells.

28 CHAPTER 2. EVENT BUILDING

in the packet header, either in the form of an explicit virtual connection
identifier (VCI) or as a pair of source and destination addresses. The
ATM is well suited to handling variable bit-rate services for applications
where the required bandwidth fluctuates in time.

Dedicated point-to-point connections are used in applications where
concurrent transport data between multiple different “users” is not re-
quired and the source and destination can sustain data 10 at the full
bandwidth of the link.

Whichever of the three transport modes is used the physical band-
width of the shared-medium limits the maximum throughput and num-
ber of “users”. Multiple shared-media segments or links can be inter-
connected by a switch to allow communication between larger number
of users. To each of the three transport modes described above there
corresponds a specific class of switching technology: respectively Circuit
Switching, Packet Switching and Connection Switching. These classes of
switching technologies have quite different characteristic and application
areas. Table 2.1 summarise the transport modes and classes of switching.

| Transport Mode | Switching Class | Characteristic |
STM Circuit Switching “Telephone” switching technology
(Synchronous TDM) Constant bit-rate services

Equal bandwidth per circuit
Concurrently active circuits
ATM Packet switching Data and multi-media switching
(Asynchronous TDM) Burst traffic
Bandwidth allocated per connections
Concurrently active connections
Dedicated links Connection Switching Switching streams point-to-point
Connection set up overheads
Efficient for long block transfer
Sequentially active connections

Table 2.1: Detector partitioning

2.2.1 Circuit-switched Event Builders

The first proposed parallel event builders were based on the same prin-
ciples as circuit switching. Figure 2.9 shows how a global synchronous

2.2. EVENT BUILDING AND SWITCHING TECHNOLOGIES 29

control scheme is used to define time slots, in each of which circuits are
set up between a different queue in each source and its corresponding
receive buffer in a destination.

Time slot clock
Controller

Configure
Zelect Source + switch Select Destination
queues A cqueues
¥ ¥
= | — R e e b=
- Jr
DN
K :</ :
RN
. (_, " |lrJ - -
- - . N -
S - e . -
s ———————- I O
+ W
o /f\\
LI "
[.
.
- ,.l':fj ‘\“\ ”’,
=1 —— U e
_/ . _

Mon-blocking switch

Figure 2.9: A circuit switched “barrel shifter” event builder

At each time slot the global controller enables the appropriate queues
and receive buffers and configures the switch to route the event fragment
data between them. The controller enables IV circuits per slot, each one
necessarily serving a different destination because only a one circuit can
occupy a given slot on an output link. After N successive slots (equivalent
to a frame length) all circuits will have been activated. If the slot length
is chosen to be much more than the average event fragment transmission
time, the scheme affectively supports the concurrent operation of N2
circuits, each offering 1/N of the link bandwidth. This scheme is often

30 CHAPTER 2. EVENT BUILDING

called “barrel shifter”.

If the slot length is chosen to be greater than the transmit time of the
largest possible event fragment, N complete events are built every N slots.
However, the typical large dispersion in the length of event fragments
means that aggregate bandwidth utilisation is low because the building
of a new event cannot be started until the destination has completely
received all the fragments. This inefficient use of available bandwidth
can be eliminated by allowing all source queues to start sending their
fragment belonging to the next event in the queue before the destination
has completely received all the fragments of the current event. In this
case, aggregate bandwidth efficiency is optimal, but each destination has
to support the building of several events simultaneously.

A necessary condition for the circuit switched barrel shifter is that cir-
cuits can always be established through the switch without blocking each
other. This can be guaranteed by using a non-blocking cross-bar switch.
Unfortunately, large cross-bars of the dimensions needed for LHC event
builders do not exist. However, there exist certain multi-stage network
topologies that, although they are not non-blocking for all possible con-
nection patterns, do not block under particular sequences of permutations
of circuits that are sufficient to perform event building [27].

2.2.2 Packet-switched Event Builders

Packet switching is more suitable for LAN traffic or multimedia applica-
tions, where the average used bandwidth of user-to-user communications
may vary widely depending on the application (for example, communica-
tion versus video communication) and, for a given communication, may
also fluctuate rapidly in time (for example compressed video).

The packets are routed through the multi-stage network using a label
or address in the packet header. Packet switching networks use a dis-
tributed routing control paradigm in which, at each stage, look up tables
map packet header information into an output port number to which
the packet must be forwarded. Once these network tables have been ini-
tialised with the information that maps routing label values or addresses
into the desired destination port, we have effectively set up a wvirtual con-

2.2. EVENT BUILDING AND SWITCHING TECHNOLOGIES 31

Packet switching

Sources networlk Destinations
=0 Do
31 In
SN M Dn

Figure 2.10: A packet switching event builder with permanent virtual
connections fully interconnecting all sources and destinations

nection (VC). The connection is virtual because it does not reserve for
itself all the resources along the path between source and destination.
V(s can either be established for just as long as they are necessary to
send a message (switched VCs) or they can be left in place indefinitely
and only used on demand (permanent VCs). When there is no traffic
flowing on a VC the network resources are available for use by traffic
flowing on other VCs.

In principle the number of permanent VCs that can be set up through
a network is only limited by the size of the mapping tables. Therefore
a N X N event builder can be implemented with a packet switching
network by opening all the N2 VCs needed between the source queues
and destination receive buffers as shown in figure 2.10.

Figure 2.11 shows how, when a connection switching technology is
used such as fibre channel, each source establishes a connection to the

32

CHAPTER 2. EVENT BUILDING

required destination receive buffer by reserving all resources along the
path. It then transmits its entire event fragment from the appropriate
queue and drops the connection. The source then moves on to servicing
a different queue, which requires it to disconnect from the current des-
tination and establish a new connection to a different destination. Each
request for a new connection must pass through arbitration in order to
resolve contention with requests from other sources. The connection set
up and drop overhead can be quite significant in some technologies.

Connect overhead

overhead

connection

Receiver

Figure 2.11: Connect overheads in connection switching

2.3 Data Flow Options

As already foreseen in the previous chapter, the choice of trigger algo-
rithms and strategies defines the data flow of the event building process.

2.3. DATA FLOW OPTIONS 33

The data flow is controlled by a protocol operating between the readout
buffers (sources) and the processors (destinations).

Two different data flow control models for event building can be dis-
tinguished by whether the responsibility for initiating the transfer of
event fragments is given to the sources (push architecture) or to the as-
signed destination (pull architecture).

In the first case the event number and the destination identifier are
broadcasted to the sources, which then transmit their event fragment
data to the given destination.Event builders operated in push mode are
characterised by many-to-one traffic patterns and by potential contention
between the many independent traffic streams. Contention occurs either
for access to the output port (output blocking) or for a common inter-
nal path within the switching network. If the bandwidth of a common
internal path is insufficient to handle the traffic the switch becomes con-
gested. Output blocking and congestion have an adverse effect on the
event builder’s throughput and the latency of event building.

Switching technologies developed for different application domains
adopt different strategies to handle contention. In the event building
application the consequences of the contention handling strategy are in-
efficient use of the switch’s bandwidth, increased event building latency,
loss of data and poor scaling of performance as a function of the size of
the system. Event builder performance can be optimised by using a traf-
fic shaping technique to coordinate the traffic generated by the sources
in order to minimise output blocking and internal congestion. In push
mode event fragments are received at the destination out of order. Be-
cause some sources may be empty or have broken down, a mechanism is
required to decide when event building is completed. An event building
protocol must provide functions such as completion detection, linking
fragments, etc.; this introduces software overhead.

On the other hand, an event builder operated in pull mode can use
the intelligence of the destination processor to select and readout subset
of the sources. The traffic patterns characterising this strategy are few-
to-one, or even one-to-one, hence the negative impact of contention is
much reduced compared to the push case. This approach allows early
rejection of an event based on a minimum of data, and only pulls in

34 CHAPTER 2. EVENT BUILDING

more data for smaller number number of events that are not rejected.
By applying a hierarchy of data pulls and event reject/accept decision,
the overall required bandwidth of the event builder can be reduced to a
minimum.

2.4 Readout Protocols

Two different protocols have been studied for managing the collection of
event data [24].

The first one, called the full-readout protocol, requires that data, as-
sembled in the readout buffers, are immediately transmitted and dis-
patched through the readout network, such that a complete event is as-
sembled in a destination processor. In this protocol, the buffering capac-
ities of the destinations must be designed such that in normal operation
there is always sufficient space available to receive data from readout
buffers. Obviously the system must also be designed to cope with bursts
of data. For this a throttle signal is sent by the readout buffers anticipat-
ing the buffer overflow, and is used to reduce the trigger rate such that
the buffer occupancy can be reduced and new fragments can be accepted.
The latency of the throttle signal translates into buffering requirements
at the different levels of readout. The destinations collects all event frag-
ments, and once the event is complete passes it to a processor running
the high level trigger algorithms. Since all data belonging to a trigger is
immediately available to th high level trigger algorithms, there is no real
need in this schema to distinguish between Level-2 and Level-3 . Thus
the high level trigger algorithms can evolve with complete freedom.

In the second approach, called the phased-readout protocol, the trans-
fer of data from the readout buffer to the high level trigger processors
takes place in two or more phases 2. In the first phase, the subset of the
event data that is needed by Level-2 algorithm is transferred form the
appropriate readout buffers to a destination processor. The data from

3More than two phases could be implemented, but this would not improve the
system performance. A large number of phases would eventually result in a “data on
demand” scheme

2.5. PROBLEM OF EFFECTIVE THROUGHPUT 35

the remaining readout buffers must be buffered for the duration of Level-
2 latency. The Level-2 decision must be transferred to all the readout
buffers. On reception of a Level-2 “NO” decision the data are discarded,
otherwise, on reception of a Level-2 “YES” decision the data must be
sent to the processor that ran the Level-2 algorithm to execute further
filtering algorithms (Level-3) on the complete event. As in the case of
the full-readout protocol, the readout buffers will push the data to the
destination processors in each phase, so again a throttle mechanism is
required to prevent buffer overflows. The reduction factor of the band-
width required of the readout network depends on the rejection power of
the Level-2 algorithm and the fraction of the complete event needed to
execute the algorithm. Moreover the phased readout protocol requires
a new functional element called event manager. Its function is to col-
lect the Level-2 decisions and distribute the to the appropriate readout
buffers. Nevertheless the presence of an event manager would permit the
dynamic load balancing across the processors of the high level triggers.

The full-readout protocol requires a larger scale readout network, but
the complexity of the source modules is less than in the phased-readout
case. From the point of view of simplicity of the protocols, and the
flexibility it allows for the high level trigger algorithms, the full-readout
protocol is preferable.

2.5 Problem of Effective Throughput

Data transfer rates for networks are measured in terms of throughput,
which represents the amount of data transferred from one place to another
or processed in a specific amount of time. Each typology of network has
its specific, well-known throughput, which is defined by the standard
or the network vendor and coincides with the full use of the network
bandwidth. Unfortunately this “official” maximum throughput is never
reached in real life and we usually speak of effective throughput, which
is the effective use of network bandwidth.

The problem of limited throughput is an important and complex ques-
tion, in which a lot of factors play different roles. First of all, the most

36 CHAPTER 2. EVENT BUILDING

important point to be considered is the fact that there are two big dis-
tinct factors which determine the performance of a switching network
and they are the performance of point to point links and the performance
of the switching network. They are quite different problems that involve
further considerations and so we are going to discuss them separately in
the remainder of this section.

2.5.1 Effective Throughput of Point to Point Links

In the case of point to point links, our attention is concentrated only on
the network access point (not really on the pure network) and throughput
here is limited by several kind of overheads, which can be be grouped in
two main sets:

e Technology overheads (figure 2.12):
Delays, bottlenecks in network adapter...
Contention for bus control or connection setup;
Control data (headers, frame control);
“Packetisation” (partial use of fixed length packets);
Flow control...

e Software overheads (figure 2.13):
Operating system (interrupts, context switching...);
Use of additional communication protocol (like TCP/IP);
User application...

Effective throughput results from the combination of both classes of
overheads.

Some of these factors are unavoidable but some others can be reduced.
An inevitable overhead, for example, is what we call the “packetisation”
problem. This fact refers to the partial use of fixed length packets. If the
network protocol requires a standard length for user data, like Ethernet,
for instance, it can happen that not all packets sent through the network
will be completely filled with useful data. In fact if user data size does
not fit with the standard data length or its multiple, this packet field will
be padded, when necessary, with useless data, with a consequent waste

2.5. PROBLEM OF EFFECTIVE THROUGHPUT

Throughput

Throughput

37

Honminal Throughput

F
Protocol

r

User load

Figure 2.12: Technology overheads

Nominal throughput

Residual
overhead

L J

Packet size

Figure 2.13: Software overheads

38 CHAPTER 2. EVENT BUILDING

of bandwidth (figure 2.14). Of course, a variable and boundless data
size would be better from the throughput point of view, but network
protocols usually need a standard length and there is no possibility to
avoid standard requirements.

User Data

N

Packet Standard Length

Figure 2.14: Example of “packetisation” overheads

On the other hand, in order to improve the performance of point to
point links, some overheads could be spared. A big improvement, for
example, could be the pipe-line of data submission and data preparation.
To reduce (or eliminate) the dead-time between the transmission of two
packets, data that have to be sent can be prepared in the right network
protocol format while ready data are transmitted. So, instead of having
the bad situation described in figure 2.15 where data preparation and
submission are not pipe-lined, the solution depicted in figure 2.16 could
be implemented, resulting in no loss of time.

In this way the effective throughput can be improved by a reasonable
factor, as figure 2.17 shows.

2.5.2 Effective throughput of Network

In the case of switching networks, throughput is limited by several factors,
like:

e Technology

2.5. PROBLEM OF EFFECTIVE THROUGHPUT 39

Tp Tp Tp

Dats preparation L))) 7777

d o Time r
Tt Tt Tt
Data transmission

-
Lot

Time
Tp = Data Preparation Time
Tt = Data Transmission Time

Figure 2.15: Bad solution between data submission and data preparation

Tp D Tp Tp

. . T . 7. T

Data transmission % 7 V777 ‘ .

Time

Data preparation

Tp = Data Preparation Time

Tt = Data Transmission Time

Figure 2.16: Pipeline of data submission and data preparation

40 CHAPTER 2. EVENT BUILDING

Hominal throughput
| PIPE-LIHE

HO PIPE-LIHE

Throughput

L 2

Packet size

Figure 2.17: Different throughput between pipe-lined and no pipe-line
data submission and data preparation

e Switch architecture
e Type of traffic: random versus coherent...

The network congestion problem and the different techniques to avoid
it play the main role in this performance study. Congestion happens
when two or more data transfers compete for the same network source
and there is no any mechanism to resolve this contention. In this case
the throughput can be degraded and, in the worst case, data can be lost.

Two classes of technologies have been applied to prevent or to avoid
congestion, namely flow control and traffic shaping. In the flow control
technique, the network provides the mechanism to avoid congestion. The
source sends data packets to the various destinations as soon as they
are submitted and performs the operations required by the data flow
mechanism. This can be:

e Back pressure, implemented on networks with internal buffering
(that can store and forward);

2.5. PROBLEM OF EFFECTIVE THROUGHPUT 41

e Collision detection, used on shared media (Ethernet);

e Connection based transfer, which consists of initiating a protocol
to open an exclusive connection between source and destination,
before sending any data.

Traffic shaping techniques, on the other hand, aim at subjecting the
data transfer to a global traffic control thus minimising contention and
congestion. There are two strategies:

e Barrel shifter, where at any one moment all sources are connected to
destinations in a non blocking fashion and can send data using the
full bandwidth. At regulars intervals the connections are changed
(so after a full cycle (T) all sources have been connected to all
destinations during a period of time T/N, being N the number of
destinations);

e Rate division and randomisation, where the sources emit data in
the form of small packets successively to all destinations, at an
average rate per connection equal to the nominal rate divided by
the number of sources.

It should be noted that all these protocols, which prevent congestion,
imply lower bandwidth utilisation. Traffic shaping seems to preferable
because it allows to reach high loads, whereas flow control can have sev-
eral limitations depending on the network topology and on the type of
traffic. At the same time, it should also be noted that, even though tech-
niques to avoid congestion are implemented, there can be data losses. In
this case a retransmission of same data is required and this implies again
a throughput decrease, possibly even worse than without congestion pre-
vention.

42

CHAPTER 2. EVENT BUILDING

Chapter 3

Technology

A difficult issue in a physics experiment environment of the size of LHCb
(and the other LHC experiments), is the choice of the appropriate tech-
nology for the event building readout network. The range of possibilities
nowadays is very large, because networking industries have put big efforts
in developing and improving different kinds of technologies and solutions,
especially during the last ten years. An important decision is the selec-
tion between an industry standard network technology or a dedicated
network system. This choice can be quite different for several reasons:
each single system in fact has its own advantages and disadvantages. In
the next section we will try to explain and summarise them, highlighting
the different aspects. Further in the chapter, we will shortly illustrate the
three technology competitors for being the final LHCb readout network
technology and we will introduce the choice of this work: the Ethernet
technology.

3.1 Industry Standards versus Dedicated
Systems

The first and biggest problem for starting the building of a readout net-
work is the decision whether to apply an industry standard network or a
dedicated one. The two solutions show a lot of differences, which make

43

44 CHAPTER 3. TECHNOLOGY

the choice difficult.

An industry standard system has its greatest advantage in the fact
that it is well known and certificated, and so it can usually ensure inter-
operability between different components, wide support from networking
industries and scalability for future system expansions. Of course it has
also a lot of boundaries due to the standard definition and it cannot be
changed to meet specific requirements and needs of a particular system,
like, for example, the unusual data acquisition architecture of a physics
experiment.

On the other hand, a dedicated system can be modified to fit in a
proper way the characteristics of a specific architecture but, of course,
it does not offer any guarantee about future reliability. This kind of
system in fact is strictly bound to its single vendor and thus it cannot be
considered completely reliable in a long time scale. If, for some reason,
its vendor crashes, all its supports will suddenly disappear.

Event building requirements can be defined quite specific and restrict
and so, at a first quick view, a dedicated system, more adaptable than
a standard one, could be considered the right solution. Unfortunately, it
has to be taken into account that experiment lifetime is long (10-15 years)
and it is necessary to guarantee adequate performance, availability and
interoperability of components over a long time period. The evolution
and upgrade path of the system has also to be taken into account. All
these considerations make the industry standard choice more probable.

Regarding the LHCb event building switching technologies, three dif-
ferent solutions have been considered and investigated until today. Two
of them are standards, and they are ATM and Ethernet, whereas the
third one, Myrinet, is a dedicated system.

The remainder of the section summaries the main characteristics of
these technologies and gives some suggestions for the final choice.

3.1.1 ATM

ATM [29] is a standard that has been developed for telecommunications
applications by the ITU (International Union of Telecommunications,
formerly known as the CCITT) to form the basis for the future B-ISDN

3.1. INDUSTRY STANDARDS VERSUS DEDICATED SYSTEMS 45

(Broadband Integrated Services Digital Network). It is also actively pro-
moted within the ATM Forum by the computer industry as a future stan-
dard technology for very high bandwidth LANs (Local Area Networks)
and WANs (Wide Area Networks), which will support real-time multi-
media and distributed computing applications. It is expected to have a
long life cycle because of its origin and expected large scale deployment
in the telecommunication filed.

The ATM technology has been designed to support a massive, low
latency, non-blocking switching capacity that is suitable for carrying, on
a common infrastructure, the traffic generated by a wide range of services,
each with its own specific performance requirements. In order to achieve
this flexibility it is based on the principle of packet-switching, in which
information is carried between “subscribers” in packets (called “cells” in
ATM jargon), each of which carries routing information in its header.
The network is composed of one or more switching fabrics, each of which
uses this routing information to forward the cells through the network
towards their destination.

The ATM standard specifies the connection between an end-station
and the network (UNI = User Network Interface) and between sub-
networks (NNI = Network to Network Interface). For simplification,
the standard is sub-divided into three layers:

e The Physical Layer
e The ATM Layer

e The ATM Adaptation Layer (AALn)

The ATM Layer is the core of the standard and it is common to all
services. It defines that the information (voice, image or data) is to be
transported by means of small, fixed length, cells containing 53 Bytes
(48 Bytes of payload and 5 Bytes of header). The cell header includes
3 Bytes that carry a label identifying a connection between a particular
source and a particular destination. This label is used by the switching
fabric hardware to route the cell to its destination (self-routing).

46 CHAPTER 3. TECHNOLOGY

Connections need not to be assigned with a constant available band-
width, but instead average and peak characteristics of the connection’s
traffic can be declared and bandwidth can be used on demand.

The Physical Layer specifies how ATM cells are physically transmit-
ted over a link. It consists of two sub-layers:

e The Transmission Convergence Sub-Layer, which defines the bit
rates and the framing patterns (grouping of cells into larger pack-
ets).

e The Physical Medium Sub-Layer, which defines the physical sup-
port for bit transfer and the timings.

Numerous standards have been defined at this level, for different ap-
plications, by the ITU on one hand and by the ATM Forum on the other
hand, with the aim of allowing for early, cost-effective deployment of the
technology for computer networking using existing components.

The Adaptation Layer defines how to adapt the ATM layer to the re-
quirements of specific services. Several adaptation layer standards exist
for different applications. For data transmission the so-called AAL5 pro-
tocol is used. It specifies that data can be transferred in variable length
blocks of up to 64 kByte.

3.1.2 Ethernet

Ethernet [33] was first conceived in 1973 by a young engineer named Bob
Metcalfe, working at the Xerox Palo Alto Research Center, and it become
a standard later on, with the explosive increase of communications tech-
nology due to the large use of information sharing applications. At the
beginning it was thought as a distributed office computing system, a big
system that would completely eliminate the need for paper in the modern
office. Thus the first Ethernet architecture was rather simple, it was a
sort of bus topology, where all computers on the network hooked to the
same wire. It has later on been developed into a more complete network
system that has known an enormous and especially large diffusion all

3.1. INDUSTRY STANDARDS VERSUS DEDICATED SYSTEMS 47

over the world due to its low cost and its good performance. Nowadays,
for example, most of the Internet traffic runs on Ethernet networks.
The Ethernet system includes for building blocks that, when com-

bined, make a working Ethernet:

e The frame, which is a standardised set of bits used to carry data

over the system.

e The media access control protocol (MAC), which consists of a set
of rules embedded in each Ethernet interface that allow multiple
computers to access the shared Ethernet channel in a fair manner.

e The signalling components, which consists of standardised elec-
tronic devices that send and receive signals over an Ethernet chan-

nel.

e The physical medium, which consists of the cables and other hard-
ware used to carry the digital Ethernet signals between computers

attached to the network.

The building block of Ethernet data traffic is the frame. The network
hardware—which is comprised of the Ethernet interfaces, media cables,
etc.—exists simply to move Ethernet frames between computers, or sta-
tions. The size of an Ethernet frame is comprised between 64 and 1518
Bytes and the bits in it are formed up in specified fields. These fields are

described in figure 3.1

64 bits

48§ hits

48 hits

16 bits 46 to 1500 hytes

32 bits

Preamble

Destination
Address

Source
Address

Type/
Length

Data

Frame
Check
Sequence
[CRC)

Figure 3.1: An Ethernet Frame

48 CHAPTER 3. TECHNOLOGY

The half-duplex mode of operation described in the original Ethernet
standard uses the media access control protocol, which is a set of rules
used to arbitrate the access to the channel shared among a set of stations
connected to that channel. The way the access protocol works is fairly
simple: each Ethernet-equipped computer operates independently of all
other stations on the network; there is no central controller.

Ethernet uses a broadcast delivery mechanism, in which each frame
that is transmitted is heard by every station. It is up to the station to
determine whether a message is aimed at itself, according to the frame
headers information. In this way, before sending data, a station first
listens to the channel, and if the channel is idle the station transmits
its data in the form of an Ethernet frame. The message can be consid-
ered as successfully transmitted if the shared medium is not disturbed
during transmission. If it is (collision of message) the frame must be
re-transmitted.

This protocol, which is used by the Ethernet MAC is called Carrier
Sense Multiple Access with Collision detection (CSMA/CD).

Finally, there are two basic groups of hardware components used in
the system: the signalling components, used to send and receive signals
over the physical medium, and the media components, used to build the
physical medium that carries the Ethernet signals. These hardware com-
ponents differ depending on the speed of the Ethernet system and the
type of cabling used.

The original Ethernet standard of 1980 described a system that op-
erated at 10 Mbps. This was quite fast at the time, but as computer
technology continued to evolve, ordinary computers were fast enough to
provide a major traffic load. Thus Ethernet was reinvented to increase
its speed by a factor of ten. The new standard specified the 100 Mbps,
Fast Ethernet system, which was formally adopted in 1995.

In 1998, Ethernet was reinvented yet again, this time to increase its
speed by another factor of ten. The new Gigabit Ethernet standard de-
scribes a system that operates at the speed of 1 billion bits per second
over fibre optic and twisted-pair media. The invention of Gigabit Ether-
net makes it possible to provide very fast backbone networks as well as
connections to high-performance servers.

3.1. INDUSTRY STANDARDS VERSUS DEDICATED SYSTEMS 49

In this work we will concentrate on this kind of technology to propose
a new event building architecture based on a Gigabit Ethernet readout
network. Therefore the next pages are dedicated to the description of
this new standard.

Gigabit Ethernet

“Gigabit operation represents an evolution rather then an revolution, in
Ethernet technology.” [31] It is a Data Link and Physical Layer tech-
nology, as such it requires no changes to higher-layer protocols or ap-
plications. For these reasons we will briefly concentrate on the relevant
aspects which characterise the Gigabit Ethernet technology.

Media Access Layer
The Gigabit Ethernet MAC is a proper superset of the 10/100 Mbit /s
Ethernet, in the sense that it contains all of the capabilities that already
exist and adds some additional functions and features specific to the gi-
gabit operation.

The Gigabit Ethernet MAC can operate in either full-duplex or half
duplex mode. Full-duplex operation is unchanged from other standards.
Half-duplex operation at gigabit rates is problematic.

e Half-duplex mode

The use of CSMA/CD as an access control mechanism implies a
strict relationship between the minimum length of a frame trans-
mission and the maximum round-trip propagation delay of the net-
work. The minimum transmission time must be longer than the
maximum round-trip propagation time of the LAN so that a sta-
tion will still be transmitting a frame when it is informed of a
collision. Since the length of time required to transmit a frame
scales inversely with the data rate, increasing the speed by an or-
der of magnitude (from Fast Ethernet’s 100 Mbit/s) reduces the
frame transmission time by that same factor 10. To accommodate
this scaling, it is necessary either to reduce the size (extent) of the
network, or to increase the minimum frame, or to change the MAC
algorithm.

50 CHAPTER 3. TECHNOLOGY

If there were no other modifications, the network extent would have
to have been reduced to the order of 10— 20 meters to support half-
duplex Gigabit Ethernet operation. This is clearly inadequate for
most practical uses. So the approach was to increase the minimum
frame transmission time and modify MAC algorithm itself.

= A carrier extension was added to overcome this inherent limi-
tation of the CSMA /CD algorithm and it appends a set of special
symbols to the end of short frames so that the resulting transmis-
sion is at least 4096 bit-times in duration (4.096 microseconds) up
to the minimum bit time imposed at 10 and 100 Mbps.

= An optional frame bursting feature was defined to improve the
throughput of gigabit CSMA/CD LANs. Frame bursting allows
multiple short packets to be transmitted consecutively, up to a
limit, without relinquishing control of the signalling channel and
reverting to the CSMA/CD protocol between packets. Thus, it
offers a way to avoid the overhead associated with the carrier ex-
tension technique for all but the first packet of a burst.

e Full-duplex mode

In full-duplex mode, the CSMA /CD algorithm (including the carrier-
extension and frame-bursting) is disabled. This means that data

transmission and reception can occur simultaneously without in-

terference, and with no contention for a shared medium. Easier to

implement than the half-duplex (CSMA/CD) mode, the full duplex

mode also provides higher bandwidth. Thus, all currently shipping

Gigabit Ethernet equipment operate in full duplex.

The full-duplex Ethernet standard further supports dedicated chan-
nels and full-duplex operation by introducing link-level flow control which
keeps switches from loosing frames due to buffer overflow. A pause pro-
tocol provides a mechanism where a congested receiver can ask the trans-
mitter to inhibit (pause) its transmissions. The protocol is based on the
transmission of a short packet known as a pause frame. The frame con-
tains a timer value, expressed as a multiple of 512 bit-times, that specifies
how long the transmitter should remain quiet. If the receiver becomes

3.1. INDUSTRY STANDARDS VERSUS DEDICATED SYSTEMS 51

uncongested before the transmitter's pause timer expires, the receiver
may elect to send another pause frame to the transmitter with a timer
value of zero, allowing the transmitter to resume immediately. Thus, the
pause protocol is like an “XON/XOFF” flow control packet. The proto-
col operates only between the two endpoints of a point to point link. It
is not an end to end protocol and cannot be forwarded through bridges,
switches or routers.

Gigabit Ethernet builds on the pause protocol by introducing asym-
metric flow control. It uses the Auto-Negotiation protocol (described
later in the section “Physical Layer”). This protocol lets a device indi-
cate that it intends to send pause frames to its link partner, but declines
to respond to them. If the link partner is willing to cooperate, then pause
frames will flow in only one direction on the link.

Physical Layer

The PHY accepts the data stream from the MAC and converts it into
optical or electrical impulses for transmission across a given medium.
Within the Gigabit Ethernet standard, the PHY functions are subdivided
into a group of logic functions known as the Physical Coding Sublayer
and a group of analog-digital mixed signal functions referred to as the
Physical Medium Attachment sublayer. These groups are not described
in this document, because they are not really relevant for the purpose of
the work. Further information can be found in [31].

Gigabit PHY performs a link configuration protocol referred to as
Auto-Negotiation. It is an automatic mechanism to ensure that cer-
tain link characteristics are properly configured when links are initialised.
Auto-Negotiation was defined in Fast Ethernet in order to automatically
select operation speeds between 10 and 100 Mbps. It was adapted to
Gigabit Ethernet primarily to select between duplex mode and the use
of link-level flow control.

Jumbo Frame

The Gigabit Ethernet standard uses the same variable-length (64- up to
1518-Byte packets) 802.3 frame format found in Ethernet and Fast Eth-
ernet (see figure 3.1). Because the frame format and size are the same

52 CHAPTER 3. TECHNOLOGY

for all Ethernet technologies, no other network changes are necessary.

Anyway, in order to overcome the performance bottlenecks of the
frame size limitation, it has been proposed (and implemented) to increase
the maximum valid frame size beyond 1518 Bytes. The reason for larger
frames, called Jumbo frames is simple: they mean lower frame rates
(especially for applications that transmit large chunks of data). They
extend the Ethernet standard frame size to 9000 Bytes. The size of
9000 Bytes have been chosen first because Ethernet uses a 32 bit CRC
that loses its effectiveness above about 12000 bytes, and secondly, 9000
was large enough to carry an 8 KByte application datagram plus packet
header overhead. In the case of Gigabit Ethernet, wire-speed throughput
at 1518-byte frames mean servers face a torrent of more than 8 - 10*
packets—and 8 - 10* interrupts—per second. That is enough to bring
many multiprocessor platforms to their knees. Jumbo frames, in contrast,
reduce the rate by more than 80%. However, they are not yet part of the
Gigabit Ethernet standard but strong requests to officially include them
are coming up, especially from networking industries.

3.1.3 Myrinet

Myrinet, developed by Myricom [28], is a switched, Gigabit-per-second
local-area network that uses variable-length packets. The packets are
wormhole-routed through a network of highly reliable links and cross-
bar switches. Myrinet technology is widely used to interconnect clusters
of workstations, PCs, or single-board computers. Clusters provide an
economical way of achieving:

e high performance, by distributing demanding computations across
an array of cost-effective hosts. For “tightly coupled” distributed
computations, the interconnect must provide high data rate and
low latency communication between host processes.

e high availability, by allowing a computation to proceed with a sub-
set of the host. The interconnect should be capable of detecting
and isolating faults and using alternative communication paths.

3.1. INDUSTRY STANDARDS VERSUS DEDICATED SYSTEMS 53

Haost

Host
Cache memgry
h Host bus

: I/0 hus

F 9

NI

LEmO Ly Fend
Hetwork -
interface To-fron Network
host Receive

/.
N

IMi engines

Figure 3.2: Host and network interface architecture of Myrinet

Figure 3.2 illustrates the architecture of a node in a Myrinet clus-
ter. Each machine (host) has a network interface card that contains a
processor and some memory, which is used to store the interface con-
trol program and data. The Network interface connects to the host 1/0
bus—a typical organisation for commodity hardware.

Myrinet requires that all packets be staged through network interface
memory, both at the sending and the receiving side. It uses fast SRAM,
hence the memory is relatively small. The packets may be of any length,
and thus can encapsulate other types of packets, including IP packets,
without an adaptation layer. Each packet is identified by a type, so that
a Myrinet network , like an Ethernet network, can carry packets of many
types or protocol concurrently. Both the host and the network interface
can use DMA to access data in each other’s memory, but DMA transfers

54 CHAPTER 3. TECHNOLOGY

suffer from a startup overhead. The host can also access the network
interface memory using programmed 1/0, which has no startup costs,
but results in high access times relative to host memory.

3.2 Summary

Table 3.1 summarises the main characteristics of the technologies dis-
cussed in the previous subsections. All the technologies considered pro-
vide bi-directional connections to the network (full-duplex). In the event
building application, as we have already noticed, each port connected to
the network uses only one transfer direction for high data transfer, thus
the other direction can be devoted to control messages.

The three technologies which have been investigated present different
advantages and disadvantages. Any of them perfectly fits some of the
event building requirements while failing others. These considerations
make it difficult to see clearly one’s way out of this tough choice.

Myrinet [17] and ATM [10] [15] have been already analysed thor-
oughly in all details and they still do not seem to be the best solution
for the LHCb event building, even if they have been proposed, as possi-
ble technologies, also for the other LHC experiments and, in particular,
Myrinet has raised with a lot of interested in the CMS experiment as a
solution to its specific event building requirements.

The most attractive technology for the LHCb event building problem
is at the moment Ethernet, especially the new Gigabit Ethernet stan-
dard. It represents the last innovation in the networking field but it has
an available tradition, due to the large use of Ethernet and its standards
in the past. It also assures system operability and availability over a long
time-scale. Before the advent of the new Gigabit standard, Ethernet
technology was never taken into account for the event building purpose,
because the previous network architectures (Ethernet and Fast Ethernet)
were not able to support the high data rate requirements of the LHCb
DAQ. Since Gigabit Ehternet has been implemented, also Ethernet could
be considered as a technology competitor for the event building system.
Anyway, it should be noted that, even if this network technology is largely

3.2. SUMMARY)

ATM Ethernet Myrinet
Application Telecom, LAN Computer Clusters
WAN/LAN
Standardisation ITU, IEEE Vendor
ATM Forum specifications
Industry Medium High Single Vendor
acceptance
Technology Connection Connectionless Connectionless
oriented
Flow Control Traffic Collision detection Back pressure
shaping & retransmission
Physical layer Twisted Pair, Twisted Pair, Float cables
Fibre Optic Fibre Optic
Packet size up to 64 k up to 1518 Variable
Bytes (Max 1 MByte)
Overhead 11% 14 Byte header Few Bytes
+ 4 Byte CRC per packet
Link Bandwidth 155, 622 1000 Mbit/sec 1.28 Gbit/sec
Mbit /sec

Table 3.1: Network Technologies

used and has demonstrated its reliability during its history and develop-
ment, it has always been used together with either the UDP /IP protocol
or better the TCP/IP protocol on the higher levels. These protocols does
not really fit the LHCb event building requirements. Their redundancy,
especially in the TCP/IP case, slows down the nominal network perfor-
mance and most of their functions are non-essential for the event build-
ing needs. For these reasons, in the LHCB DAQ project those protocols
could not be used and only raw Gigabit Ethernet is taken into account
at present. Therefore there are no guarantees that this technology will
give the same performance and the same reliability, Demonstrated in
conjunction with either UDP/IP or TCP/IP protocol.

The aim of this work is to study in depth the LHCb event building

56 CHAPTER 3. TECHNOLOGY

problem and propose a feasible solution, using the new Gigabit Ethernet
standard as base technology. Our goal is investigating new event build-
ing possibilities with raw Gigabit Ethernet and implementing a proper
hardware and software solution to the problem, which could be a real
candidate for the final choice.

Chapter 4

Case Study: LHCb Event
Building

The LHCD experiment [21] is the most recently approved of the four ex-
periments under construction at CERN’s LHC accelerator. It is a special
purpose experiment designed to precisely study the CP violation parame-
ters in B-meson decays by detecting many final states. The LHCb detec-
tor is a forward single dipole spectrometer, consisting of a micro-vertex
detector, a tracking system, aerogel and gas RICH detectors, electro-
magnetic and hadron calorimeters, and a muon detector. The layout of
the experiment is shown in figure 4.1

The expected b-quark production cross-section of 500 pbarn, at the
LHCb working luminosity of 1.5-10%2cm=2s7!, leads to a rate of about 75
kHz of B-meson events. This is embedded in a total inelastic interaction
rate of some 15 MHz. Typical branching ratios for the interesting final
states of B-meson events lie between 10~ and 10~ leading to a rate of
interesting events of ~ 5 Hz. For rare decay modes the branching ratios
are as low as 1077,

Thus triggering encounters special problems, since the B-meson events
of interest are a small fraction of all the events involving B-mesons. Min-
imum bias events also offer a severe background.

The role of the DAQ system in the LHCb experiment is to collect the
data, zero-suppressed in the Front-end electronics, and assemble complete

o7

58 CHAPTER 4. CASE STUDY: LHCB EVENT BUILDING

Bending Plane Muon Detector
Shield ~ Magnet EcaL HCAL

RICH2
Tracker
e
3&“““@ ;i“!/!/

RICHI Ik . Xﬂ

Vertex
Detector
TI T2 =1l
™ Gl T6 . U E
T7

T8 ol
T9
T10 Til

0 5 10 15 = [m] 20

Figure 4.1: The LHCb detector

events in CPUs for further data-reduction by the Level-2 and Level-2
triggers.

4.1 LHCb DAQ Architecture and Require-
ments

Figure 1.2 shows systematically the overall architecture of the LHCb
trigger and DAQ system. The main functional components are:

e Timing and Fast Control [23], to distribute a common clock syn-
chronous to the accelerator and the the Level-0 and Level-1 deci-

sions to all components needing this information, such as Front-end
electronics, Trigger, etc.

4.1. LHCB DAQ ARCHITECTURE AND REQUIREMENTS 99

e Two levels of “hardware” triggers: Level-0 and Level-1.

e The Front-end electronics where data are buffered during the la-
tencies of the hardware triggers and subsequently processed (zero-
suppression, formatting, etc.) and multiplexed before being passed
to the DAQ system.

This section presents a generic DAQ Implementation Model based on
the LHCb requirements specified in the LHCb Technical Proposal [21]
and in the User Requirements Document [20]. The Timing and Fast
Control Systems and the low-level triggers (Level-0 and Level-1) are not
described in this document because they are not part of the work. We

concentrate ourselves in this work on the DAQ system, which is composed
of:

e The Readout Units (RUs), acting as a multiplexer of Front-end
links and as an interface to the readout network.

e The readout network which provides support for event building, i.e.
assembling all event fragments buffered in the Readout Units.

e Sub-Farm Controllers (SFC) which act as an interface between the
readout network and the processor farm, that will run the higher-
level triggers (Level-2 and Level-3).

e CPU farm to execute the higher level trigger algorithms (Level-2
and Level-3).

In the following subsections the whole model and all the components
of the LHCb DAQ system are described in more detail.

4.1.1 DAQ Implementation and Functional Model
A Readout Unit (RU) performs the following functions:

o Multiplezing of Front-end Links (Sub-Event Building):
A source collects data from one or more Front-end (FE) links (n;

60 CHAPTER 4. CASE STUDY: LHCB EVENT BUILDING

ny FE links
G FE Bhks
3E\-'entfragmenb
I B
—— P

o = = 15ub-event huilding

o

iy .
T t Desfnation Assignment | A, Aead D tlini (7L
1 r [Event Builder Soaukee)
1 u]
: | Metwork Interface (.D
1
; Bancwidth = B, ¥ 3 Sk vents

Read-Out EventBuliding
Supervisar Ntk

F Y
1 Bandwidth = By i Sub-events
1
: ¢ e twork Inte rface
1
1 n —
[L4t -~ Event Buildin Wy Sub Fam Contolers (SFC)

E. {Event Buiider Des thation)

[* - - { Event Dizpatching ®'.-.

1 @\

Events 3 W J
- r

¥ b 4 . .
(cpu 1) (CPI.I 2_) (CPI.I Dl} Di EvertProcessing Linits

Figure 4.2: Functional Model of the event builder

for the source i) the sum over n; is ~ 160. The event fragments
collected from each FE link are assembled into a sub-event. The
multiplexing factor n; depends on the FE link data rate and on
the network link bandwidth (Bs) of the source, the aim being to
achieve a load as close as possible to ~ 50% for the working point
conditions. Higher bandwidths lead to higher multiplexing factors
n.

A constraint resulting from the partitioning requirement forbids
links from different sub-detectors to be mixed.

If needed, the multiplexing function can also include the packing of

4.1.

LHCB DAQ ARCHITECTURE AND REQUIREMENTS 61

sub-events in order to reduce their frequency in the network.

Destination assignment:

Can be determined locally (look-up table) or by a dedicated con-
troller that collects information on the state of the destination mod-
ules and the attached CPU’s, in order to balance the load.

Sub-Event Buffering:

If phased event building is implemented, the source modules im-
plement a buffering scheme where the Level-3 data are stored until
a Level-2 decision is made. The additional buffer space required is
modest (1-2 MBytes). This implies a more complicated manage-
ment than the simple push protocol.

A Sub-Farm Controller (SFC') performs the following functions:

FEvent building:

Apart from the obvious task of linking sub-events to a full event,
this function must implement the event building completion algo-
rithm that takes into account possible sub-event losses.

FEvent dispatching:

In this model the destination module performs the dispatching func-
tion, the processors attached to a destination being “invisible” from
the source. The advantage is that the dispatching function can in-
clude a local load balancing function and issue an overflow warning
only when all the local resources become scarce.

Gateway between the Readout Network and the Sub-Farm of pro-
CESSOTS:

The number of processors depends on the network link bandwidth
of the destination (By): the higher the bandwidth, the higher the
number of processors. it may be necessary to implement the sub-
farm as a LAN, attached to the SFC which, in turn, acts as a
gateway between the two networks.

The Readout Network performs the following functions:

62 CHAPTER 4. CASE STUDY: LHCB EVENT BUILDING

e The main function of the Readout Network is to route all the parts
of a given event to one destination. As such it participates in the
event building process. The concentration of data towards one des-
tination results in contention for the resources that are shared in
the network.

e The network may also be used to route control message for one of
the proposed control schemes.

4.1.2 Trigger/DAQ Performance Requirements

Selection criteria applied at Level-0 and Level-1 give a 40 kHz readout
rate. The data acquisition system will transfer data into process where
high level trigger algorithms reduce the event rate to storage to some
100-200 Hz.

LHCb group has decided to break down the high level algorithms into
two broad classes:

e The Level-2 algorithms, using the track vertex guidance from the
trigger (Level-1), look to reduce the rate to some 5 kHz using partial
event data. The strategies will include refining the vertex detector
decision with full precision data and enhanced algorithms, and then
combining Vertex Detector and data from the tracking system.

e The Level-3 algorithms will involve partial or full event reconstruc-
tion to apply physics cuts appropriate to the CP violation channels.

The estimated processing power required to run the algorithm is:

o Level-2: 10 MT !

e Level-3: 200 MI

IMI = Million Instructions per event (from the analysis computation point of view)

4.2. NETWORK IMPLEMENTATION 63

4.1.3 Data Rates and Detector Partitioning

The implementation studies presented are based on a partitioning of the
detector as shown in table 4.1 where the DAQ aspects are outlined. The
data rates per sub-detector are given, as well as the distribution of read-
out channels. FEach sub detector is composed of segments, a segment
being read out through one or more data links. An up-to-date layout of

the detector partitioning and estimates of data produced can be found
in [20].

Event Links Data | Throughput
Sub-detector size Segments per +# per per link Throughput
[kByte] segment | links link [MByte/s] [MByte/s]
[kByte] | (at 40 kHz)
Vertex 5.6 17 1 17 0.33 13.2 224
In-Tracker 16.7 11 4 44 0.38 15.2 668
Out-Tracker 37.5 10 4 40 0.94 37.5 1500
RICH 1 15.3 2 8 16 0.96 38.3 612
RICH 2 5.6 2 16 16 0.35 14.0 224
PRESHW 14 3 1 3 0.47 18.7 56
ECAL 8.3 3 4 12 0.69 27.7 332
HCAL 1.4 2 1 2 0.70 28.0 56
Muon 1.4 2 1 5 0.28 11.2 56
Trigger 6.9 1 10 10 0.69 27.6 276
Total 100 56 165 4004

Table 4.1: Detector partitioning

4.2 Network Implementation

If we assume an uniform distribution between the RUs ports, the number
of ports required is given by

N =

W

E
E—— +
2.k.-u [p

8

(l;zp)}

where
E = event size [Bytes|
B = network link bandwidth [bit/s]

64 CHAPTER 4. CASE STUDY: LHCB EVENT BUILDING

k = link load factor (0 to 1)

u = fraction of link bandwidth available for user data
p = fraction of E needed by Level-2 algorithm

F = Level-1 trigger rate [kHz]

R = Level-2 rejection factor

Table 4.2 gives the estimated network size for the various technologies
taken into account and for both readout protocols. The size is given by
the total number of ports which, according to the assumption of equally
loaded sources, is twice the number of RU ports. One assumes:

e An uniform distribution of data between the sources.
e 40 kHz Level-1 trigger rate and an occupation of 50% per link.

e For the phased event building solution: Level-2 algorithm using 40
kByte/event with a rejection factor of 8.

total # of ports, with 50% loaded RU links

Network technology | Full readout at 1.2 | Phased L.2/L3 readout
155 Mbits ATM 950 500
622 Mbits ATM 240 124
100 Mbits Ethernet 1600 850
1000 Mbits Ethernet 160 85
1280 Mbits Myrinet 112 60

Table 4.2: Estimate of network size

All the technologies considered here providing bi-directional connec-
tions (full-duplex), the network must provide twice the bandwidth re-
quired for DAQ data transfer. Table 4.2 gives the total number of ports
required for sources and destinations. A first crude estimate is 50% of
ports for RUs and for SFCs respectively.

The size indicated in table 4.2 is a lower limit: it assumes that it is
possible to load the link network up to ~ 100% to provide the required

4.3. IMPLEMENTATION OF READOUT UNITS 65

safety factor. It must be also taken into account that flow control mech-
anisms reduce the effective bandwidth usage due to the unavailability of
the link when the traffic is halted.

4.3 Implementation of Readout Units

A readout unit (RU) implements the following functions, some of them
being compulsory while the others are only required as indicated:

e Match the FE links to the network topology:

This is the main purpose of a source module: to match the DAQ
requirements with the network topology. The Front-end (FE) links
are determined essentially by the detector topology and partition.
It is mandatory to keep a mapping of FE links to RUs that respects
the detector topology in view of running the DAQ in partitioned
mode. On the other hand, a RU has to collect enough data to
efficiently load the network link.

o Build sub-events:
A RU collects event fragments from one or several FE links and
builds a sub-event by adding protocol data to distinguish each event
fragment and to identify the sub-event.

The number of FE links is variable and must be configured for each
RU.

o Destination assignment:
Is another important function ensuring that, for a given event, all
the RUs send their sub-event to the same destination: this is the
destination assignment function that has to be implemented, pos-
sibly in connection with centralised control unit.

e Buffering in case of phased event building:
If phased event building strategy is adopted, the RUs holding data
not needed for Level-2 algorithm must implement the delivery of
sub-events on request from a processor. The data of rejected events

66 CHAPTER 4. CASE STUDY: LHCB EVENT BUILDING

must be discarded. It is desirable that this scheme is present in all
RUs, even when they actually provide only Level-2 data.

4.3.1 Requirements

The data flow per FE link is given in table 4.1 where the event size has
been normalised to 100 kByte. The data rates are given for a Level-1 rate
of 40 kHz. The rate ranges between 11.2 MByte/s and 38.3 MByte/s per
link.

The rate at which the event fragments delivered by the FE links to
be assembled is n x F where n is the number of FE links read out by
the RU and F is the Level-1 trigger rate. The working point is at F = 40
kHz. The event fragments are not too small: from 300 Byte to 1 kByte.

In order to fulfil the safety factor requirement, a RU should be able
to sustain a data flow twice as large as the values given in table 4.1 or a
trigger rate of F = 80 kHz.

The sub-events are submitted to the network at the rate F.

The RU must provide enough buffer space to cope with the normal
fluctuations of the input data rate. When the rate exceeds the design
values, the RU must be able to stop the Level-1 trigger until the buffer
occupancy reverts to a safe level.

4.3.2 Determination of the Number of Readout Units

The number of RUs is determined:

1. by the network link bandwidth

2. by the association between FE links and RUs. There is not much
flexibility in the definition of the FE links which must correspond
to the partitioning of the detectors and to their data rates.

The network technology must provide a link bandwidth large enough
to match the largest FE link demand. Possibly a RU can multiplex
several FE links.

4.3. IMPLEMENTATION OF READOUT UNITS 67

Link Bandwidth Limitations: Maximum Sub-Event Size

The maximum size of a sub-event S [kByte] depends on the available link
throughput of user data B [MByte| and the trigger rate f [kHz]:
B
S=k-—
f
k is the load factor of the link (0<k<1).
Figure 4.3 shows the sub-event size as a function of the link band-
width:

1. at 40 kHz and for k = 0.5 and 1.0.

2. for k=1 (100% load) and 3 LHCb characteristic DAQ frequencies:
80 kHz (Level-1 maxi requirement), 40 kHz (Level-1 working point)
and 5 kHz (Level-2).

Association of FE Links to Sources

Table 4.3 shows, for the full event building strategy and for the various
technologies, a possible assignment of FE links.
Three values in each cell are:

o Ist value: the multiplexing factor, i.e. the number of FE links that are
combined in one source to form a sub-event (if a fraction: each Front-end
link needs to be de-multiplexed in order to fit with the network band-
width).

e 2nd wvalue: the resulting load on the network link for 40 kHz Level-
1 rate, 100 kByte/event (the target is ~ 50%).

e 3rd value: the number of sources for the sub-detector.
The last row gives respectively: the maximum (de)multiplexing factor,

the maximum load and the number of sources.
The maximum multiplexing is 4.

68 CHAPTER 4. CASE STUDY: LHCB EVENT BUILDING

Event Rate 40kHz Link Load 100%
o0k A0 E 100k | B
- —— k=1 sl gy 5 kHz
] kepg Voo ER = 40 kHz
5' 10k F 8 k0. 10k E =30 kHz
i 100 EM &
@ 1k 1k 1000 EN
= A oczatm G2z AT H
A 100 3 100
& t155.-=.T [}
@&
18 3 tzs ATH E o
1 Ll L unl L1 aamiu
10! 102 107 1ot
Bandwidth {Mbps) Bandwidth (Mbps)

Figure 4.3: Sub-event size versus link bandwidth

4.3.3 Meeting the Performance Requirements

The real challenge in the implementation of sources is the high frequency
of event fragment arrival: a Level-1 trigger rate of 40 kHz at working point
and, possibly, 80 kHz as maximum sustainable rate. The multiplexing
function (or sub-event building) that must be provided in a source multi-
plies also the rate of arrival of event fragments which, although arriving
in parallel, must still be completed with protocol data and combined into
a sub-event.

At 80 kHz a packet is emitted every 2.5 pusec. A multiplexing factor
of 3 generates a stream of event fragments at 240 kHz. These very strin-
gent conditions are by far beyond the possibilities of General Purpose
Processors.

This is also a difficult or even impossible task for networks with flow
control requiring an acknowledgement procedure. In this case, it is nec-
essary to group sub events from several consecutive events and build

4.3. IMPLEMENTATION OF READOUT UNITS

69

Sub-Detector ATM 155 ATM 622 | Ethernet 1000 | Myrinet 1280
Vertex 12-39- 34 2-39-9 4-47-5 4-37-5
Inner Tracker | 12-45-88 | 2-45-22 2-27-22 4-42-11
Outer Tracker | 14 - 56 - 160 | 1 - 55 - 40 1-33-140 2-52-20
RICH 1 14-57-64 | 1-57-16 1-34-16 2-53-8
RICH 2 12 - 42 - 32 2-41-38 3-37-6 4-39-4
PRESHW 12-55-6 1-28-3 3-50-1 3-39-1
ECAL 13-55-36 | 1-41-12 2-49-6 2-38-6
HCAL 14 - 42 -8 1-41-2 2-48 -1 2-39-1
Muon 12-33-10 2-33-3 2-20-3 3-23-2
Trigger 13-55-30 | 1-41-10 2-49-5 2-38-5
Total 14-60-468 | 1-57-125| 4-50-105 3-53-63

Table 4.3: Allocation of FE links to sources for various technologies (full
event building).
Cell contents: (De)-Mux Factor - Link load (%) - Number of links

“super-events” 2. The frequency is reduced in proportion of the packing
factor.

If phased event building is implemented, the RUs collecting data not
needed for Level-2 trigger have to implement a higher multiplexing factor:
being solicited at a lower frequency (by a factor 8, namely ~ 5 kHz), the
should multiplex more data (~ 8 times more) in order to achieve the
desired load on the network. This is true only if the technology provides
a single bandwidth value. If lower bandwidth links can be used, the
multiplexing factor can be reduced. As an example, if the Level-2 RUs
are implemented with 622 Mbps ATM links, the Level-3 RUs can be
implemented with 155 Mbps links and the multiplexing factor needs to
be increased by a factor of 2 only.

Phased event building causes a shift of buffer occupation from the
destinations (SFCs) to the RUs, as compared to the full event building
scenario. One can estimate the buffer required to store sub-events that
are only used at level-3.

2With “super event” we mean several events packed all together to solve the diffi-
cult problem of a high event trigger rate.

70 CHAPTER 4. CASE STUDY: LHCB EVENT BUILDING

4.4 Implementation of Sub-Farm Controllers

A Sub-Farm controller implements the following functions:

o Fvent building:
Assembly of sub-events with the possibility to have several events
built concurrently. The determination of the completion for an
event can be based on simple enumeration or on an explicit list
attached to each event or on time out. The latter method must be
implemented in all cases to detect accidentally missing sub-events.

e Dispatching of events:
Completely assembled events have to be transferred to one of the
processors of the sub-farm for executing the high-level trigger algo-
rithms. This can be combined with resource management, the SFC
keeping track of the individual CPU occupancy.

e Permanent storage:
The SFCs should also take care of the transfer of finally accepted
events to the storage sub-system.

4.4.1 Requirements

There is no bandwidth requirements on individual SFC network ports.
However the aggregate bandwidth must match with the bandwidth effec-
tively delivered by the RUs. In the case of equal link bandwidth for RU
and SFC links, the number of SFC ports may be lower than the number
of RU ports: due to the inefficient mapping of FE links, the RU links are
usually under loaded.

Each SFC must accommodate a sub-farm offering a processing power
sufficient to process the flux of events. The sub-farm network must pro-
vide a bandwidth large enough to accommodate the data rate from the
DAQ network.

It is desirable that a SFC performs itself the resource control of the
sub-farm and has the means to request a reduction of flux to avoid over-
flow.

4.4. IMPLEMENTATION OF SUB-FARM CONTROLLERS 71

It is reasonable to expect that the sub-farms will not all be equivalent
from the point of view of processing power. The DAQ event building
control should be able to cope with this situation, while making the best
possible use of the available processing resources.

4.4.2 Number of Sub-Farm Controllers and CPUs
per SFC

The number of CPUs required to process the data arriving at destination
is determined by:

1. the number of events arriving at the SFC per unit of time;

2. the processing time per event which, in turn, depends on the pro-
cessing power of the individual processors.

For the calculation of the average processing time per event in a given
CPU, we define the following variables:

e MIPS = processing power of 1 CPU [Million Instructions/s|

e 1) = effective use of processing power (0 to 1) — takes into account
the overheads

e MI(L2) = algorithm requirements for Level-2 algorithm [Million of
Instructions|

e MI(L3) = algorithm requirements for Level-3 algorithm [Million of
Instructions]

e R = rejection factor of Level-2 algorithm
e T, = average processing time per event [s|
The average processing time per event is given by the formula:

1 MI(L3)
- |MIL2) +
tar = T MITPS (L2)+ =5

72 CHAPTER 4. CASE STUDY: LHCB EVENT BUILDING

Using values from the requirement document and assuming processors
of 1000 MIPS with an affective CPU usage of 70%, we can compute an
average processing time as follows:

e MIPS = 1000, n = 0.7

e MI(L2) = 10, MI(L3) = 200
e R=38

o =ty = 50 msec

For the calculation of the number of events arriving in a destination,
in the case of full event building, we need the following parameters:

e B = the link bandwidth [bits]

e k= the average load of the link (0 to 1, usually 0.5, corresponding
to the safety factor)

e E = the full event size [Bytes]
e u — fraction of the bandwidth available for user data

The transfer time for 1 full event on the network link is given by:

Tty = H

B-u
If we choose the working point of a link to a destination with a load
factor k, then the average number of events arriving at a destination per

second is given by
k
Tfull

The minimum number of processors required to process the events at a
destination is given by:

t
N e — . v
P T'run

In the case of phased event building:

4.4. IMPLEMENTATION OF SUB-FARM CONTROLLERS 73

e The average processing time per event is the same

e The number of events arriving at an SFC is larger since only a
fraction p of an event data is transferred while the remaining (1-p)
is transferred every R events (R = rejection factor of Level-2)

The average event size is given by:

Ephased =FE- |:p + %}
This value can be substituted to E (full event size) in the previous formula
to calculate the number of processors.
Table 4.4 gives the number of processors that must be provided at
a destination port for each technology and for both protocols. These
number have been calculated under the assumptions given previously. It
should be noted that, although a safety factor of 2 is applied for the link
load, the processors are assumed to be fully busy.

Full readout Phased readout
Network # of CPUs # of # of CPUs # of
technology per destination | destinations | per destination | destinations

155 Mbits ATM 5 400 8 250
622 Mbits ATM 17 120 34 60
100 Mbits Ethernet, 2-3 800 5 400
1000 Mbits Ethernet 25 80 57 35
1280 Mbits Myrinet 36 56 73 27

Table 4.4: Destination module design considerations

4.4.3 Meeting the performance requirements

The aggregate bandwidth of the sub-farm network needs to be at least
as large as the network link bandwidth. There should be no problem of
congestion on this sub-network since this is a “one to many” traffic con-
trolled by the SFC. Thus networks like Ethernet, that usually have a low
efficiency, should deliver high throughput in this particular application.

74 CHAPTER 4. CASE STUDY: LHCB EVENT BUILDING

As expected, low bandwidth connections need to accommodate a low
number of processors, whereas high bandwidth links require a large farm
of processors. The choice of the destination link bandwidth, if possible,
will be trade-off between the cost of an SFC and the cost of the sub-farm
network. The frequency of sub-event arrival in a SFC depends on the
ratio between the RU link bandwidth By and the SFC link bandwidth
Bd.

4.5 Boundaries of This Work

This chapter has minutely presented and explained the whole LHCb DAQ
system and its feasibility, according to the assumptions and the model
results discussed in the DAQ Implementation Studies document [19].

As already stated, the region of interest of this work is the LHCb
DAQ system, and in particular our attention is focused on the readout
network and its interface with both the source models (RUs) and the
destination modules (SFCs). We are not going to study in detail and
then implement a complete RU module (this is the project of another
group of study with which we were closely, of course) and, at the same
time, we are not involved in building the software for the higher trigger
algorithms. The aim of this work is to investigate the problem of the event
building through a readout network and propose new feasible solutions.
We will specifically focus on the RU and SFC interfaces with the network,
studying a new idea of embedded event building on a specific Gigabit
Ethernet network interface.

Thus a Gigabit Ethernet readout network implementation with spe-
cial interfaces at source and destination access points will be main topic
of the following chapters of this document.

Chapter 5

Event Building Protocol

This chapter focuses on the definition of the software for source and
destination interfaces. Calling this event building software a protocol is
not completely correct. According to the standard literature, in fact, a
protocol is basically an agreement between the communicating parties on
how communication is to proceed. This means that all parties must take
part in both sides of the communication or, in other words, this means
that each party should send and receive data. That is not completely
true in the case of event building architecture: here sources just send
event fragments through the network, and destinations simply receive
data to assembly. There is not a real communication, according to the
standard definition, because some parties only “speak” and the others
only “listen”.

However, we think we can speak of protocol about event building soft-
ware because even in this case there are some restricted rules that govern
the communication, like the destination assignment, and the choice of
no retransmission of lost fragments is one of these and characterises our
protocol.

5.1 General Concepts

Event building software develops the source and destination interfaces
and their event fragment management. There are some basic features

75

76 CHAPTER 5. EVENT BUILDING PROTOCOL

that the software should implement to characterise the event building
protocol and these characteristics are specific of each interface, as will be
described in the following subsections.

Anyway, before going on with the analysis of the general properties of
the event building protocol, it should be remembered that from this point
of view the source model has the only aim of sending events fragments to a
defined destination and it has nothing to do with the sub-event building
already done by the previous part of the readout unit. Similarly, the
destination model performs the task of assembling received fragments
into complete events and it does not do any kind of analysis on the
assembled data, which is done by the Level-2 and Level-3 algorithms in
the CPUs of the sub-farm.

5.1.1 Sending an Event Fragment

When data from a new event fragment arrives, it is formatted in an
event fragment PDU (Protocol Data Unit), which contains a payload
and a PCU (Protocol Control Unit) with information about destination
address, event number and optional event building control information
(for example the number of the source sending the fragment).

Destination | Event | Source

Address # # Payload

Protocol Control Unit {PCTU)

Figure 5.1: Event Fragment PDU

An important issue of the source model is the destination assignment.
It can be either static or dynamic.

In the static destination assignment, each source determines the des-
tination as a function of the event number. The resulting system is quite
simple and does not requires a separate control network linking RUs and

5.1. GENERAL CONCEPTS

SEFCs to the Trigger Manager, as figure 5.2 shows. The static destination
assignment could be implemented as a round robin scheme, but in this
case the system performance would be determined by the least perform-

ing sub-farm.

A better solution could make use of destination assignment tables
which roughly balance the load according to the computing powers of

each SFC.

|

Front-end Links

|

l

ETT

En

ETT

Destination

Assignment

Destination
Assignment

Destination
Assignment

Data Network

SFCo

SFC

Figure 5.2: Static destination assignment

This second solution has the following consequences:

e Requires benchmarks of the relative sub-farm performance.

e A change in the destination assignment function can only occur
when the system is completely stopped in order to ensure identical

information in all the RUs.

78 CHAPTER 5. EVENT BUILDING PROTOCOL

In both solutions (round robin and table driven assignment), the fail-
ure of a SFC leads to a loss of all data sent to this destination, until the
situation is detected, signalled and corrected.

As pointed out before, it is not defendable that a SFC running out of
resources causes a reduction of trigger rate for the whole system, when
resources might be available elsewhere. The problem of scarce resources
in sub-farms is less severe with SFCs implementing large sub-farm and
performing local load balancing amongst the processors of the farm as
the destination assignment is not directly to the end processor but to the
SEC.

In the dynamic destination assignment, shown in figure 5.3, the basic
idea is to implement a control system that integrates data transfer and
protocol signalling on a single network in order to realize a dynamic load
balancing on the destinations.

Front-end Links

| } |

ETh Eh ETTa

Lewvel-1 trigger

I

Destination
Assignment

Data and Protocol
Network

=FiCo SFCh

Figure 5.3: Dynamic load balancing

The protocol is based on credits managed by a supervisor connected

5.1. GENERAL CONCEPTS 79

to the DAQ network. An SFC allocates credits whenever an event (or

a group of events) has been processed in the sub-farm. The credits are

collected by a supervisor which, on their basis, multicasts destination

allocations to the RUs. In order to keep the message traffic at a low

frequency, destination allocations for consecutive events may be grouped.
This solution has the following characteristics:

e Allows dynamic load balancing on the destination: a destination
receives an event only if the resource to handle is available.

e Requires a supervisor module (possibly more than one if many par-
titions are active simultaneously).

e Data loss is limited to the amount of unused credit issue by a SFC
just before its failure.

e The message rate is very high (Level-1 trigger rate), but by grouping
messages it can be reduced to an arbitrarily low rate.

The main drawback of this solution is to rely on a single component
that would stop the system in case of failure, unless a backup system
is implemented. In addition, the source modules have to implement an
input stage from the RN to receive the messages from the supervisor.

5.1.2 Receiving an Event Fragment

A destination receives multiple event fragment PDUs for every event,
one fragment per event from each source. Furthermore, even if packets
from the same source arrive in sequential order, packets from different
sources are received in random order. This means that, at the same time,
a destination has to manage not only several fragments, belonging to the
same event, but also more than one event.

For each event the destination manages an event descriptor which
contains status information and a table of pointers, one for each source.
Each pointer either points to a fragment or has a special value that
specifies that no fragment has been sent for this event from this source.

80 CHAPTER 5. EVENT BUILDING PROTOCOL

When the software gets a fragment, it checks the event and source
numbers. Then it searches for the corresponding event descriptor and
writes the pointer to the appropriate field of the event descriptor. If the
fragment belongs to a new event a new event descriptor is allocated to
that fragment and the building of a new event is started.

Event descriptor table

i et g

of event fraznemt
C; Ewent fragment PDIT 1

C; Fvent Frazrend PO 12

20 R

Figure 5.4: Event descriptors

™

T

5.1.3 Event Building Completion

The final choice of an algorithm for deciding when all fragments have
arrived and so the event is completed has to be made according to the
specific requirements of the event builder. This is an important issue

5.1. GENERAL CONCEPTS 81

that can have many different solutions, as we can see from the following
subsections.

Implicit Algorithm

This algorithm is the simplest implementation for detecting if an event
has been completed. The basic idea is that all the destinations know
the number of sources which are supposed to send a fragment for each
event. In this way, when an event fragment arrives, it is assigned to the
correct, event descriptor and the counter of sources that are expected to
send fragments is updated. When all sources have sent their fragment,
the event is considered complete. Of course, if a fragment is lost the
corresponding event will never be completed and analysed. It should be
better to implement solutions which take into account the problems of
data losses or dead sources and avoid data deadlocks in the destinations,
like the following algorithms.

This algorithm in fact is not usable in a real system, but it will be
useful to evaluate the cost, in terms of performance, of various type of
safety measure implementations.

Implicit + Time-out Algorithm

When a new event descriptor is activated it is put in an active event
descriptor list or table and an expiration timestamp is written in the
descriptor. Event descriptors contain a counter of the number of sources
from which an event fragment should be received. When a new event
fragment arrives, the software checks if all fragments belonging to that
event have been received. Furthermore the software checks if the other
events in the table have a timestamp older than the maximum allowed.

In other words, an event is considered as complete a) when it has
received fragments from all sources or b) when its timestamp is expired.
The expiration time is usually determined from the tail distribution of
the total event builder latency in order to guarantee a low probability of
data loss in the rare case where missing fragments may arrive after event
time expiration. Thus the time-out is a static time assignment which is
computed according to the system dimensions.

82 CHAPTER 5. EVENT BUILDING PROTOCOL

By this method, a source needs not to send data when it has nothing
to send. However, this case cannot be distinguished from the case where
the source is faulty. A drawback of this solution is that in the case of
sparse data most events have to wait until the timestamp expiration.

Notification Algorithm

For each event, the sources send either a fragment or a notification PDU,
namely a special packet which informs the destination that a source has
nothing to send for the current event. Once a fragment or a notification
from a new event arrives, a new event descriptor is activated in the ac-
tive event descriptor queue. Event descriptors contain a counter of the
number of sources form which either a notification or an event fragment
is going to be received. When all sources have sent something than the
event is completed.

A time-out mechanism is still maintained for detecting data losses or
dead sources.

Event Sequence Number algorithm

If we are sure that the sequence order of fragments sent by a source to a
destination is preserved, it is easy to implement a scheme where empty
fragments need not to be notified: any missing fragments in a sequence
can be interpreted as empty fragments by a destination. In order to keep
the time between two non-empty fragments within an acceptable value
and to trace dead sources, notification of empty fragments can still be
sent, whenever adequate.

The event sequence number tells how many events have been sent to
a given destination. As an event is assigned to a destination there is a
correspondence between an event and a sequence number. Each source
sends together with a fragment, the sequence number.

In the receive side there is an active event descriptor table where each
sequence number is associated to an event descriptor pointer. There is
also a last event list where to each source is associated the last sequence
number received. When a fragment arrives, its sequence number is com-
pared to the maximum. If it is greater, it means that a fragment from a

5.2. IMPLEMENTED ALGORITHMS 83

new event has been received and an event descriptor is assign to it and
put in the active descriptor table. Then the sequence number is com-
pared to the last sequence number received from the source that has sent
the fragment. If the the difference is greater than one there are events for
which there was no data from that source and the corresponding event
descriptors are updated. If an event has been completed, than it is put
in an event descriptor complete queue for the analysis.

In the source a time-out mechanism guarantees that a destination
does not wait too long for a fragment from a source which has nothing
to send. When the source has not sent anything to a certain destination
for a fixed amount of events assigned to that destination, it sends a
notification fragment to the destination.

In the destination there is a second time-out in case of errors or sources
out of work. The active event descriptor list is implemented as a circular
queue. When it becomes full the oldest event descriptor is considered to
be completed and it is put in the event descriptor complete queue.

5.2 Implemented Algorithms

According to all the problems and relative solutions discussed above, we
have created our own event building protocol, making reasonable assump-
tions concerning the requirements.

The aim of this implementation is to measure the software overhead
due to the protocol in the overall event building system. This software
will also be used to implement a small scale model of the event builder,
as will be described later.

All the software we have developed is written using the C standard
language and its libraries. C was chosen because, at the moment, it
seems to be still the best and well performing solution for programming
embedded systems (which is the final goal of our work).

First of all we have concentrated our attention on the source module
and its functions. As pointed out before, a source has two main tasks to
accomplish, which are the formatting of an event fragment, sent by the
RUs, in an event building PDU and the destination assignment.

84 CHAPTER 5. EVENT BUILDING PROTOCOL

In our software the PCU, that represents the protocol header of an
event fragment, is made of four fields, which are:

e Destination address;
e Event number;
e Source number;

e Length (that includes header and payload).

We have decided to limit ourselves and thus implement a static des-
tination assignment. It is based on the “modulo” function, as we can see
from the following formula:

Destination Assignment = (Fvent Number) modulo (Source Number)

Even if this function is quite simple, it should be a good solution
for the problem of the destination assignment and it is computed in few
instructions, so it is not a big issue in terms of execution time, thanks
to its simplicity. With a number of SFCs equals to 100 (which is the
estimate of the LHCb DAQ system), a destination will manage 1 event
every 100 events generated. This will give to the destination a safety
margin of time to do the event building. In fact with an aggregate rate
of 40 kHz means an average time of 25 microseconds per fragment.

The most complex part in the study of our demonstrator code was
the simulation of several sources and the simulation of the random traffic
generated by them. Of course, at the moment, the full DAQ system with
100 sources, 100 destinations and the readout switching network is not
available. Thus, in order to estimate the behaviour and the adequacy
of the destination module, we have to emulate the presence in a single
source of n sources which send to a destination one fragment per event.
Furthermore, it is also necessary to simulate somehow a random event
fragment traffic, because, in reality, the fragments of an event will not
arrive at one destination all at the same time, due to the event building
protocol overheads and the readout network. For these reasons, other

5.2. IMPLEMENTED ALGORITHMS 85

than formatting received fragments in PDUs and assigning them the des-
tination address, our source module presents a consistent part of code
which performs the simulation functions.

In the performance evaluation, the overhead due to this emulation
of n sources needs to be subtracted. In fact we know that the source
is not so much loaded, because its tasks are limited and rather simple,
and so we are not really interested in its performance measurements.
The real aim is studying the destination performance and developing a
destination model which could be as fast as possible while meeting all
the event building requirements.

In the next subsections we will explain in detail the fragment genera-
tion for the random traffic simulation and the three different destination
algorithms that we have studied and implemented.

5.2.1 Event Fragment Generation

The random fragment generation is based on the following assumptions:

e For each event all sources must send a fragment to the assigned
destination

e All fragments belonging to the same source must arrive in order
(according to the event enumeration order).

The number of sources is a parameter decided at the beginning and
it can be changed at any time the program is stopped. It is not a run
time variable, of course. It must be decided before the run and the whole
model is dimensioned according to this value.

Once the number of sources is given, the generation function starts
creating the event fragments following the next steps: it first generates
an event (one fragment per source) and assigns to it a random value (Z.,;)
chosen in a limited range of an inverse exponential distribution. Then it
gives to each event fragment a random value (¢f,,) chosen in limited range
of a poissonian distribution (which can be simplified as figure 5.5 shows).
At the end all the fragments will have their own value (¢f,4g4rrivar) Which
is given by the sum of t.,; + t,4. At this point the generation function

86 CHAPTER 5. EVENT BUILDING PROTOCOL

orders in a stack all the fragments generated according to their ¢ rqg Arrivai
value and starts the generation of another event following the same pro-
cedure. Once another event has been created, all the fragments (the ones
of the last generated event and the others of the previous event) are re-
ordered again in the stack according to their ¢,qg4rriva value. Figure 5.5
shows all the steps needed for generating an event.

te=At| D)]

Atmin Abmax
tiragarrival = tevt + trg At
F'y
Simplified
in
/ﬁ .
At Atmax Atmin= 0 Atmax

Figure 5.5: Fragments generation

Of course, the generation function takes care also of the fact that
different event fragments belonging to the same source must be ordered.
Thus if a fragment, with an event number bigger than the event number
of a fragment belonging to the same source, has a ¢ fyqgArrivar value smaller
than the t¢qgarrivar Of the other fragment, it is anyway put in the stack

5.2. IMPLEMENTED ALGORITHMS 87

after the second fragment (i.e. after the one with smaller event number).
In this way the fragment order is kept correctly.

The generation function goes on with the event generation until it
creates an event with all fragments having a ¢ ¢,4g4rrivar Value bigger than
the previous event fragments. At this point all the events in the stack
are randomly mixed in a correct order and they can be consumed by the
event building protocol for the formatting and the forwarding.

The generation function restarts when all the fragments in the stack
have been consumed, except the ones of the last generated event, and it
follows always the same procedure (figure 5.6 illustrates this procedure).

L J

T tut fn o1 tnt2
L pnew generation cicle

Figure 5.6: Event generation

This function has been developed starting from the assumption that
all the events generated are addressed only to one destination, because
all the simulations we have done can count on the presence of only one
destination. Anyway it can be immediately adapted and used also with
a simulation that presents more than one destination.

5.2.2 No time-out

The no time-out algorithm is the simplest version of the destination
model. It is based on the implicit event building completion: all sources
are supposed to send a fragment per event, and so the destination consid-
ers an event complete only when it has received for that event a fragment

88 CHAPTER 5. EVENT BUILDING PROTOCOL

from each source.

The destination keeps a descriptor table where all the events under
construction in a certain moment are stored. Each event descriptor con-
tains the event number, a counter of the sources which have not sent their

fragment yet, and a list of as many pointers as the number of sources (fig-
ure 5.7).

Event# | Event# Event # Event # Event# | Event#

Remaining | Remaining | Remaining | Remaining | Remaining | Remaining

SOUTGEs SOUrCes SOUrces SOUrces SOUrces SOUrees
ptrl ptrl ptrl ptrl ptrl ptrl
pir2 pir2 ptr2 ptr2 ptr2 ptr2
ptr3 ptr3 ptr3 ptr3 ptr3 ptr3
ptr4 ptr4 ptr4 ptr4 ptr4 ptrd

ptrn-1 ptrn-1 ptrn-1 ptrn-1 ptrn-1 ptrn-1
ptrn ptrn ptrn ptrn ptrn ptrn

Figure 5.7: Structure of the descriptor table

When a new fragment arrives, the algorithm checks immediately if
this fragment belongs to an event already in the table. If not, the algo-
rithm simply assigns to the fragment a free descriptor in the table and
decrements the counter of the missing sources.

Otherwise, if the arrived fragment belongs to an old event already
in the table, the algorithm looks at the source number the fragment
comes from and addresses the right pointer in the descriptor list to the
fragment. Then it decrements the counter of the sources which have not
sent anything yet and checks if the event has been completed (which
means that the missing source counter must be zero). When an event is

5.2. IMPLEMENTED ALGORITHMS 89

completely built, it is given to the processor for the physics analysis (in
our simulations it is simply discarded) and the corresponding space in
the descriptor table is freed. Figure 5.8 summarise the main steps of the
algorithm.

New fragment
YES NO

I]
Assign new event descriptor in the table | Collect fragment
into deseriptor table

Colleet fragment

into descriptor table
T | Decrease “Remaining-sources™ cournter

Decrease “Remaining-sources™ counter |

Retumn event
if completed

Figure 5.8: No time out algorithm

As already stated, this implicit completion algorithm is fast in its
computation but is not reliable, because it trusts to a perfect system
with no data losses and no dead sources. With such destination module,
in fact, it can happen that uncompleted events lie forever in the descriptor
table, because some fragments are missing, lost in the network or never
sent, due to a source crash. Therefore, a sort of time-out should be
implemented to avoid event deadlocks and to make the whole system
more secure. This is what we have done with the second destination
algorithm, the simple time-out, whose description in coming in the next
subsection.

5.2.3 Simple Time-out

The simple time-out algorithm is a sort of implicit + time-out completion.
Like the no time-out, the simple time-out algorithm stores the events

90 CHAPTER 5. EVENT BUILDING PROTOCOL

under construction in a descriptor table which has the same fields of the
previous one (number of the event, number of sources that have not sent
the fragment and the list of pointers, one for each source) but keeps an
additional label with the timestamp value for the time-out (figure 5.9).
The destination maintains also a global variable where is written and
updated the value of the next event number which is expected.

Event# | Event# Event # Event # Event# | Event#
Remaining | Remaining | Remaining | Remaining | Remaining | Remaining
sources SOUrces sources sources sources sources
Timestamp| Timestamp| Timestamp| Timestamp| Timestamp| Timestamp
ptrl ptrl ptrl ptrl ptrl ptrl
ptr 2 ptr2 ptr2 ptr2 pir 2 ptr 2
pir 3 ptr 3 pir 3 pir 3 pir 3 pir 3
ptr 4 ptr 4 ptr 4 ptr 4 ptr 4 ptr 4
ptrn-1 pirn-1 ptrn-1 pir n-1 ptrn-1 ptrn-1
pirn pirn ptrn pirn pirn pirn

Figure 5.9: Structure of the descriptor table

When a new fragment arrives, it is compared with the value of the next
expected event and, according to the comparison result, the algorithm
behaves in three different ways:

1. The event number of the new fragment is less than the exrpected
event number

In this case the fragment belongs to an old event which could be:

e still situated in the descriptor table for the the reconstruction;

5.2. IMPLEMENTED ALGORITHMS 91

e already returned to the processor for the physics analysis, even
if incomplete, because of the time-out.

Thus the algorithm checks first if the event is still in the table.
If so it assigns to the fragment the right pointer in the descriptor
list, according to the source number, and decreases the counter of
the sources which have not sent the fragment yet. If the event
becomes complete after this source update, the algorithm marks it
as “complete event”, gives it to the processor for the final analysis
and frees the space in the descriptor table.

Otherwise, the algorithm marks the fragment as “out of time” be-
cause, for some reason, it has arrived after the standard time given
for a single event building. The rejected fragment is then passed to
the processor that will treat it as an exception.

In both cases, after the new fragment analysis, the algorithm checks
if there are event descriptors in the the descriptor table with the
event number less than the one of the just arrived fragment, that
have not received anything form the source the current fragment
belongs to. If this is the case, it means that those missing fragments
will probably never arrive (this can be argued from the emitted
fragment order of a single source) and so the algorithm marks them
as “missing fragment” and decreases the source counters of the
associate descriptors. At the same time the algorithm checks if,
after this updating, any event has become complete, in the way that
it has not to wait for any other source. If so, the algorithm gives
the event to the processor, marking it as an “incomplete event”,
and free the space in the descriptor table.

The main steps are summarise in figure 5.10

2. The event number of the new fragment is equal to the expected event
number

In this case the fragment arrived belongs to a new event and so the
algorithm assigns it a new event descriptor in the table, addresses
the right pointer to the fragment and decreases the corresponding
missing source counter.

92

CHAPTER 5. EVENT BUILDING PROTOCOL

| Event number < Expected Event |||]|::>| Fragment belonging to an old event |
!

| Old event still in the table? |

IYES | NC"
Colleet fragment Fragment out of time,
into deseriptor table return it to the CPU

Retum event <:| | Decrease “Remaining-sources” counter
if completed |

|
Check for missing fragments belonging
to the same source in previous events
and mark them as missing fragments

Decrease corresponding
“Remaining-sources™ counters

| Retum events eventually completed |

Figure 5.10: Simple time-out: Case 1

After the new event fragment management, the algorithm checks
again if there is any event in the descriptor table with a num-
ber smaller than the one of the event just allocated, that has not
received any data from the same source the last fragment comes
from. If so, the algorithm acts as described in the previous point,
marking those fragments of such events as “missing fragments” and
decreasing the source counter of the associate event descriptors. It
also checks if there are events which have been completed after the
source counter updating and, eventually, it returns them to the
processor, freeing the corresponding descriptors in the table. Fur-
thermore, the algorithm decreases the timestamp of all the events
in the table (except the one of the last event inserted), because a
new event has arrived. At the same time, while it does the times-

5.2. IMPLEMENTED ALGORITHMS 93

tamp decrease, the algorithm checks if any event in the descriptor
table is in time-out. If this is the case, the algorithm marks those
events as “event in time-out”, gives them to the processor for the
physics analysis and frees the corresponding space in the descrip-
tor table. At the end the algorithm updates the value of the next
expected event value to the next event number that should come.

Basic ideas are are depicted in figure 5.11

| Event number = Expected Event ||U|:>| New event arrived in correct order |

| Assign new event descriptor in the table |
|
| Decrease “Remaining-sources”™ counter |
|
Check for missing fragments belonging to the same source
in previous events and mark them as missing fragments

Decrease corresponding
“Remaining-sources™ counters
|
Retum events eventually completed
|
Decrease timestamp counter
of previous events
|

| Retum events eventually in time-out |

Figure 5.11: Simple time-out: Case 2

3. The event number of the new fragment is greater than the expected
event number

In this case the fragment arrived belongs again to a new event and
the algorithm does the same steps already described before. The
only difference is that the new event allocated in the descriptor

94

CHAPTER 5. EVENT BUILDING PROTOCOL

table is not the the expected one, but it is bigger. This means that
there are some missing events whose fragments will arrive later,
that will not certainly receive any fragment from the source which
has sent the last fragment.

The algorithm of course takes note of this and allocates not only
the descriptor for the event arrived with the new fragment but it
prepares also the descriptors for the missing events which will come.
In these additional descriptors it decreases immediately the source
counter and marks as “lost fragment” the pointer associated with
the source which has sent the last fragment.

All the other steps, then, made by the algorithm are equal to those
made in the previous case. Figure 5.12 shows the complete scheme
of this case.

| Event number > Expected Event ||[||::>| New event arrived in wrong order

Assign new event descriptor Assign new event descriptors
in the table for that event in the table for missing events
| |
Decrease “Remaining-sources” counter Mark corresponding fragment

as missing fragment and

decrease “Missing-sources™ counter
]

Check for missing fragments belonging to the same source in previous events, mark
them as missing fragments and decrease corresponding “Remaining-sources™ counters
|
Retum events eventually completed
|
Decrease timestamp counter
of previous events

| Retum events eventually in time-out |

Figure 5.12: Simple time-out: Case 3

5.2. IMPLEMENTED ALGORITHMS 95

From the description just given of our simple time-out algorithm is
evident that the time-out implemented in this work is not really based on
time, but is calculated on the number of events received by the destina-
tion. This means that, if the time-out is set to j, when the first fragment
of the event n + j arrives, the event number n (if incomplete) is consid-
ered to be in time-out. With this solution the descriptor table will never
exceed its own maximum size which corresponds to a maximum number
of events equals to the time-out value.

5.2.4 Automatic Adjustment

The automatic adjustment algorithm performs the same functionalities
as the implicit + time-out algorithm, but it also pays attention, at the
run time, on the source state and adapts its behaviour accordingly. The
number of sources remains a parameter, which has to be specified at the
beginning, and the whole system is dimensioned to this parameter value.
In this algorithm, the destination keeps also a variable with the number
of sources, which are considered being alive and active at any time of
the run. At the start up, usually, all sources are supposed to be up
and running, and so generally this variable is set equal to the maximum
number sources (this is not compulsory and the variable can be set equal
to any value smaller than the real number of sources. The destination
algorithm will then adjust it to the right value at the run time). The
destination also keeps an array with all the source identifiers and their
respective states: 1 = active, 0 = crashed. At the beginning, all source
states are usually set to 1 (see figure 5.13).

When a fragment arrives, the number of the source sending the frag-
ment is checked and it is compared with the corresponding source state
in the array. If the source was an active source even before the fragment
arrival, nothing changes and the algorithm does the same steps we have
described in the previous subsection.

Otherwise, if from the source state array it turns out that the source
sending the fragment was a non-active source before the last fragment,
the source state is immediately turned from crashed into active and the
global variable of current active sources is updated. The source is then

96 CHAPTER 5. EVENT BUILDING PROTOCOL

Active sources

Number of sources

Source arrays

A
4 ™
Number of time-outs 0ololo R 0
Source state 11 1|1 - 1
Sources 112 1|3 e n

Figure 5.13: Start up

considered active from that event number value and all the other events,
with an identification number bigger than the event number of the last
fragment, are supposed to receive a fragment from that source, even if
they are already in the descriptor table and their building is already
started (see figure 5.14).

Then, when a new event fragment arrives, a new event descriptor is
allocated in the table. Before updating the remaining source field in the
descriptor header, the algorithm lists the state array and checks which
sources are active and which ones are crashed (see figure 5.15). Each
time it finds a dead source, it immediately marks the associate fragment
pointer in the descriptor list as “lost fragment” and does not wait any
more for a fragment from that source for that event. Then the algorithm
updates the remaining sources field in the descriptor header with the real
current active source value.

5.2. IMPLEMENTED ALGORITHMS

97

— & Ifsourcejis active

OK, no changes required

Incoming fragment

Destination | Event | Source Length
address | Number i

L Ifsourcejis not active =

@

Source j becomes aclive =

Time-outs
1 | --- | State
] ... | Sources
o | --- | Time-outs
0 | -+ | State
] ... | Sources
Time-outs
1 | -+ | State
1 | ... | Sources

Figure 5.14: New fragment

New fragment of new event | ﬂ:> Assign new event
descriptor in the table

Active sources

[a2]

a

“Remaining-sources™ counter in the new deseriptor
initialised to “Active sources” = (n-2)

Figure 5.15: Remaining sources counter updating when a new event frag-

ment arrives

98 CHAPTER 5. EVENT BUILDING PROTOCOL

Finally, when an event is completed or is returned because it is in
time-out, the algorithm checks whether or not some fragments are miss-
ing. If so, it controls which sources have not sent the fragment and
increases the counters relative to those sources. These counters (one for
each source) are kept in the source state array and are initialised at zero.
They are increased by one when an event with one or more missing frag-
ments belonging to the associate source is found. Whenever a counter
reaches a certain numeric value (stated at the beginning, of course), the
corresponding source is considered crashed and its state is modified from
active, 1, into non-active, 0, and the global variable with the current ac-
tive source number is updated. The dead sources are then supposed to be
down until they send another event fragment (see figure 5.16). As soon
as a fragment is received form a dead source, the destination algorithm
changes the source state into active and sets the corresponding counter
to zero.

* Fragments from source 1 |

— ‘ Fragments from source 2 ‘

| Fragments from source j |

Event in time-out ’—“ Fragments from sourcen ‘
Event Remaining Time-out L ‘
Number | ¢orees label
+1 +1
Time-outs (max 10) | # | # |79 ¥ 5 # Yo
State | 1 | 1 |1 1110
Sources 1 2 3 n2|nl| n
1 1 h—
¥ ¥ 3
Source 3 Source n-2 Source n
becomes still still
non-active active non-active

Figure 5.16: Effects of events in time-out on source arrays

5.3. PERFORMANCE ON A PC 99

We can recapitulate the way of working of the automatic adjustment
algorithm remembering that it accomplishes the same functionalities as
the implicit + time-out algorithm and it also adapts its actions on the
source states, according to the following assumptions:

e After the completion of n events which present a missing fragment
from the same source, the algorithm considers that source dead
and does not wait any more fragment from that source for the next
events;

e As soon as a fragment belonging to a dead source arrives, the al-
gorithm considers that source active again and starts waiting for
fragments coming from that source for next events.

5.3 Performance on a PC

In order to have a general idea about the performance of our event build-
ing code, we have done some measurements on a common desktop com-
puter. The machine used for these measurements work was a Pentium II
with a 400 MHz Intel processor inside. The operating system running on
the computer was Windows N'T and the programming environment used
was Visual C 5.0.

The steps we have done in our performance measurement work are
the following:

1. Generation of a fixed number of fragments;

2. Time measurements on the whole program running with the fixed
number of fragments;

3. Switching off the event building functions;

4. Time measurements on the program without the event building
code but running with same number of fragments as before;

5. Computation of the event building time overhead by subtracting
the second time measurement from the first one.

100 CHAPTER 5. EVENT BUILDING PROTOCOL

!

‘ Input: fragment # ‘

Initialization

M Start time

"{ New fragment ‘ Two measurements:

1) Full program (Ti/frg)

Event Building

4———— Endtime
T/frg = (End time - Start time)
fragment #

Figure 5.17: Measurement of event building overhead

2) Switch off EvtBuild (To/fig)

Time for EvtBuild: T1 - To

Figure 5.17 shows this procedure in detail.

We have done the same tests for all the three different types of algo-
rithms, running each time the three protocols with the same (increasing)
amount of fragments, so that we could draw conclusions for the differ-
ent protocols, analysed under equal conditions. Furthermore, in order to
obtain valid results, we have had to generate big numbers of fragments
each time we run the tests. For small numbers of fragments, in fact, the
processor computation was too fast, and the time function was not so
precise to be able to really measure very short intervals of time.

Finally, we did not send real data, but we sent fragments with empty
payloads because at the moment with are interested in measuring only
the event building software overhead.

Of course, this type of measurements we have realized are not com-
pletely realistic but show pure software protocol overheads. In real sys-

5.3. PERFORMANCE ON A PC 101

tems, in fact, we usually register bigger wastes of time due to interrupt
handling, data copies, operating system, and so on. However, these re-
sults are quite important because they measure the real software over-
head. Considering the fact that we have limited time allocated for the
management of each single fragment, we can estimate from these mea-
surements how much time the software needs for its computation and to
what extent we can make it more elaborate.

2.5
€T~ 2
22
| -
2o 15 \
[&]
T2 \
g 1 N
o 2
£ E
=~ 05
0
1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

Generated fragments

Figure 5.18: Performance measurements of no time-out algorithm (in
logarithmic scale)

The first results reported here (shown in figure 5.18) are the perfor-
mance results of the no time-out protocol. The algorithm seems to be
quite good and fast (an average overhead of 1 microsecond per fragment)
and this is what we would expect. The algorithm is really simple and
it does few operations per cycle. It expects that all fragments of all
events arrive for sure and in the simulation we have done there are not
exceptions, of course.

As we can see from the graph, there is an initial value which is quite
bigger (by a factor of 2) than the others. Unfortunately, this is due to the
time function that is not accurate enough for these kind of measurements.

102 CHAPTER 5. EVENT BUILDING PROTOCOL

By increasing the number of fragments, the algorithm becomes more
stable and the measurement results are definitely good. With an overhead
of 1 microsecond per fragment, the safety margin of this protocol is quite
big and so it can be reasonably made more elaborate in order to fulfil
a long set of functionalities and thus make the event building protocol
more reliable and complete.

The next results, shown in figures 5.19 and, 5.20 are the performance
results of the simple time-out protocol-—which is, by the way, the most
interesting and the preferred candidate (from the functionality point of
view) for the final choice.

25
= 2 =
g e
U)-g 15 _ » o
g9 ="
L ®
o O
o g 1
EE
o 0.5
0
1.E+05 1.E+06 1.E+07 1.E+08

Generated fragments

Figure 5.19: Performance measurements of simple time-out algorithm (in
logarithmic scale)

This algorithm implements a time-out procedure and handles possible
losses of fragments. For this reason we have done two different types of
measurements: in the first test (whose results are shown by graph 5.19)
all the fragments generated reach the destination, in the second one,
instead, (whose results, compared with the previous ones, are shown by
graph 5.20) there is a small percentage of fragments randomly lost.

In both cases, the first results obtained are not completely reliable,

5.3. PERFORMANCE ON A PC 103

25

o 2 " .w-—-..
E S \-H“'""“'
o £ P g
& 8 15 \"'\-._/'
- o
5 8
P ——5% of missing fragments
EE -#-No data losses
- 0.5

0

1.E+05 1.E+06 1.E+07 1.E+08

Generated fragments

Figure 5.20: Performance measurements of simple time-out algorithm (in
logarithmic scale) with data losses

because of the low accuracy of the time function. We can notice, anyway,
that, after the initial values, the algorithm behaviour becomes stable and
reliable.

Furthermore, as we can see from figure 5.20, in the second test, the
protocol is a little bit slower than in the first one, but this is expected. In
fact, with real missing fragments, the receiving algorithm must do more
controls and checks and these make it slower, of course.

By the way, in both cases, the results are quite good and comfortable.
An average, included between 1.5 and 2 microseconds, of overhead per
fragment gives a good performance to the protocol implemented.

Finally we relate the last performance results, the ones of the auto-
matic adjustment protocol. This protocol implements a time-out proce-
dure, like the previous one, but also adapts its steps according to the
source states. Because of the time-out and the source state adjustment,
we have done two types of tests: in the first one, there are no missing
data losses and no dead source, in the second test, instead, there are 5%
of lost fragments and, consequently, some sources could crash and then

104 CHAPTER 5. EVENT BUILDING PROTOCOL

25
Ta 2 N
E 5 '0-—-._._______
D5
5815
—
- ®
29 4
° g
i: — 0.5
0
1.E+05 1.E+06 1.E+07 1.E+08

Generated fragments

Figure 5.21: Performance measurements of automatic adjustment algo-
rithm (in logarithmic scale)

become active again.

Figure 5.21 shows the results of the first type of measurements and
figure 5.22 the results of the second measurements (compared with the
first ones).

The receiving algorithm of this protocol is a little bit slower than the
simple time-out one, because it has some more controls to do and some
more functions to perform.

Nevertheless, here we can draw the same conclusions we gave in that
case. The second test, in fact, has a bigger overhead time than the first
one (as figure 5.22 nicely confirms), because with real missing fragments
the receiving algorithm is forced to check more conditions and so wastes
more time in its computation. The results of both tests are quite good
(an average of almost 2 microseconds per fragment), except few of them
due to the inaccurate time function.

We can deduce that all three protocols implemented gave reasonable
performance. Of course, the other standard overheads (due to the operat-
ing system, interrupt handling, an so on) must be taken into account, but
we are allowed to assume that our safety margin of about 25 microseconds

5.3. PERFORMANCE ON A PC 105

25
2 - . —
£ -.-—-_-.-_'-"""-—____.
£ B
D515
E 3
[]
28
o2 ——
£ §, ——5% of missing fragments
= -#-No data losses
05
0
1.E+05 1.E+086 1.E+07 1.E+08

Generated fragments

Figure 5.22: Performance measurements of automatic adjustment algo-
rithm (in logarithmic scale), with data losses

per fragment is well respected, even with the addition of those overheads.
Further, in next chapters, we will discuss the improvements which

should be expected by implementing event building in a embedded sys-
tem.

106 CHAPTER 5. EVENT BUILDING PROTOCOL

Chapter 6
Embedded Event Building

One of the more surprising developments of the last few decades has been
the ascendancy of computers to a position of prevalence in human affairs.
Today there are more computers in our houses and offices than there are
people who live and work in them. Yet many of these of these computers
are not recognised and known as such by their users: this is specially the
case of embedded systems.

In this chapter, we will describe first what embedded systems are,
where they are found and why they are useful. Later on, we will introduce
the justification to the main and new idea of our work: the embedded
event building. After the description of the event building protocol and
its implementations, seen in the previous chapter, we will explain here
our platform choice, the related motivations which support it and the
results we are going to expect.

6.1 What is an Embedded System?

An embedded system is a combination of computer hardware and soft-
ware, and additional parts electronics or mechanics, designed to perform
a specific function. A good example is the microwave oven. Almost every
household has one, and tens of millions of them are used everyday, but
very few people realize that a processor and software are involved in the
preparation of their lunch or dinner.

107

108 CHAPTER 6. EMBEDDED EVENT BUILDING

This is in direct contrast to the personal computer in the family room.
It is also comprised of computer hardware and software and mechanical
components (disk, drives, and so on). However, a personal computer
is not designed to perform a specific function. Rather it is able to do
many different kind of things. A lot of people use the term general-
purpose computer to make this distinction clear. As shipped, a general-
purpose computer is a black box, the manufacturer does not know what
the costumer will do with it. One costumer may use it as a network
server, another may use it exclusively for writing documents and a third
may use it to for playing games.

Frequently an embedded system is a component within some larger
system. For example, modern cars and trucks contain many embedded
systems. One embedded system controls the anti-lock brakes, another
monitors and controls the vehicle’s emissions and a third displays infor-
mation on the dashboard. In some cases, these embedded systems are
connected via some some sort of communications network, but this not
a requirement, of course.

It is important to point out that a general purpose computer is it-
self made up of numerous embedded systems. For example, a computer
consists of a keyboard, a mouse, a video card, a modem, a hard disk,
a floppy disk and a sound card—each of which is an embedded system.
Each of these devices, in fact, contains a processor and software, which
is hardwierd, and is designed to perform a specific function.

If an embedded system is designed well, the existence of the processor
and software could be completely unnoticed by the user of a device. Such
is the case for a microwave oven, a VCR or an alarm clock. In some cases,
it would be possible to build an equivalent device that does not contain
the processor and the software. This could be done by replacing the
combination with a custom integrated circuit that performs the same
functions in hardware. However, a lot of flexibility is lost when a design
is hard-coded in this way. It is much easier, and cheaper, to change a few
lines of software than to redesign a piece of custom hardware.

6.1. WHAT IS AN EMBEDDED SYSTEM? 109

6.1.1 History and future

According to the definition of embedded systems given earlier in this
chapter, the first such systems could not possibly have appeared before
1971. That was the year Intel introduced the first microprocessor of the
world. This chip, the 4004, was designed for being used in a line of busi-
ness calculators produced by the Japanese company Busicom. In 1969,
Busicom asked Intel to design a set of custom integrated circuits one
for each of their new calculator models. The 4004 was Intel’s response.
Rather than designing custom hardware for for each calculator, Intel pro-
posed a general-purpose circuit that could be used throughout the entire
line of calculator models. This general-purpose processor was designed to
read and execute a set of instructions—software—stored in an external
memory chip. Intel’s idea was that the software would give each cal-
culator its unique set of features. The microprocessor was an overnight
success and its use increased steadily over the next decade. Early embed-
ded applications included unmanned space probes, computerised traffic
lights and aircraft flight control systems. In the 1980s, embedded systems
quietly rode the waves of the microcomputer age and brought micropro-
cessor into every part of our personal and professional lives. Many of the
electronic devices in our kitchens (bread machines, food processors and
microwave ovens), living rooms (televisions, stereos and remote controls)
and workplaces (fax machine, pagers, laser printers, cash registers and
credit card readers) are embedded systems.

It seems inevitable that the number of embedded systems will con-
tinue to increase rapidly. Already there are producing and selling new
embedded devices that have enormous market potential: light switches
and thermostats that can be controlled by a central computer, intelligent
air-bag systems that do not inflate when children or small adults are
present, palm-size electronic organisers and personal digital assistance
(PDAs), digital cameras and dashboard navigation systems.

6.1.2 Real-Time Systems

A well known and studied subclass of embedded systems is the set of
the real-time systems. As commonly defined, a real-time system is a

110 CHAPTER 6. EMBEDDED EVENT BUILDING

computer system that has timing constraints. In other words, a real
time system is partly specified in terms of its ability to make certain
calculations or decisions in a timer manner. These important calculations
are said to have deadlines for completion. And, for all practical purposes,
a missed deadline is just as bad as a wrong answer.

The issue of what happens if a deadline is missed is a crucial one.
For example, if the real-time system is part of an airplane flight control
system, it is possible that the lives of the passengers and crew are be-
ing endangered by a single missed deadline. However, if the system is
involved instead in satellite communication, the damage could be lim-
ited to a single corrupt packet. The more severe the consequences, the
more likely it will be said that the deadline is “hard” and, thus, the sys-
tem a hard real-time system. Real-time systems at the other end of this
continuum are said to have “soft” deadlines.

All the topics relative to embedded systems are applicable to the
designers of real-time systems. However, the designer of a real time
system must be more diligent in his work. He must guarantee reliable
operation of the software and hardware under all possible conditions.

6.2 Role of Embedded Processors

Unlike software designed for general-purpose computers, embedded soft-
ware cannot usually be run on other embedded systems without signif-
icant modification. This is mainly because of the incredible variety in
the underlying hardware. The hardware in each embedded system is tai-
lored specifically to the application, in order to keep system costs low.
As a result, unnecessary circuitry is eliminated and hardware resources
are shared wherever possible. In this section we will summarise what
hardware features are common across all embedded systems and we will
give some examples of their usual, commercial application.

By definition all embedded systems contain a processor and software,
but what other feature do they have in common? Certainly, in order to
have software, there must be a place to store the executable code and
temporary storage for runtime data manipulation. These take the form

6.2. ROLE OF EMBEDDED PROCESSORS 111

of ROM and RAM, respectively; any embedded system will have some of
each. If only a small amount of memory is required, it might be contained
within the same chip as the processor. Otherwise, one or both types of
memory will reside in external memory chips.

All embedded systems also contain some type of inputs and outputs.
For example, in a microwave oven the inputs are the buttons on the front
panel and a temperature probe, and the outputs are the human-readable
display and the microwave radiations. It is almost always the case that
the outputs of an embedded system are a function of its input and several
other factors (elapsed time, current temperature, and so on). The inputs
to the system usually take the form of sensors and probes, communication
signals, or control knobs and buttons. The outputs are typically displays,
communication signals or changes to the physical world. Figure 6.1 shows
a general example of an embedded system.

Memory

Inputs Processor Outputs >

Figure 6.1: Generic embedded system

112 CHAPTER 6. EMBEDDED EVENT BUILDING

With the exception of these few common features, the rest of the
embedded hardware is usually unique. This variation is the result of
many competing design criteria, Each system must meet a completely
different set of requirements, any all of which can affect the compromises
and tradeoffs made during the development of the product. For example,
if the system must have a production cost of less than $10, then other
things—Ilike processing power—might need to be sacrified in order to
meet that goal.

Of course, production cost is only one of the possible constraints un-
der which embedded hardware designers work. Other common design
requirements include the following aspects:

e Processing power

The amount of processing power necessary to get the job done.
A common way to compare processing power is the MIPS (millon
of istructions per second) rating. if two processors have rating of
25 MIPS and 40 MIPS, the latter is said to be the more powerful
of the two, of course. However, other important features of the
processor need to be considered. One of these is the register width,
which typically ranges from 8 to 64 bits. Today, general-purpose
computers use 32- and 64-bit processor exclusively, but embedded
system are still built sometimes with older and less costly 8- and
16-bit processors.

o Memory

The amount of memory (ROM and RAM) required to hold the ex-
ecutable software and the data it manipulates. Here the hardware
designer must usually make his best estimate up front and be pre-
pared to increase or decrease the actual amount as the software is
being developed. The amount of memory required can also affect
the processor selection. In general, the register width required es-
tablishes the upper limit of the amount of memory it can access
(for example, an 8-bit address register can select one of only 256
unique memory locations !).

1Of course, the smaller the register width, the more likely it is that the processor

6.2.

ROLE OF EMBEDDED PROCESSORS 113

Development cost

The cost of the hardware and software design processes. This is a
fixed, one-time cost, so it might be that money is no object (usually
for high-volume products) or that is the only accurate measure of
system cost (in the case of a small number of units produced).

Number of units

The tradeoff between production cost and development cost is af-
fected most by the number of units expected to be produced and

sold.

FEzxpected lifetime

The time the system will continue to function. This affects all sorts
of design decisions, from the selection of hardware components to
how much the system may cost to develop and produce.

Reliability
The reliability the final product must have. If it is a toy for children,
it does not have to work always correctly, but if it is part of a
space shuttle or a car, it has to do correctly its job each time it is
requested.

In addition to these general requirements, there are some detailed

functional requirements of the system itself. Those are the things which
give the embedded system its unique identify as a microwave oven, a
pacemaker or a printer.

In order to demonstrate the variation from one embedded system to

another and their different commercial applications, we will give in next
subsection a brief description of three embedded systems.

6.2.1 Video Game Player

When one pulls the Nintendo-64 or Sony Playstation out from its en-
tertainment center, he or she is preparing to use an embedded system.

employs tricks like multiple address spaces to support more memory.

114 CHAPTER 6. EMBEDDED EVENT BUILDING

In some cases, these machine are more powerful than the comparable
generation of personal computers. Yet video games players for the home
market are relative inexpensive compared to personal computers.

The companies that produce video game players do not usually care
how much it costs to develop the system, so long as the production costs of
the resulting product are low typically around a hundred dollars. They
might even encourage their engineers to design custom processors at a
development cost of hundreds of thousand of dollars each. So, although
there might be a 64-bit processor inside a video game player, it is not
necessary the same type of processor that would be found in a 64-bit
personal computer. In all likelihood, the processor is highly specialized
for the demands of the video games is intended to play.

Because production cost is so crucial in the video game market, the
designers also use tricks to shift the costs around. For example, one
common tactic is to move as much of the memory and other peripheral
electronics as possible off of the main circuit board and onto the game
cartridges. This helps to reduce the cost of the game player, but increases
the price of each and every game. So while the system might have a
powerful 64-bit processor, it might have only a few megabytes of memory
on the main circuit board. This is just enough memory to bootstrap the
machine to a state from which it can access additional memory on the
game cartridge.

6.2.2 Digital Watch

At the end of the evolutionary path that began with sundials, water
clock and hourglasses is the digital watch. Among its many features are
the presentation of the date and time (usually to the nearest second),
the measurements of the length of an event to the nearest hundredth
of a second. As it turns out, these are very simple tasks that do not
require very much processing power of memory. In fact, the only reason
to employ a processor at all is to support a range of models and features
from a single hardware design.

The typical digital watch contains a simple, inexpensive 8-bit proces-
sor. Because such small processors cannot address very much memory,

6.2. ROLE OF EMBEDDED PROCESSORS 115

this type of processor usually contains its own on-chip ROM. And, if
there are sufficient registers available, this application may not require
any RAM. In fact, all of the electronics—processor, memory, counters
and real-time clocks—are likely to be implemented on a single chip. The
only other hardware elements of the watch are the inputs (buttons) and
outputs (LCD and speaker).

The watch designer’s goal is to create a reasonably reliable product
that has an extraordinary low production cost. If, after production, some
watches are found to keep more reliable time than most others, they can
be sold under a brand name with a higher markup. Otherwise, a profit
can still be made by selling the watch through a discount sales channel.

6.2.3 Mars Explorer

Recently, NASA launched the Pathfinder mission. Its pimary goal was to
demonstrate the feasibility of getting to Mars on a budget. It was actually
two embedded systems: a landing craft and a rover. The landing craft
had 32-bit processor and 128 MByte of RAM; the rover, on the other
hand, had only an 8-bit processor and 512 kByte. These choices reflect
the different functional requirements of the two systems.

6.2.4 Conclusions

Embedded systems are becoming very common: they are present every-
where, in our daily life as well as in big experiments of high technology
resolution, and the previous subsections state quite well these various
aspects. Naturally, embedded systems find their working and developing
environment in the computer science world, where the research field is
moving further and further in this direction and new ideas and solutions
are coming at any time. Nowadays we can count on the presence of em-
bedded systems in many places for improving our computer performance.
Embedded systems are in drivers, printers, network cards and so on. The
last generation products are the credit card PCs: a complete and working
computer with the dimensions of a credit card.

In consequence of this great development which seems set to continue

116 CHAPTER 6. EMBEDDED EVENT BUILDING

and grow, it has been decided in our working environment to under-
take a new guide line which explores and utilises this type of technology,
completely unfamiliar to the event building strategies. Our aim is to in-
vestigate and analyse the scope of this technology for suggesting at the
end a new solution which possibly improves the performance of the event
building implementation, according to the considerations described in the
folllowing section.

6.3 Embedded Event Building Justification

The idea of exploiting the capabilities of embedded systems for the event
building needs has come out of several considerations, that we will try to
explain in detail in this section. These considerations have convinced us
to concentrate on the embedded system solution but, of course, we can-
not be sure that our work will be the best answer to the event building
requirements and will be really adopted in 2005, when the LHCb experi-
ment will start running. By the way, the following considerations remain
valid and need solutions, regardless of the results presented in this work.
First of all, it should be noticed that with the LHCb expected rate
of 40 kHz and an aggregate bandwidth of 4 GByte there is no guarantee
that a farm of general-purpose CPUs can be sufficient and fast enough,
because of the time overheads due to the interrupt handling. Interrupts,
in fact, have a great impact on the CPU performance, specially when
computation time is very limited and restricted, like in our case. If we
have a look at the technology improvements during last few years, we
can immediately notice that, while the CPU power has increased by a
significant factor, the interrupt latency has gone down in a less evident
way. Even if the time to handle an interrupt has decreased by some
factor, interrupt latency is still high and it is not comparable with the
recent processor power improvements, as shown in table 6.1 [4].
Moreover, we should notice that general-purpose CPUs usually rely
on cache for their computation. Interrupts tend to be “cache-breakings”,
i.e. tend to end-up in flushing cache locations, which , in turn, means that
these locations have to be refilled from memory. This is a slow process,

6.3. EMBEDDED EVENT BUILDING JUSTIFICATION 117

Interrupt Latency | Scheduling Latency Processor
7.54 us 12.57 us 33 MHz 486
1.84 ps 4.73 ps 100 MHz Pentium
1.38 pus 2.93 us 200 MHz Pentium

Table 6.1: Interrupt latency and scheduling latency versus CPU power

during which the processor is basically idle [11]. A typical risk is then to
run out of cache. When this happens, all the system performances goes
down significantly. We are not in a position to stand this risk and so it
is essential for us to find out a solution which avoids this problem.

We could invest a lot in CPU power but this would be a big and
expensive investment.

However, also all the TCP/IP functionalities use a lot of the CPU
power. Thus, there is a strong possibility that computer industry will
try to down-load in the future the TCP/IP stuff inside network interface
cards (NICs), in order to make the CPU load lighter [6]. “Smart” NICs,
with processor power inside, are the new technology challenge.

Therefore, if future NICs are smart enough, in the sense that they
have enough processor power, we will be able to do event building inside
them, exploiting their primitive environment, free of all the latencies
which are an unavoidable feature of standard operating systems.

With embedded event building, only complete events will be given
to the the CPU and so the number of interrupts will be reduced by a
significant factor (one interrupt per event, instead of one interrupt per
fragment).

Of course we perfectly know that there are some risks which must
be taken into account. First of all, smart NIC commerce might not be
the real investment of the industry in the future. For example, at the
moment, it is becoming popular among the networking industries the idea
of implementing IP functionalities directly in hardware, without using a
processor inside NICs. If this solution spreads, it will not be useful for
us. Our need, in fact, is the presence of a general-purpose CPU inside
the NIC, for doing event building there.

118 CHAPTER 6. EMBEDDED EVENT BUILDING

Anyway, even if smart NICs do not succeed, we will need them, at
least from the source point of view. Destinations can be realized in
software way, by using general-purpose PCs, but RUs are completely
hardware. There we need smart NICs because a standard NIC cannot be
easily driven by an FPGA, which is immediately before network interface
in the RU setup (as shown in figure 6.2).

Experiment
PCI AUX I Primary PCI Bus 32@33/66 MHz MCU | LA Control
CONN. —>
I pPMC System
(PCI Host)
PCI PCI
Bridge Bridge
MONITORING & CONTROL
— 1l @ PCI Bus
- gs—unk #3 FIFO 32@33 MHz
=T U @ FPGA [j« =
a2 o : ﬁg SEM 1 TAGNET
85 . " 5 1 (LVDS)
= P EN s ‘
o = FPGA
2% U o }--s Ea
w s
Ls . I8 Bl <>
55 3 32 B 8
£ T sink s FIFO =
5§E FPGA]L..| o bAQ
g5 U ‘ 2 32 32 9 NIC 1S Readout
= _ 0 ﬁg SEM 3 PMC N
- i 32 A g Network
172 sLink #0 FIFO ‘ m 2
BB U ‘ FPGA| ©
- - - 64 a
INPUT STAGE PLD Efl [«
SUB-EVENT
BUFFER | 32 SLink
Readout __|Throttle Output
Supervisor OUTP UT STAGE
&>
FRONT PANE L 1/0s REAR 1/0s

Figure 6.2: Architecture of the RU model

If smart NICs die, the only possibility will be to build the RU net-
work interface with a standard NIC, driven by a credit card PC. By the
way, the smart NICs actually in commerce are powerful enough to be
used in the RU unit model. The next chapter will describe the hard-
ware/software definition of the smart NIC we have studied: the Tigon 2
by Alteon WebSystems.

Chapter 7

A Gigabit Ethernet smart
NIC: Tigon 2

Tigon 2 is a “smart” NIC produced by Alteon WebSystems. It supports
10/100/1000 Mbps transmissions and fully complies with the IEEE 802.3
specifications and updates. It seems to be a good candidate for the
embedded event building project. It has been considered and studied
also by the ATLAS DAQ group, which does not have the embedded
event building aim, but has appreciated its nice performance as network
programmable interface.

In this chapter we will introduce the Tigon 2 smart NIC and its fea-
tures. First of all, we will give an overview of the hardware architecture,
placing emphasis in particular on the interface between the NIC and the
network. We will carefully go through the sending/receiving structures
and routines. They are important features for our work and we will need
to know them quite well. At some point, in fact, we should modify those
routines to performs our project functionalities.

After the hardware overview, the NIC software description will follow
and the way it interfaces and communicates with the host !.

Finally we will report some evaluations on the Tigon performances.

Further and in-depth information regarding the Tigon PCI/Gigabit Ethernet can
be found in the Alteon web site [7] and in the two papers which describe the hard-
ware/software characteristics of the smart NIC, [5] and [8].

119

120 CHAPTER 7. A GIGABIT ETHERNET SMART NIC: TIGON 2

7.1 Tigon 2: Architecture

The Tigon PCI/Gigabit Ethernet Network Interface Card is designed to
be a high integration and high performance Gigabit Ethernet ASIC used
in adapters for workstations and computers. This ASIC is compliant
with the PCI Local Bus Specification Revision 2.1. The Tigon contains
the DMA function necessary to off load either the host or the adapter
from having to move data between the different memory spaces. A block
diagram of the Tigon chip is shown by figure 7.1.

As data is transferred between the two interfaces it is buffered in a
FIFO. This allows for buffering and proper synchronisation of the data
to the output interface. Internally there are two FIFOs, one dedicated
to each direction.

The design fully supports automatic handling of misaligned trans-
fers. This means that the data to be moved can be transferred between
any two buffers regardless of the alignment of either buffer. For imple-
mentations which support the ability to DMA the data directly into the
application’s memory spaces, this feature might prevent the host from
having to make unnecessary data copies. Internally, data is aligned to
the FIFO boundaries.

A TCP/IP style checksum is calculated on all data that is trans-
ferred through the Tigon FIFOs. Any implementation in which the host
supports hardware checksum assist can benefit from this hardware cal-
culation. The checksum is calculated and automatically stored for each
DMA buffer descriptor.

The PCI specification is inherently little-endian. Not all hosts want
data presented in the little-endian format. The Tigon contains the abil-
ity to do little-endian to big-endian swaps on either 8 Byte or 4 Byte
boundaries. It is also possible that the Tigon can be used as a basis for
non-PCI interfaces which expect the data to be in big-endian format.
This feature allows for the maximum flexibility.

The Tigon also contains a processor to manage the reading and chain-
ing between buffer descriptors. Buffers can be chained to support the
“scatter/gather” model of host memory. The code for this processor can
be modified in order to optimise the format of the buffer descriptors to

121

TIGON 2: ARCHITECTURE

7.1.

S34ay3s
|'euss |

S3AY3S [euUBIXT

1 IND ‘T IN

uoneniq Iy
sng
Kiow s
A
siosiboy 4P »| sieisiBoy apodag <
10 Juod <+—>» A.v v NG Byuod
wns3o8yn Jua wu By uols J8AU0D +
— — OdId
> diid 0L a14g o uelpug »
1085820 Id o xnwag
oS 1M @ @ | SS@ 1pPV
AN Ine 10-2€ n' 5
< wns3a8yd 8 wu By uols JaAU0D
d — — A
pedyotesos| 4 Lyao1 aifg 041 ue %
sng
@) | sasibey 10d
» Y Na
Ll
<+ ovN) "
lBulayia Wm NNN
1°¢
000T/00T/0T
4| — — odid ereq ol &
ssedAg
<
ssalppy

Figure 7.1: Tigon 2 architecture

122 CHAPTER 7. A GIGABIT ETHERNET SMART NIC: TIGON 2

that which is most efficient for the host.

7.1.1 PCI Supported Features

The PCI specification provides a mechanism for adapters to be uniquely
configured depending on the resource available in the host in which they
are inserted. In the personal computer market this feature is called “Plug
and Play”. The Tigon fully supports this configuration process.

At the heart of the configuration process is a maximum 256 Byte re-
gion in which the adapter’s PCI interface can be controlled. The adapter
uniquely identifies itself and indicates to the host what it requires in
terms of memory space, I/O space, bus latency, interrupts, and so on.
The host in return provides the adapter with the necessary information.

In order to simplify the controller, only configuration registers are
controlled by the PCI clock while all other registers are controlled by the
Memory Bus clock.

All supported configuration registers are preloaded after a reset from
the serial EEPROM. This preserves the adapter configuration informa-
tion even if the adapter is moved between machines. When necessary,
software can update the contents of the EEPROM if the configuration
needs to be altered.

Since the Tigon is capable of being a PCI bus master, it participates
in the bus arbitration process, whose mechanism is outlined in the PCI
specification [32].

7.1.2 Local Memory

The Tigon PCI/Gigabit Ethernet Controller provides a 64-bit high-speed
memory bus to connect to local memory. The internal data structure of
the Tigon is built around this 64-bit bus width.

The maximum frequency of the memory bus is 50 MHz. This al-
lows for a maximum bandwidth of 800 MBytes/second with synchronous
memory and 400 MBytes/second with asynchronous memory. Each ac-
cess into the SRAM located on the memory bus can be to any address.
Therefore no bursting is required by this memory design. The same clock

7.1. TIGON 2: ARCHITECTURE 123

which controls the local memory is used to control the majority of the
Tigon chip; it is considered asynchronous from the PCI bus clock.

Any combination of Byte, half-word or word writes are allowed by
the hardware. Reads always supply 64-bits of data from the external
memory. The memory sub-system has no knowledge as to whether the
useful portion of data is a Byte, a word, and so on.

7.1.3 Internal Processors

The Tigon contains two embedded 32-bit processors, which can be used
for any function, including parsing buffer descriptors and controlling the
DMA hardware registers. The processors can be set up to accommodate
different buffer descriptor format, allowing the Tigon chip to adapt to
the communication method which best suits the host. This approach is
consistent with the goal of providing a flexible PCI Controller solution.

Fully contained inside the Tigon, the processors are capable of gener-
ating operations to the PCI bus as well as to local memory. This allows
control information to be located in either memory space. All registers
internal to the Tigon can also be accessed by either the embedded pro-
cessors or by the host through the Tigon’s target interface.

The operation of the processors is governed by firmware. External to
the Tigon will be a small non-volatile serial EEPROM which will contain
all the power on diagnostics and PCI initialisation tasks. Any additional
software can be down-loaded by the host driver into the local SRAM
memory. Since each local memory operation fetches 8 Bytes, up to two
processor instructions can be loaded into the Tigon on each instruction
fetch cycle.

An instruction cache as well as internal SRAM is provided to enable
the processor to not use any of the valuable local memory bandwidth for
most firmware execution. The instruction decoding is modelled after the
R4000 RISC processor with some instructions removed and several new
ones added for embedded optimisation.

124 CHAPTER 7. A GIGABIT ETHERNET SMART NIC: TIGON 2

7.1.4 Events

The model with which the embedded processor executes is an event model
rather than an interrupt model. This means that the processor is not
interrupted by the task at hand, but each task should be kept to a small
thread of code. There is a significant hardware assist for event processing
within the Tigon to facilitate a robust execution environment.

There is a single 32-bit register in the Tigon which includes bits for
each of the events that the processor must handle. The processor main
loop is to wait for events and then deal with them in priority order. Two
special instructions were created to allow the processor to index into an
event jump table based on the most significant (highest priority) bit set
in the event register.

Not all events are created by the hardware. There are several bits
within the event register which are completely controlled by software.
This allows software to queue events to be handled within the priority
encoded main loop.

7.1.5 Flash

The Tigon PCI/Gigabit Ethernet Controller has been designed to inter-
face to an external flash memory for storage of important configuration
and manufacturing information. All PCI adapters must provide configu-
ration information to the host after power-up. The processor in the Tigon
chip initially executes from this flash and loads all internal PCI registers
from predetermined locations inside that flash after a reset. This enables
the adapter to respond properly throughout the configuration process.

The flash technology allows vital adapter information to be accessed
and updated whenever it is necessary. The host or local processor may
read or write these locations via the Control Register. The two processors
should not attempt to write the flash at the same time.

The flash has additional memory locations which are available for
storage of non-PCI information. These locations can be used to store
addresses, manufacturing data, diagnostic results, and so on. Software is
responsible for managing these locations.

7.1. TIGON 2: ARCHITECTURE 125

7.1.6 Mailboxes

A common technique to facilitate communication between host processors
and adapters, are mailboxes. Typically these are locations which are
written by one processor that causes an interrupt to the other processor.
The value written may or may not have any significance. The number of
mailboxes in each direction is usually fixed. Each processor is allowed to
read the mailbox only once it is cleared by the hardware.

The Tigon has generalised the concept of mailboxes in order to provide
greater flexibility in the interaction between the host and the adapter.

In order to implement mailboxes in which the value of the mailboxes
is not significant, the processor need only to define the software interrupts
such that each interrupt has a predetermined meaning.

In order to implement mailboxes in which the value of the mailbox
is significant, the adapter can map some of its local memory onto the
PCI bus which functions as a mailbox window. This window is accessible
by both processors and is predefined to be 1 kByte in size. The second
256 Bytes of this window are divided into 32 8-Byte locations and have a
special meaning. A write to the upper half of any of these 32 locations will
cause an event to the internal processor with a notification as to which
location was written. Actually, there is a separate event bit for each of
these 32 locations. The lower 256 Bytes or the upper 512 Bytes (that is,
not mailbox area) of this window have no predetermined meaning and
can be software defined.

Software should be designed so that it is clear which processor is
allowed to write to any given portion of the memory. This technique can
be used to create many logical mailboxes of various size without being
strictly limited by the hardware. An additional benefit to this technique
is that the mailbox may be read as many times as necessary without the
loss of the mailbox contents.

The first mailbox has special meaning since the PCI interrupt pin is
immediately deasserted when it is written. This feature allows software
to define a mechanism for a host processor to clear the interrupt at the
same time as passing a message to the Tigon’s processor.

126 CHAPTER 7. A GIGABIT ETHERNET SMART NIC: TIGON 2

7.1.7 Ethernet Transmit Interface

The Tigon’s transmit Ethernet interface fully complies with the IEEE
802.3 specifications and is kept up to date with the 802.3z Gigabit Eth-
ernet proposal.

The Tigon uses Ethernet descriptors to keep track of packets being
sent to the serial Ethernet interface. The format of these descriptors is
fixed in order to allow the hardware to directly reference the fields within
the descriptors.

The Ethernet transmit interface is responsible for sending packets to
the external network interface by reading the associated transmit descrip-
tor and the packet from the local memory buffer. Error conditions are
monitored during the packet transmission and reported to the software
through an event at the moment in which they occur. For the transmit
interface, errors are considered unusual and are therefore treated as rare
events.

Transmit Descriptors

The Ethernet transmit descriptors are set up by software in order to
indicate to the transmit hardware where the packets to transmit are
located. The descriptors are organised into a ring with a producer and a
consumer index. After software initialises the fields within the descriptor
and the first doubleword located at the Starting-Address. it updates the
producer index indicating to the hardware that it can read the descriptor
and establish any connection required. Whenever the producer and the
consumer indexes are equal there are no packets to transmit.

Each of the transmit descriptor are eight Bytes in length, as illus-
trated by figure 7.2. The first 32 bits contain the Byte address at which
the packet starts within the external SRAM associated with the Tigon’s
buffer memory. Since all Ethernet packets must start on a doubleword
boundary, the least significant three bits of the address should always be
zero. All reserved bit position are not referenced by the Tigon and can
be used by firmware to store state information if so desired.

If while sequencing through the buffer reading the packet for trans-
mission, the last word fetched was from the top of the transmitting buffer

7.1. TIGON 2: ARCHITECTURE 127

31 0
N| Tag Reserved Starting A ddress 000 | Word0
C |Type
TAG Packet Length Word 1

Figure 7.2: Ethernet transmit descriptor

space, the buffer consumer pointer will automatically be set to the trans-
mit buffer address.

The lower 32 bits contain the length of the portion of this packet in
Bytes which is described by this descriptor.

Transmit Descriptor Indexes

The Ethernet transmit descriptors are organised in a ring of descriptors
located in a consecutive block of memory. The offsets into this block of
memory which point to specific descriptors are called “Indexes”. The
two indexes which are used to maintain transmit descriptors are the pro-
ducer index and the consumer index. The producer index is updated
by the firmware after the respective transmit descriptor fields have been
initialised. The consumer index is updated by the hardware after it
transmits the packet corresponding to that descriptor. Whenever the
two indexes are equal, there are no additional packets to transmit.

Both the transmit producer and consumer indexes are 8 bits in length;
therefore there are a total of 256 transmit descriptors respectively. One
transmit descriptor must remain unused so that the producer does not
overtake the consumer. This means that there are 255 usable transmit
descriptors at any time. Separate address decodes are provided which
allow software to read or write either of these two indexes. For normal
operations however, software would write the producer index and read
the consumer index.

128 CHAPTER 7. A GIGABIT ETHERNET SMART NIC: TIGON 2

To facilitate the generation of internal events when the hardware has
completed the transmission of a packet, a reference index register was
created inside the hardware. This reference index is the same size as the
producer and consumer index. If at any point the reference index is not
between the producer and the consumer nor equal to the producer, then
an internal event is generated. Software can now set up the reference
index to the current packet, knowing that an event will be generated
when the hardware advances beyond that packet.

Transmit Buffer Indexes

The Ethernet transmit buffer is organised as a circular buffer ring oc-
cupying a consecutive block of memory. The offset into this block of
memory which point to specific addresses are called “Indexes”. The two
indexes that are used to maintain transmit buffer are the transmit buffer
producer index and the transmit buffer consumer index. The producer
index is updated by firmware to point to the next doubleword after the
valid data to be sent. The consumer index is updated by the hardware
as it transmits the packet to indicate where to fetch the next transmit
data. Whenever the two indexes are equal, the transmit buffer is empty.

Transmit Flow Control

The Ethernet transmit interface supports the 802.3x flow control mech-
anism in hardware. This feature must first enabled in order to allow
the hardware to send such flow control packets. Transmission of a valid
802.3x packet is done based on high and low water marks for number of
receive descriptors unused and receive buffer space which is unused.

Once high water mark has been exceeded, an “XOFF” packet will be
sent as the next packet. If the “XOFF” length is about to expire another
flow control packet will be sent to refresh it up until the low resource
drops below the water mark at which point an “XON” message will be
sent.

7.1. TIGON 2: ARCHITECTURE 129

Ethernet CRC Calculation

The Tigon uses standard 32-bit CRC required by the Ethernet specifi-
cation in all packets. It also uses the same CRC during receive as the
hash function for multicast filtering, and to verify the integrity of areas
of external non-volatile memory.

7.1.8 Ethernet Receive Interface

The Tigon’s Ethernet receive interface fully complies with the IEEE 802.3
specification and is kept up to date with the 802.3z Gigabit Ethernet
proposal.

The Tigon uses receive descriptors to keep track of packets being
received from the serial Ethernet interface. The format of these descrip-
tors is fixed in order to allow the hardware to directly reference the fields
within the descriptors.

The Ethernet receive interface is responsible for accepting packets
from the external network interface and placing them in the local memory
buffer along with an associate descriptor. All data being received from
the Ethernet interface goes through a small synchronising FIFO which
synchronises the data to the internal clock frequency.

Error conditions are monitored during the packet reception and re-
ported to the software through the status word located in the Ethernet
descriptor. Serialiser /deserialiser integrity errors are always reported di-
rectly to the internal processor. They may also be indicated in the final
status word if a receive packet was in progress. This allows the processor
to monitor the quality of the channel and perform any necessary error
reporting to the host.

Packet Structure

The packet structure for received packets in the local buffer memory is
shown in figure 7.3. This structure will always start on a doubleword
boundary.

130 CHAPTER 7. A GIGABIT ETHERNET SMART NIC: TIGON 2

Unused Doubleword 0

Packet Data with CRC
padded to doubleword boundary

Figure 7.3: Ethernet receive memory layout

Errors

The Ethernet receive interface monitors several indicators during the
reception of a packet. Not all of these indicators can be considered fatal
errors. In fact in some cases, such as diagnostic, they maybe created
intentionally. The hardware makes no attempt to do anything but report
the information along with each packet. The only cases in which the
packet is aborted happens when the serial Ethernet interface indicates a
fatal condition. Errors which occur during a packet reception are reported
in the status word filed of the receive descriptor.

Receive Descriptors

The Ethernet receive descriptors are set by hardware in order to indicate
to the software where the received packets are located. In a similar
way to that used to communicate with the sending part, the descriptors
are organised into a ring with a producer and a consumer index. The
hardware writes the fields within the descriptor only at the end of the
packet. The hardware also updates the producer index indicating that
software that it can now start processing the received packet. Whenever
the producer and consumer indexes are equal there are no packets in the
receive buffer.

Each of the receive descriptors are 8 Bytes in length as illustrated by
figure 7.4. All 8 Bytes of the descriptors are written at the end of the

7.1. TIGON 2: ARCHITECTURE 131

packet being received. The first 32 bits contain the Byte address within
the external SRAM associated with the Tigon’s receive buffer at which
the packet starts. All received packets will be placed in the receive buffer
starting doubleword boundaries. All reserved bit positions are not used
by the Tigon and will therefore be set to zero by the hardware.

31 0

Always 0 Starting A ddress 000 | Word 0

Ending Status Packet Length Word 1

Figure 7.4: Ethernet receive descriptor

Receive Descriptor Indexes

The Ethernet receive descriptors are organised in a ring of descriptors
located in a consecutive block of memory. The offsets into this block
of memory are called “Indexes”. The two indexes which are used to
maintain receive descriptors are the producer index and the consumer
index. The producer index is updated by hardware after the respective
receive descriptor fields have been initialised at the end of a packet. The
consumer index is updated by the firmware after it completes the pro-
cessing on the packet corresponding to that descriptor. Whenever the
two indexes are equal, there are no packets in the receive buffer.

Both the receive producer and consumer fields are 9 bits in length;
therefore there are a total of 512 receive descriptors. The receive indexes
points to either word in the receive descriptor, as follows: the producer
index advances to point to the second half of the descriptor when a new
packet reception has started. The producer index advances to point to
the beginning of the next descriptor when the packet has been completely
received. This feature is utilised as a mechanism by the hardware to

132 CHAPTER 7. A GIGABIT ETHERNET SMART NIC: TIGON 2

indicate the difference between a packet reception in progress and one in
which the entire packet has been received.

To facilitate the generation of internal events when the hardware has
completed the reception of a packet, a reference index register was cre-
ated inside the hardware. This reference index has the same size as the
producer and consumer indexes. If at any point the reference index is not
between the producer and the consumer nor equal to the producer, then
an internal event is generated. Software can now set up the reference in-
dex to the current packet, knowing that an event will be generated when
the hardware advances beyond that packet.

Receive Buffer Indexes

The Ethernet receive buffer is organised as a circular buffer occupying a
contiguous block of memory. The offsets into this block of memory which
point to specific addresses are called “Indexes”. The two indexes which
are used to maintain the receive buffer and the receive buffer producer
index and the receive buffer consumer index. The producer index is
updated by the hardware as it receives the packet to indicate where it
will place the next data received. the consumer index is updated by
firmware to point to the first doubleword of valid data it has yet to
process. Whenever the two indexes are equal, the receive buffer is empty.

Receive Flow Control

The Ethernet receive interface supports the 802.3 flow-control mechanism
in hardware. Reception of a valid 802.3x packet will update a counter
which indicates how long the transmit interface should stop sending pack-
ets. Any packets which has already started transmission will not be af-
fected. Both “XOFF” and “XON” packets are allowed.

7.1.9 Gigabit Ethernet MAC

Built into the Tigon is an Ethernet MAC capable of running at ei-
ther 10/100/1000 Mbit/second. Support for 10/100 modes is achieved

7.2. HOST/NIC SOFTWARE INTERFACE 133

through an MII interface. Support for 1000 mode is currently done via ex-
ternal Fibre Channel components operating at Gigabit Ethernet speeds.

The transmit and receive Gigabit Ethernet interfaces function inde-
pendently of each other when configured for full-duplex operation. The
MAC is also capable of operating in half-duplex mode.

7.2 Host/NIC Software Interface

The main mechanism to effectively communicate between the host and
the Tigon PCI/Gigabit Ethernet Controller is via buffer descriptors lo-
cated in host memory. This is not the only technique: mailboxes are also
supported, as already stated. Host descriptors are efficient since they
allow for larger amounts of data to be passed without the need for host
access over the PCI bus. In most environments each time the host pro-
cessor directly accesses a location on the PCI bus, the host slows down
and loses some of its processing time.

The following description gives the standard way of working of the
Tigon and its way of interacting with the host. This is the point from
where we started: we have studied the usual functionalities of the NIC,
in order to be able to modify them when necessary and useful for our
aims. For example, we will change a little bit the data DMA between the
NIC and the host. Usually, as soon as the NIC receives frames from the
network, it does some checks and then transfers the data contained onto
the host. With event building code working on the NIC, we will need to
keep the data on the card memory until an event is completed, when all
the fragments belonging to it will move to the host at once.

This and other features will be modified on the NIC, in order to
accomplish the project requirements, but, first of all, it is necessary to
give an overview on the standard behaviour of the NIC, to know what
must be kept and what must be changed.

The NIC manages data structures in host memory using DMA and
the following control block:

e The Shared Configuration Block

134 CHAPTER 7. A GIGABIT ETHERNET SMART NIC: TIGON 2

Host Data Space Shared Memory Space NIC Data Space

WIC registers

Statistics Statistics

EventECE \ Event RCB

rzen info pointer

Command RCB Command BECB
Send ECB Send RCB
Std Recv RCB Std Becw RCB

Tumbo Recv ECB Jumb o Recw RCB

Tecw Return ROB DMA M Eecv Return RCB

Event Producer Ptr Event Producer Ptr

Eecv Eetumn
Producer Ptr

Eecv Eeturn
Producer Ptr

Send Consumer ptr

Eefresh Stats Pir

Send Consumer ptr

Eefresh Stats Ptr

Figure 7.5: Memory model

This is a 16 kByte shared memory region of host mapped memory,
as shown in figure 7.5. All registers in this block can be shared
between the host and the NIC, however some are used operationally
by the host while others are used operationally by the NIC.

The Tigon accesses the shared memory through a 2 kByte window.
The base of this window is set by the Window Base Address register
(in the PCI Configuration Region), which defines a local memory
address (from the point of view of the NIC’s internal processor).
That register may contain any valid local memory address, but the
usage of the least significant 11 bits varies depending on how the
local memory is addressed. If the 2 kByte window is used, then the
least significant 11 bits are ignored and are substituted with zeros.

7.2. HOST/NIC SOFTWARE INTERFACE 135

Shared Configuration Block Address

PCI Configuration Region 0x0000 - 0x003F
Tigon Configuration Region 0x0040 - 0x04FF
Mailboxes 0x0500 - 0xO5FF
General Communications Region | 0x0600 - 0x07FF
Local Memory Window 0x0800 - OxOFFF
Reserved 0x1000 - 0x3FFF

Table 7.1: Shared Configuration Block

Otherwise the entire Window Address register is used to indicate
the local memory address of the operation.

The host maps any Tigon local memory region into the shared
memory, using the Local Memory Window, which is a 2 kByte
memory region. This window is accessed by setting the window
Base Address Register (the host uses this window to download the
firmware into the NIC and update the Send Ring).

e The General Information Block

This is in the host memory and contains the statistics area and the
control blocks for the shared ring structures. The NIC DMAs this
block from the host during firmware initialisation.

7.2.1 Shared Rings

As said before, the host and the NIC use a series of shared rings to
communicate with each other. While each ring itself is shared, there are
two indices that control the operation of each ring which are not shared.
These are the producer index and the consumer index. The producer
adds elements to the ring and increments the producer index while the
consumer removes elements from the ring and increments the consumer
index. When the producer and the consumer indices are equal, the ring
is empty. When the producer is one “behind” the consumer, the ring is
full. Figure 7.6 shows the producer-consumer model.

136 CHAPTER 7. A GIGABIT ETHERNET SMART NIC: TIGON 2

General Information Block Offset

Statistics 0x000 - 0x3FF
Event Ring Control Block 0x400 - 0x40F
Command Ring Control Block 0x410 - Ox41F
Send Ring Control Block 0x420 - 0x42F

Receive Standard Ring Control Block | 0x430 - 0x43F
Receive Jumbo Ring Control Block 0x440 - 0x44F

Receive Mini Ring Control Block 0x450 - 0x45F
Receive Return Ring Control Block 0x460 - 0x46F
Event Producer Pointer 0x470 - 0x477
Receive Return Ring Producer Pointer | 0x478 - 0x47F
Send Consumer Pointer 0x480 - 0x487
Refresh Stats Pointer 0x488 - 0x48F

Table 7.2: General Information Block

7.2.2 Data rings

Data rings contain some information about the data in the ring element
and a pointer to actual data buffer. There are two sets of data rings,
a single send ring and a set of receive rings. The ring element for all
data rings is the buffer descriptor, which describes an area within host
memory where data is waiting to be transmitted or received. Figure 7.7
shows the producer-consumer model with data.

Send Ring

The send ring is used to transfer data from the host to the NIC for
transmission on the network. The host is the send ring producer and the
NIC is the send ring consumer.

This ring is in the NIC memory and the host writes to it using the
Local Memory Window.

7.2. HOST/NIC SOFTWARE INTERFACE 137

¥
descriptor descriptors waiting
descriptor to be consumed
descriptor /

consumer descriptor
descriptor

producer descriptor

Figure 7.6: Producer-consumer model

Receive Rings

A set of receive rings are used to transfer data that has been received
from the network from the NIC to the host. There are three rings into
which the host places buffer descriptors that point to empty buffers, and
one ring that the NIC uses to place buffer descriptors that point to filled
buffers. Three rings are used to allow for different sized data buffer. One
ring, the Standard Ring, uses standard (for Ethernet) 1514 Byte buffers.
Another ring, the Jumbo Ring, uses extended 9014 Byte buffers. The
last ring, the Mini Ring, uses small buffers whose maximum length can
be specified during run time.

The host writes the receive buffer descriptors, pointing to empty
buffers, into the Standard Ring and the Jumbo Ring and hands them
out to the NIC. When the NIC fills the buffers associated with these
buffer descriptors, it returns them back to the host in the Return Ring.
The host determines which buffer descriptors was used by looking a the
flag bit (to indicate the Standard or the Jumbo Ring) and the index.

138 CHAPTER 7. A GIGABIT ETHERNET SMART NIC: TIGON 2

/ buffﬁr
h 4
deseript
eseriptor buffer
deseriptor
descriptor buffer
consumer descrint »
eseriptor buffer
deseriptor —_—
producer descriptor buffer
buffer

Figure 7.7: Producer-consumer model

7.2.3 Transmit Flow Diagram

The following diagram (figure 7.8) shows how a single frame is sent from
the host to the NIC and onto the network. For this example, the frame
is described in a single buffer descriptor.

1. The host creates a frame in the host memory.

2. The host creates a buffer descriptor or series of buffer descriptors
that describe the frame and places it or them in the send ring on
the NIC, using the Local Memory Window.

3. The host updates the send producer index and writes it into mail-
box 2 in the shared memory region.

4. The NIC receives an internal mailbox event informing that the send
producer index has been modified.

5. The NIC starts to DMA the frame from the host to the transmit
buffer in the NIC and enqueues the frame for the transmission.

7.2. HOST/NIC SOFTWARE INTERFACE 139

Host Data Space | Shared Memory Space | NIC Data Space

G @

\| send producer index |’

sendring

@ Via Local Memory Window

/ pointer to frame

kernel buffer DMA T buffer

containing frame

i
b

7
®

send consumer /AT] HIC send |
ptr I consumer index

Figure 7.8: Transmit Flow Diagram

Once the DMA of the frame is completed, the frame is transmitted
onto the network.

6. The NIC starts a DMA of the send consumer index to notify the
host that the frame pointed to by the buffer descriptor(s) has been
consumed. The DMA goes to the address specified in the send
consumer pointer. The NIC may interrupt the host at this time.

7. If the host was interrupted or is already processing events or sending
and receiving updates, it gets the new value of the send consumer
and can now free the frame, as no further references are made it.

140 CHAPTER 7. A GIGABIT ETHERNET SMART NIC: TIGON 2

7.2.4 Receive Flow Diagram

The allowing diagram (figure 7.9) shows how a single frame is received
from the network into the NIC and into the host. For this example, the
frame fits into a single buffer descriptor.

Host Data Space | Shared Memory Space | NIC Data Space

®\\| std recv prodindex L"/®

| jumbo recv prodindex

|jumbo recv nng

@\ standard recv ring | | WIC recy ring [
L DMA _

pointer to frame

pointer to B3 buf 7]

bbbk

recv return ring
_/’I—
- = DMA |
peinter to frame
kernel buffer DMA EX buffer
®\ receive return /‘T NIC recv return |
producer producer index

Figure 7.9: Receive Flow Diagram

1. The host allocates a buffer in host memory.

2. The host creates a buffer descriptor that describes the buffer (stan-
dard or jumbo) and places it in the correct host resident receive
ring.

3. The host updates the corresponding ring producer index.

4. The NIC receives an internal mailbox event informing that a receive
ring producer index has been modified and starts the DMA of the

7.3. NIC PERFORMANCE EVALUATION 141

new buffer descriptor from the appropriate receive ring to the NIC
copy of that receive ring.

5. The DMA of the new buffer descriptor completes and the NIC now
waits for a frame to arrive from the network.

6. A frame arrives from the network. The NIC immediately begins
to DMA the frame into the host buffer described by the buffer
descriptor. If the frame is larger than the value specified in the
max_len field of the Standard Ring, the NIC will use a buffer from
the Jumbo Ring, if one is available. If none Jumbo buffer is free or
the packet is less than max_len size, the NIC will use one or more
buffers described in the Standard Ring.

7. When the reception of the frame completes, the NIC updates the
length and the flags fields in the buffer descriptor in the NIC copy
of the receive ring and starts the DMA of the buffer descriptor(s)
back into the host receive Return Ring.

8. The DMA of the filled receive buffer descriptor(s) completes. The
NIC start a DMA of the receive Return Ring producer index to
notify the host that the frame pointed to by the buffer descriptor
has been filled. The DMA goes to the address specified in the
receive Return Ring producer pointer. The NIC may interrupt the
host at this time.

9. If the host was interrupted or was already processing events or
sending and receiving updates, it gets the new value of the receive
Return Ring producer index and can now use the filled buffer, as
no further references are made to it by the NIC.

7.3 NIC Performance Evaluation

Once installed the two Tigon NICs we bought from Alteon WebSystems,
we decided to work under a Linux environment. There are several Tigon’s
drivers built for different operating systems, like Windows NT, Solaris

142 CHAPTER 7. A GIGABIT ETHERNET SMART NIC: TIGON 2

and Linux; but the NIC standard firmware is compiled into the machine
language opcode by using GNU R4000 tools and the usage of GNU tools
is easier in a Unix-like environment. Thus, we decided to install the Linux
driver, developed at CERN by Jes Sorensen in 1998-1999. Like all Linux
device drivers, this is made up of object code (not linked to be a complete
executable) that can be dynamically linked to the running kernel by the
insmod program and can be unlinked by the rmmod program (further
information regarding Linux device drivers can be found in the Linux
web page [3] and in [30]). We have then built the GCC cross compiler,
version 2.95.2 (for references see the GNU web site [2]), and used it with a
.686 Linux machine on a MIPS R4000 target, with some patches supplied
by Alteon WebSystems.

We have also built a debugger: the GDB debugger, version 4.18, which
works as a remote debugger. For this, we had to developed a dedicated
driver.

The test system is shown in figure 7.10. Two PCs are running Linux
with two Alteon Gigabit Ethernet cards connected by optical fibre. Each
PC is also equipped with a standard NIC for general purpose communi-
cation.

S e - 0| lcev
:l NIC NIC _|:_
Mem —NIC | NIC Mem
PCI f PCI
PC/Linux CERN Network PC/Linux

Figure 7.10: Test setup

7.3. NIC PERFORMANCE EVALUATION 143

With this setup, we have done tests to evaluate the Gigabit Ethernet
NIC performances. First of all, we measured the “host to host” commu-
nication performance, using UDP and TCP protocols. We have measured
the time to transfer a block of 32 MBytes chopped in fixed size packets
and varied the size of the packet. We used powers of 2 for varying the
frame size and we used also Jumbo frames, to overcome the standard
packet size limit of Ethernet (1.5 kByte). For these tests, we run the
standard driver, without any kind of performance tuning. We simply
switched off the Nagle’s algorithm, as usually suggested to reach better
performances [35].

The performance results are shown by figures 7.11 and 7.12.

60 1000000
— Transfer time

» 50 + + 100000 &
o E
£ 40 4 + 10000 ‘g
£ £
T 30 ¢ -+ 1000
o o
% 20 + + 100 b7
5 5
= 10 1 + 10 =

0 A : 1

N

N x 2 b o o bd o
P N "bq’ © »\‘L r‘lﬁ:) o '\Qq/ q,(bb‘(b b‘QoJ QJ'\

Packet Size [Bytes]

Figure 7.11: UDP performance measurements

The maximum throughput is obtained, as expected, with large data
packets It reaches 55 MByte/s for UDP and 14 MByte/s for TCP.

As we can see, in both cases, we are quite far from the Gigabit nominal
bandwidth of 125 MByte per second. That is a consequence of several
factors: all the tests done are protocol dependent and there are no tuning
features applied. All these things affect the throughput.

Of course, UDP performances are much better than TCP ones. UDP
is a unreliable, connectionless protocol, so it does not have to wait for

144 CHAPTER 7. A GIGABIT ETHERNET SMART NIC: TIGON 2

16 180000
E 14 4 Transfer rate < 160000 =
g 24 - 140000 £
E | —)
2 1 < 120000 @
[£
‘E sl -+ 100000 =
— -+ 80000 =
o G Q
. 1 60000 %@
cC 4+ c
5 140000 &
= 27 Transfer time - 20000 F

0 Bl T £ T - T - T - T & T - T 2 0

,@‘lf

(S 3 ©
b P S \'O'{L,\er’ qpb‘cb R,

Packet Size [Bytes]

Figure 7.12: TCP performance measurements

connection establishment and data acknowledgements, it does not man-
age flow control and it does not have to keep data copies for possible
retransmissions. These features make UDP faster than TCP, but does
not give any guarantee of delivery. Our setup, of course, is quite reliable:
the sender and the receiver are directly connected by optical fibre and
thus no data losses are expected and we verified that was it was the case.
Thus the results obtained are consistent.

In the TCP case, performances measurements could be improved by
properly setting some variables, like the send and receiver buffer size, the
socket buffer size and so on, as suggested in [1]. However, we can already
notice from these results that increasing the packet size, the throughput
improves by a significant factor. Also Jumbo frames are enabled and
they seem to be a great performance improvement. Of course, we cannot
avoid the protocol delays, which are quite high but make TCP a reliable
protocol.

The second type of tests we have done is the “NIC to NIC” perfor-
mance measurements. In these tests we sent Ethernet frames directly
from one NIC to the other and measured the time the packets took to
reach the destination. We did not utilise any kind of protocol but we

7.3. NIC PERFORMANCE EVALUATION 145

used raw Ethernet, to avoid higher layer protocol overheads. We expect
a higher link bandwidth utilisation.

We had to modify a little bit the standard firmware, of course. From
the receiver point of view, we changed the firmware receiving routine,
in order to check and count the frames arrived and then discard them,
without DMAing any data to the host. We simply receive frames, check
them and immediately free buffer space, by updating the descriptors. In
this way we are sure that all frames sent have correctly arrived and we
also avoid the delays due to the DMA.

From the sender point of view, on the other hand, we had to write
our own sending routine. This routine is triggered by the mailbox mech-
anism (described before) and forces the NIC to send Ethernet frames,
directly built inside the card, without waiting for any data DMA from
the host. This trick is done by allocating an Ethernet frame in the first
free buffer descriptor and making the send producer descriptor pointing
to it. The frame is then automatically completed by the hardware with
the checksum and sent through the network. The hardware updates also
the send consumer descriptor and so the card and the software are ready
to sent another packet.

We assigned a “LHCb magic number” to the frames sent by our send-
ing routine, in order to distinguish raw Ethernet frames from the others
and to be sure to send and count them in the proper way. We placed
this number in the Length or Type field of every frame, because it was
an empty and free field, due to the lack of any kind of protocol, whose
type should be specified here.

The tests realized are the same as in the “host to host” performance
measurements: the same amount of data, 32 MByte, is sent using differ-
ent packet sizes (always powers of 2) and the time the data takes to go
from the source to the destination is measured. In this case we could use
the internal clock of the NIC to measure the delay, instead of a standard
time routine. The NIC internal clock works with a precision of about one
microsecond and so the measurement results are pretty precise. They are
shown in figure 7.13.

The formula reported in figure 7.13 has the following meaning;:

e a = firmware overhead/frame [usec]

146 CHAPTER 7. A GIGABIT ETHERNET SMART NIC: TIGON 2

140 'J
—_ 120 +— Y= a+ maxi x,c)/ b —'N"WM
v a = 0.2 us "
=3 A
E 100 1= = 125 B/us A
";‘ ¢ = 64.0 Bytes ri
@ 30 /
E /
o 60
5 / ——Data
E 40 i
o
- 20

0 T T T
1 10 100 1000 10000

Framesize [bytes]

Figure 7.13: Raw Ethernet performance measurements

e b = link banwidth [Byte/usec|
e r = frame size (minimum = 64 = ¢) [Byte]
= Time to sent a fragment is:

a+blox

= Throughput is:

T
a+bl-x

The fit to the measured points shows that the firmware overhead
per packet is 0.2 microseconds. The influence of the overhead on the
throughput decreases asymptotically when the packet size increased.

As we can see, the throughput is significantly higher than in the case of
UDP and TCP tests. With raw Ethernet a maximum throughput of 124

7.3. NIC PERFORMANCE EVALUATION 147

MByte/s (which is almost the nominal Gigabit Ethernet bandwidth—
equals to 125 MByte/s) is reached, while with UDP/IP and TCP/IP we
get a maximum throughput of 54 MByte/s and 14 MByte/s respectively.

With raw Ethernet frames sent directly from one NIC to the other,
we can fill the wire at any given packet size (from 64 to 9000 Bytes).

Figure 7.13 shows a drop for frames smaller than 64 Bytes, which does
not fit with the extrapolation curve. This is correct, because 64 Bytes is
the minimum frame size, according to the Ethernet standard. All packets
smaller in size than this threshold, are padded by the hardware, and hence
take the same time to be transmitted. The Bytes real transmitted in fact
are 64 all the time but the throughput computation is done with the
frame payload size, which is less then 64 Bytes.

However, increasing the frame sizes until the minimum size is reached,
the performances improve significantly: it is possible to send out frame
at a frequency up to 1.4 MHz. For frames bigger than 512 Bytes more
than 95% of the Gigabit nominal bandwidth is used.

Jumbo frames give the best results: sending them with raw Ethernet
we can almost use 100% of the nominal bandwidth available for data.

148 CHAPTER 7. A GIGABIT ETHERNET SMART NIC: TIGON 2

Chapter 8

Event building on the NIC

This chapter is devoted to the embedded event building implementation
and results. Embedded event building is the final goal of the study pre-
sented in this document. All the previous chapters aim to analyse the
motivation which supports it and to justify the choices and steps nec-
essary to build a correct working environment and to realise embedded
event building.

Before going into detail about the necessary code changes (in order to
adapt event building functionalities to the smart NIC environment) and
the final results, some considerations are requested to make clear what
are the assumptions and the purposes of the work presented in this last
chapter. Our first intention, in fact, is to demonstrate that embedded
event building is feasible, but we want also to analyse the capabilities
and the limits of the project. The first section gives some considerations
which are the foundations of the embedded event building evaluation.

Further in the chapter the implementation on the NIC will follow and
the corresponding results will be estimated and analysed.

8.1 Frequency of Fragments

The maximum frequency at which a destination can handle fragments is
an important feature in order to evaluate the performance of an event
building system.

149

150 CHAPTER 8. EVENT BUILDING ON THE NIC

The first aspect which has to be considered is the fact that in a SFC
the data readout occurs concurrently with the fragment processing. The
time to read a fragment depends on the fragment size and on the link
bandwidth. In fact:

Lread =

s

where
® l..,q = time to read a fragment [us]
e d = fragment size [Bytes]
e b = link bandwidth [MByte/s| or [Byte/us|

For example, on a Gigabit Ethernet technology, the link bandwidth
is equal to 125 Byte/us and so the time to read fragments of 1000 Bytes
is the following:

d 1000Bytes

tread = 7= 75— — =8
T b 125Byte/ps He

At the same time, the maximum frequency at which a destination
can manage fragments depends on the fragment size and on the software
overhead to handle each fragment (t,,). According to this and to the
assumption that data readout occurs concurrently with fragment pro-
cessing, we can distinguish two cases:

1. 2fread < tov

In this case the time to read a fragment is shorter than the time
necessary to handle it, as figure 8.1 depicts. The maximum fre-
quency of fragments that can be sustained is given by the overhead
time:

1
MaxFreq = .

ov

8.1. FREQUENCY OF FRAGMENTS 151

tread

—

Readout L] e i

Processing

tOV

Figure 8.1: Case 1: t,eqq < top

Although the network link is capable of delivering fragments at a
higher frequency, this value cannot exceed 1/t,,, otherwise buffer
overflow will occur.

2. tread > tov

In this case the time to read a fragments is longer than the time
necessary to handle it, as shown in figure 8.2. The maximum fre-

tread

-~

Readout ‘ ‘ ‘ ‘ ‘

L

tOV

Processing

Figure 8.2: Case 2: t,0qq > ton

152 CHAPTER 8. EVENT BUILDING ON THE NIC

quency of fragments is then limited by the link bandwidth and is
given by the following relation:

1 b
MaxFreq = ==
arrreq tread d

Figure 8.3 shows the maximum achievable frequency of packets as a
function of the packet size. The plateau (1/t,,) is the interval where the
packet handling overhead is limiting. The asymptotic part is the limit
imposed by the link bandwidth.

o [

Fragment frequency 'L

Fragment size

Figure 8.3: Diagram of fragment frequency as function of fragment size

8.2 Embedded Event Building Implemen-
tation

In order to perform and evaluate embedded event building, we had to port
the event building code, described in Chapter 5, to the NIC environment.

8.2. EMBEDDED EVENT BUILDING IMPLEMENTATION 153

From the destination point of view, we have decided to concentrate
on the simple time-out algorithm, because it will be the main model on
which the LHCb DAQ group will focus for the time being. Also the
original fragment generation function in the source algorithm had to be
modified, due to the lack in the primitive NIC environment of all the C
standard libraries and functions (such as the rand() function), we have
largely used in the first release. Most of them, actually, could be ported,
but they would generate large object files and this is doubtful how useful
they would be.

The resulting code is a little bit simplified, compared to the previous
one, but the main steps and ideas, which characterised it, are kept and
function in the same way. Thus we can speak about it as the same
algorithm, re-adapted to a new working environment.

The following subsections describe in detail which changes have been
done to the source and destination models to make them working the
embedded system of the Alteon NIC.

8.2.1 Source Model

The source model performs the function of sending event fragments di-
rectly from the NIC. An event fragment has the following lay-out, which
is graphically displayed in figure 8.4:

Ethernet Event | & 3 ; Number
Header ven ource |Segmen of Length

Payload
Number | Number | Number

{LHCb Number) Segments
16 bytes 4bytes dbytes 4 bytes 4bytes 4 bytes

Figure 8.4: Event fragment structure

o Fthernet Header

It is composed of the destination address (6 Bytes), the source
address (6 Bytes), the Length or Type field (4 Bytes), which is

154 CHAPTER 8. EVENT BUILDING ON THE NIC

used to store the “LHCb magic number”, that characterises our
protocol packets. The Ethernet header is defined to be 14 Bytes
long, but we have padded it with 2 more Bytes in the Type field, in
order to make the following fragment header 32-bit word aligned.
The architecture of the NIC is a 32-bit architecture and so, with
the 4-Byte alignment, the data writing/reading functions are more
efficient.

o Fuvent Number

It is the event number the fragment belongs to (4 Bytes) L.

o Source Number

It is the identifier of the source which has sent the fragment (4
Bytes).

e Segment Number

In case a physics fragment only fits in more than one Ethernet
frame, this value keeps the information of the frame order in the
fragment structure. This value is necessary because, without an
higher-level protocol, the reconstruction of several frames into the
fragment they belong, must be performed by the destination al-
gorithm, which needs some basics information to accomplish the
task.

o Number of segments

It stores the number of total frames which belongs to the same
fragment, in case the fragment spans over more than one frame.
This information is then used by the destination to know how many
frames must be expected to rebuild the complete fragment.

e Length

IFor the time being, event numbers are considered increasing all the time and no
care is taken regarding the problem of the possible wrap around. Anyway, it should
be noted that with a 32 bits field as event counter and 40 kHz of Level-1 rate it will
take 10° seconds, i.e. more than a day, to wrap around.

8.2. EMBEDDED EVENT BUILDING IMPLEMENTATION 155

It is the length of pure data field, not including the Ethernet header
and the fragment header.

The fields concerning the fragment segmentation are not used in the
algorithm, because, for the moment, we assume that all fragments fit in
one Ethernet frame. Our aim, in fact, is to verify if embedded event
building can be implemented as a basic idea. We are mostly interested
in the performance of the algorithm running on the NIC. Segmented
fragments will simply perform like the corresponding number of one-
frame fragments. Moreover, if Jumbo frames are really implemented by a
Gigabit Ethernet architecture (especially by Gigabit Ethernet switches),
all fragments will probably fit in one frame.

The source model writes the fragments directly in the NIC sending
buffer. The sending routine implemented is quite similar to that one
realized for the raw Ethernet tests. It is triggered by the mailbox mech-
anism and allocates event fragments, with a predefined length, inside
the sending buffer and sets up the producer descriptor. In this way the
hardware is notified that there are data to be sent and thus it automat-
ically completes the frames with the checksum and sends them through
the network. The hardware then updates the producer descriptor and
repeats the sending procedure until there are no more data to send.

The amount of fragments to be sent is determined at the startup,
when the number of sources in the system to test and the number of
events to process are defined. Of course, the number of fragments is
given by the total amount of events times the number of sources.

The generation function is a simplified version of the previous one,
described in Chapter 5. As already stated, in the NIC primitive environ-
ment the use of the standard C libraries would be hard and inefficient,
and so we cannot use most of the predefined functions utilised in the
previous code. In this case the generation function simply generates all
the requested events, one after the other, and then mixes up the order of
the fragments belonging to one event.

156 CHAPTER 8. EVENT BUILDING ON THE NIC

8.2.2 Destination Model

The destination model performs the event building functions. As outlined
before, we have fixed our attention on the simple time-out algorithm.
This choice is due to the following considerations:

1. The no time-out algorithm, even if fast, is not reliable because it
does not handle data losses and thus it will not be implemented in
a real system. It was developed in order to have a baseline of per-
formance for comparison with more complex algorithms. We have
tested that the software overhead of simple time-out or automatic
adjustment algorithm is not much higher than the no time-out al-
gorithm overhead (see figures 5.18, 5.19 and 5.21 in Chapter 5) and
it can be fulfil in the event building requirements.

2. The automatic adjustment, on the other hand, even if feasible, is
exceeding the event building basic needs. It was developed in order
to verify the possibility of increasing software overhead for gaining
more flexibility at system exceptions or crashes. We have tested
that the event building protocol can be completed with this fa-
cility, if other requirements must be satisfied. However, now we
are interested in experimenting the possibility to implement event
building in the NIC. Whenever this works with secure results and
performances, we will be able to really develop more complex algo-
rithm, if necessary for system reliability.

Therefore, the receiving model performs the simple time-out algo-
rithm functionalities, described in Chapter 5, section 5.2.3.

All fragments arriving at destination are stored in the receive buffer.
As soon as a fragment arrives, the receiving routine copies its buffer
address into a new variable and frees the associated receive descriptor.
In this way the descriptors are immediately released and the NIC is able
to receive new coming fragments and does not have to wait that stored
data are DMAed to the host.

After freeing the receive descriptor, the routine starts the event build-
ing steps. Due to the limit of the buffer ring and NIC memory, there is

8.2. EMBEDDED EVENT BUILDING IMPLEMENTATION 157

only pointer management, to avoid time-consuming copying around of
data, which would be unacceptably slow. Thus the fragments received
reside in the receive buffer until the event is completed and the event
building functions and the descriptor table handle the pointers to those
buffer locations.

As soon as an event is completed or is in time-out, all the fragments
belonging to it are DMAed to the host and the related buffer occupancy
can be freed. The memory management is quite complex and shows some
problematic aspects. The receive buffer is a portion of contiguous mem-
ory, which is handled like a ring structure, as described in the previous
chapter. The producer and the consumer indexes are the two managers
of the buffer. When a new fragment arrives, it is stored into the first free
location of the receive buffer and the producer index is automatically
updated by the hardware to point to the next free location where new
incoming data will be placed. On the other side, the consumer index
is updated by the receiving routine to point to the first doubleword of
valid data which have to be processed. This means that the consumer
index points to the first arrived fragment of an event which has not been
completed yet. When that event is completed, all the associate fragments
are DMAed to the host and the corresponding buffer locations should be
freed. The problem is that the receive buffer is organised as a circular
buffer occupying a contiguous block of memory and the fragments are
not coming in order but fragments belonging to different events can be
mixed up (according to their arrival order) into the buffer. Therefore,
when an event is completed or is in time-out, the receiving routine gives
all the associate fragment pointer values to the DMA engine and marks
the relative buffer positions as space that can be freed, because they are
no more used by the event building functions. Then it updates the con-
sumer index to point to the first doubleword of valid data which have yet
been processed. This implies that if one or more fragments of an incom-
plete event are mixed among the fragments which should be returned,
only those before the first non-free-able will be really released, while the
others will stay there until all the previous locations will be freed. Thus
the memory at some points could be fragmented, as figure 8.5 shows.
This is an objectionable and non-optimised feature but it is unavoidable

158 CHAPTER 8. EVENT BUILDING ON THE NIC

Event n= completed, Event n+1 =under construction
Event: n Event:n | Event: n+1 | Event:n | Event: n+1 | Event: n+1
Source: | | Source: -2 | Source: j Source: j-1 | Source: j-1 | Source: j+2
& &
Consumer Producer

Figure 8.5: Example of fragmented memory

for memory managements which do not support memory relocations [25].

Fortunately the sending routine does not need to take care of the
risk of running out of descriptors or buffer space in the destination. The
flow control mechanism handles this exceptions forcing the hardware to
send an “XOFF” packet whenever there are no free descriptors left or the
buffer space is exceeded. The flow control packet, received by the sender,
will disable the transmitting part of the MAC for an adjustable amount
of time.

The flow control mechanism is based on high and low water marks for
number of receive descriptors unused and receive buffer space which is
unused. When the destination exceeds the high water mark an “XOFF”
packet is sent . The “XOFF” length can be programmed: the “XOFF” is
set on a 16 bits field (which correspond 0.5 microseconds) and can have
either the value of Ox1ff or Oxffff.

If the “XOFF” length is about to expire and the destination is still
above the high water mark, another flow control packet is sent to refresh
it up until the low resource drops below the low water mark. At this
point an “XON” message is sent and the source can restart sending.

In order to avoid triggering the flow control mechanism, which slows
down the performances of the whole system, we have implemented most
used functions and the descriptor table of the event building code in the
NIC scratchpad.

8.3. PERFORMANCE RESULTS 159

A scratchpad RAM is similar to a L1 cache 2 but it is mapped into
the processor address space. The scratchpad is visible only by the CPU
and can be used by it for any purpose, such as storing instructions or
intermediate values. The NIC has two scratchpads, one for each proces-
sor. The use of the scratchpad for the event building code makes the
NIC computation faster because the scratchpad is reserved only to the
processor and there are no competitors to access it, as it happens in the
case of accessing the memory bus. In this case, the DMA engine, the
CPU and the MAC interface compete and the MAC interface usually
has the priority. This feature can be configured in order to assign the
priority to the processor and make the computation faster, but, in this
way, the MAC receiver might slow down and frame losses or corruption
would occur.

In the case of DMA transfers, instead, there are no speed or perfor-
mance problems because the PCI bus is four times faster than the MAC
interface and thus the DMA transfers are not performance bottlenecks.
Moreover, the NIC has the necessary features required to efficiently sup-
port the scatter/gather process 3 during the DMA transfers. This ability
of off-loading this task from the processor increases the host efficiency
and the overall system performance.

8.3 Performance Results

In order to evaluate the embedded event building performances and verify
its applicability to our system requirements, we have done measurements
on the same setup as the one used for the raw Ethernet tests (see fig-
ure 7.10 in Chapter 7).

One of the two PCs generates the event fragments, emulating the pres-
ence of several sources. The other PC is performing the event building
(“destination”). The number of sources which the system consists of, the

2The Level 1 cache is a memory cache built into the microprocessor

3The idea of scatter/gather is that a portion of data to be moved may be placed in
several fragments throughout the memory and can be collected and transfered without
any data copying

160 CHAPTER 8. EVENT BUILDING ON THE NIC

fragment size and the number of events to send are interactively defined
from the keyboard. As soon as the source module gets these values, it
first sends a start-time packet to the destination, then all the fragments
required by the total amount of events and the number of sources, and
finally it sends the end-time packet.

On the other side the destination waits for data coming and, as soon as
it receives the first packet, it starts the timing function and then performs
the event building, until it gets the end-time packet. At this point the
destination stops the time counting and the event building tasks and
performs the appropriate statistics evaluations, calculating the average
time per fragment and per event, the number of fragments possibly lost
and events uncompleted, and so on.

Like in the case of raw Ethernet performance measurements, we have
used the internal clock of the NIC to precisely evaluate the time delays
with a precision of about one microsecond.

Moreover, in order to measure the overhead per fragment we have
limited ourselves to fragment size smaller than t,,-b (see section 8.1) and
we have estimate the time to manage the event building functions for
each single fragment incoming. We observe two distinct peaks, as shown
in figure 8.6:

e The first peak, of 10 microseconds, was measured for the majority
of the incoming fragments;

e The second peak, whose duration depends on the number of sources
in the system, correspond to the last fragment of each event and
includes the event termination operations (scatter/gather functions
to collect all the fragments belonging to the completed event, nec-
essary tasks to free the ring buffer, and so on).

If we plot the time overhead values for those last event fragments,
we can note that it increases linearly with the number of sources in the
system (see figure 8.7). This is what it is expected. More steps are re-
quired for collecting all the event fragments and freeing the ring buffer
locations. Moreover, following the straight line depicted in figure 8.7, it

8.3. PERFORMANCE RESULTS 161

>

Fragments

t ,

Time [s]

10 ps

Figure 8.6: Measurements of overhead per fragment

70

‘tlast =10+17"* sources‘

tfrag = 11.7 us

o]
o
L

4]
Q
L

slope: 1.7usfsources

~
o
|

Overhead of last fragments
[microseconds]
w
(=)

}normal overhead for 1 fragment
O T T T T T T T T

0 4 8 12 16 20 24 28 32 36

Number of sources

Figure 8.7: Tested values for last event fragments

162 CHAPTER 8. EVENT BUILDING ON THE NIC

comes out that for zero sources we should have 10 microseconds of over-
head for each last event fragment and this is exactly the time overhead
per fragment we tested on average. The slope of the straight line is equal
to 1.7 [us/sources]. Thus the average time for the last event fragment is
given by the following relation:

tiast = 10us + 1.7 - Sources

hence, the average overhead per fragment is:

toy = 11.7Tus

We get the same value per fragment when averaging the measurements
of a large number of events.

We can conclude that the results obtained from these measurements
are really encouraging. We have not experienced data losses and we can
perform embedded event building with an average time per fragment of
11.7 microseconds, decomposed in 10 microseconds for normal fragment
operation and 1.7 microsecond for cleaning up. The overhead for one
event is then:

to + Sources - t g = Sources - tfrqg

where ¢y, the time overhead to set up a new event descriptor, is negligible.

This means that event building at a frequency of incoming fragments
of almost 100 kHz is possible with the network interface card that we
have tested. This frequency is sustainable for fragments with a size up
to 11.7us x 125 Byte/us = 1465 Bytes.

Figure 8.8 shows the estimated event frequency in one destination
(SFC) as a function of number of sources. Naturally, increasing the
number of sources, the event frequency decreases.

8.3. PERFORMANCE RESULTS 163

100000

AN
AN
10000 \1

Events/second

1000 T T T T T T T T T T T T T T
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of sources

Figure 8.8: Embedded event building performances, as function of num-
ber of sources (in logarithmic scale)

8.3.1 Comparison with Host to Host Event Building

In order to validate the performance of the embedded event building,
we have done event building measurements from host to host, using the
TCP/IP protocol. The test setup is again the same as the one used for
the previous measurements: two PCs (233 MHz) running Linux, with an
Alteon smart NIC each, as interface to the Gigabit Ethernet link.

The event building software runs on the two host CPUs, performing
the same functionalities as the one running on the NIC: one of the two
PCs generates the event fragments, emulating the presence of several
sources, the other performs the event building.

The destination opens a socket [14] connection and waits for data
coming. The source also open a socket and connect it to the destination’s
one. Once the communication channel is established, the source sends
first a packet with the total number of fragments which are coming to the
destination and then the amount of fragments claimed. The first packet
is sent with the purpose of facilitating the timing on the destination (a
similar procedure was applied in the case of embedded event building
measurements). On the other side, the destination waits for data, and

164 CHAPTER 8. EVENT BUILDING ON THE NIC

as soon as it receives the first packet, it starts the timing function and
performs the event building, until all fragments have arrived and have
been handled.

The number of sources which the system consists of, and the number
of fragments to send are interactively defined from the keyboard.

We have done the following measurements:

e With S being the number of sources and N the number of events,
the source sends N x S fragments, with empty payload (this means
minimum Ethernet frames of 64 Bytes);

e The total time (7") to build N events is first measured;

e Then we repeat this procedure, but with the event building being
bypassed, to measure the time T).

In this way, the quantity 7" — T} gives the event building time necessary

to handle N events, i.e. N xS fragments.
The total overhead per fragment, given by the value 7', is:

irag = 9.3us

The measurement of T, shows that this overhead is made of two com-
ponents:

1. The overhead due to the event building protocol:

Loy = 3.1pus

2. The overhead due to TCP/IP protocol and operating system:

tprot = 6.2

8.4. PERFORMANCE OF EVENT BUILDING 165

A comparison with the NIC to NIC event building leads to the fol-
lowing considerations:

e The event building overhead is roughly in the inverse ratio of the
two processor clock speeds: 3.1 microseconds on a 233 MHz pro-
cessor for host to host, compared to 11.7 microseconds on the 88
MHz processor of the NIC.

e The NIC to NIC event building has no additional protocol over-
head. This may not be true in a real system if SAR (Segmentation
And Reassembly) of data packets and/or flow control need to be
implemented.

The value of the event building overhead on the NIC is expected to
decrease when future versions of the NIC card will be available which will
certainly include include faster processors. However one can expect that
the hosts will in turn implement faster processors (anyway, it must be
said that the code on the NIC can still be optimised in order to make all
the event building procedure faster—ongoing optimisations have already
achieved an average overhead time per fragment of 9 microseconds).

The main advantage in using the NIC based event building is to re-
lease the host from a task that would occupy its CPU at ~ 100%, whereas
it has other tasks to fulfil, like distributing events to processors in the
attached farm and monitoring the analysis process.

8.4 Performance of Event Building

As a summary of the study and the work done to implement and test the
feasibility of embedded event building, some considerations regarding its
frequency are discussed.

In a data acquisition system with S sources, which send (for simplicity
reasons) all fragments with the same size d, the time to build one event
in a destination is equal to:

S - maa:(to,v, tread)

166 CHAPTER 8. EVENT BUILDING ON THE NIC

(see section 8.1 for the terminology).
Therefore, the maximum frequency of event building in one destination
is given by the following relation:

1 1
S maz(tops tread) S - maz(ty,, %)

f

and the absolute maximum frequency in one destination is given by the
next formula:

1
fruax = S

In a system with D destinations working in parallel the total frequency
of event building is equal to:

N
FTOT:§']E

where f is the frequency for 1 fragment.

Thus the event building frequency can be increased by adding more
destinations (sub-farm controllers). However, that process is limited to
the maximum frequency at which the source can emit fragments and this
is a function of the overhead in the source and of the fragment size.

In order to illustrate these considerations, we can focus on the em-
bedded event building implemented by using raw Gigabit Ethernet and
Alteon smart NICs. We already know that the nominal network band-
width is 125 MByte/s, t,,_gest is equal to 11.7 microseconds and, therefore,
dy is equal to 1460 Bytes and the maximum frequency in one destination
is 85 kHz (see section 8.1 for the word terminology).

If we assume a time overhead in the source for emitting fragments of
1 microsecond, dy becomes equal to 125 Bytes.

Consequently, the absolute maximum event building frequency reached
for fragments with a size smaller than or equal to 125 Bytes would be 1
MHz. Then the number of destinations required in order to sustain this

8.4. PERFORMANCE OF EVENT BUILDING 167

rate would be 12 destinations per source. Such an event building system
would solve the LHCb Level-1 trigger problem.

These considerations are based on a point to point connection and do
not take into account the communication network that links the sources
and the destinations in a real system. The question then arises whether
the network can effectively provide the necessary bandwidth and whether
congestion occur.

In the particular case of Gigabit Ethernet, we do not know yet whether
the XON/XOFF mechanism is effective across a switch. On the other
hand, when more than one source send data to the same destination, re-
fraining all of them but one from transmitting reduces the usable band-
width. It would be desiderable that the switch implements buffer at
output ports (“output queueing”).

Investigating the characteristics of a Gigabit Ethernet switching net-
work is presently the main goal of the ongoing event building project for
the LHCb data acquisition system.

168 CHAPTER 8. EVENT BUILDING ON THE NIC

Conclusions

The goal of the present work was to demonstrate the feasibility of embed-
ding the event building protocol in the processors recently provided by
the new generation of Network Interface Cards (NIC), in particular for
Gigabit Ethernet technology. This implied the software implementation
of the event building algorithms, their adaptation for their operation in
the embedded processors, the development of a model of the event build-
ing conditions and the measurement and interpretation of performance of
this solution. A comparison with the standard implementation on NICs’
host processors would provide the yardstick to judge the suitability of
the proposed method.

This development was carried out within the team developing the
Data Acquisition (DAQ) system for LHCb, one of the four experiments
that have been approved for the future high energy collider LHC (Large
Hadron Collider) at CERN.

Characterisation of event building

Y

At the location of the experiment LHCD, the crossing of particle “bunches’
will occur every 25 nsec, i.e. at a frequency of 40 MHz. Practically all
those crossings generate proton-proton (p-p) collisions with production of
secondary particles that will generate electric signals in a variable number
of the 95-10% sensitive “channels” of the detectors. The goal of the LHCb
experiment is the detail study of the “Beauty” particles (B mesons). Pro-
duction of B mesons is very rare compared to all the possible outcomes
from p-p collisions.

It is impossible to record the full amount of data generated and per-

169

170 Conclusions

form an analysis later on. This data can be estimated to be of the order
of 40 MHz %100 kBytes = 4000 GByte/s. The role of the “trigger” is
to apply selection criteria on-line in such a way as to enrich the sample
of the events eventually retained in interesting B meson pair candidates.
It is possible to apply the selection criteria as a sequence of tests with
increasing complexity, rejecting a certain fraction of the events at each
level. At LHCb, this selection sequence consists of four levels, named
Level-0 up to Level-3.

Level-0 processes data locally on the detectors whereas level-1 requires
that data from several detectors be collected in a processor and levels 2
and 3 need all the available data (some 100 kBytes) in order to elaborate
the decision.

For levels 2 and 3, it is necessary to collect the data from the whole
detector in one processor that will take the decision. Obviously, spending
some 200 msec per event at an input rate of 40 kHz requires several
hundreds of processors working in parallel, each one analysing the data
from one event.

The task of collecting the data from the whole detector (via intermedi-
ate concentrators called Readout Units(RU)) into a designated processor
is called “event building”. The strategy followed by all experiments at
the LHC for event building is to use a switching network that intercon-
nects the RUs with the SFVs (Sub Farm Controllers). The network is
routing the “fragments” issued by the RUs while a dedicated process in
the SFC is collecting these fragments and reconstructs the full event.

At LHCDb, typically a hundred of RUs will deliver fragments to an
equivalent number of SFCs, each SFC controlling several analysis pro-
cessors. RUs and SFCs emit and receive fragments of some 1000 bytes
at a frequency of 40 kHz, i.e. every 25 usec.

Justification for an implementation on an embedded processor

The high rate of interruptions, the inefficiencies of the TCP/IP protocol
usually adopted for data interchange on host processors and the multiple
data copies implied by the operating system suggest that the task of
event building could better be executed on a dedicated processor, without

Conclusions 171

operating system, that would poll for the arrival of fragments rather than
rely on interrupts. Furthermore the processor on an SFC must carry
out several important tasks like distributing full events to the analysis
processors and monitoring their work.

The advent of embedded processors, implemented on Network Inter-
face Cards (NIC) of the new generation of fast data links, gave us the
opportunity to test this concept.

The work developed

First of all, the event building requirements have been studied and anal-
ysed and a model of the DAQ system has been defined.

Then the attention has been focused on the event building protocol.
The strategy adopted is a “push protocol”, where the RUs send an event
fragment to a pre-defined SFC, as a function of the event numbers, with-
out any dialogue between those two units. Three different algorithms
have been developed in order to study and compare different solutions.
The first algorithm performs the tasks of a simple fragment collector and
event builder, which relies on a reliable system with no data loss. The
second one implements time-out functions in order to face with possible
occurrences of missing fragments and avoid deadlocks. The third algo-
rithm, then, adapts its steps to the system configuration, detecting and
handling possible source crashes. The software overheads of the protocols
have been measured to evaluate their impact on the event building per-
formance. The results show that low software overheads are achievable
in the processors available now and that this fulfils the requirements.

We have then concentrated on the Gigabit Ethernet network technol-
ogy and on the Alteon smart NIC. In order to implement the software
on an embedded system we had to become familiar with the embedded
environment and the new Gigabit standard. Many difficulties were found
in understanding the smart NIC hardware and software architecture and
its way of working, but they have been successfully solved. At the begin-
ning we tested the standard features and performance of the card. Then
we started changing the firmware in order to learn how to communicate
with the NIC and its embedded processor. Once the card architecture

172 Conclusions

was clear, we adapted it to our needs and requirements to implement the
event building software, and we tested the new system. We measured
then the implementation performance, whose results are presented in the
next section.

The results

It has been demonstrated that event building on a Gigabit Ethernet smart
NIC (the Tigon 2 Network Interface Card, by Alteon WebSystems) at a
frequency of almost 100 kHz is sustainable for fragments with a size up
to 1465 Byte. The LHCb Level-1 output rate is 40 kHz and the event
fragment size is envisaged to be ~ 1 kByte. Therefore, the results pro-
duced by this work perfectly fit the requested fragment size and give a
safety margin threshold of a factor of 2, from the event building frequency
point of view, for possible future scalability of the data acquisition sys-
tem. Moreover, ongoing optimisations on the work done have already
improved the performance results obtained.

In principle, event building for the Level-1 trigger (1 MHz, ~ 100
Byte/source) is feasible, from the point of view of software overhead.
However a faster embedded processor would be an advantage in order to
reduce the number of sub-farm controllers. Furthermore, the performance
of the readout network still needs to be confirmed.

Finally, this work was presented at the DAQ2000 Workshop, held
during the IEEE Nuclear Science Symposium and Medical Imaging Con-
ference in Lyon, on 20th October 2000 [18]. It has subsequently been
published in the conference proceedings and it has been submitted for a
peer-review to IEEE Transactions on Nuclear Science.

Possible future developments
Some other future goals and developments have been envisaged for the

ongoing project:

e First of all it would be interesting to evaluate the impact of inter-
rupt coalescence on the host performance. This idea consists on
reducing the number of interactions between the host and the NIC.

Conclusions 173

Instead of interrupting the host as soon as new data come, the NIC
could pass to it information in chunks. The advantage of provide
large amount of information is that it reduces the number of time
the host and the NIC must interact and thus the host CPU could
perform event building functions. The disadvantage is that it can
create latencies. Setting the coalescing threshold too high can cause
longer latencies.

e As already stated in the last chapter, the next future main goal
of the project will be to investigate the characteristics of a Gigabit
Ethernet switching network. “Real world” tests on a system with
a Gigabit Ethernet switch, which interconnects 16 sources and 16
destinations, have been already started.

e Finally, it would be useful to use measured parameters in a detailed
simulation of the readout network. The simulation project has been
initiated on summer 2000. At the moment a simple “two by two”
event building system has been simulated and studied, using the
Ptolemy tools [36]. Much effort needs to be spent on this task, in
order to investigate the characteristics of the whole system.

174 Conclusions

Acknowledgements

At the end of this work, I want to thank my supervisor, Prof. Francesco
Dalla Libera, for having trusted me, my ideas and my work, and for his
support and precious advice during the development of the project and
the writing of the thesis.

I want to thank my supervisors at CERN, Dr. Jean-Pierre Dufey
and Dr. Beat Jost, for their essential contribution towards my technical
education, for having given me the great opportunity to be involved in
this project, and, especially, for the many hours they spent to read and
correct this document.

I want to thank in particular Dr. Niko Neufeld for his priceless help in
understanding that terrible smart NIC architecture and for his patience
in teaching me all he knows about hardware. But, above all, I want to
thank him for his nice friendship.

Many thanks also to my colleagues at CERN, especially Sebastien
and Stefan; their positive attitude have encouraged me day by day.

I cannot forget to thank my parents and my sister Giovanna. They
always trusted me and my skills and supported my choices.

A special thank to my two great friends, Chiara and Giovanna. Even
if far away, I could feel their affection and their support all the time.

Many thanks to all my friends, in particular to Paola and Roberto for
their friendship and hospitality during my stay at CERN, and to Tito for
his help, his kindness and for his understanding of my sometime nervous
attitude.

Finally, I want to thank Paolo, without whom I would have never been
working at CERN and I would have never lived this great experience.

175

176 Acknowledgements

Bibliography

1]

[10]

[11]

Enabling High Performance Data Transfer —on Host.
http://www.psc.edu/networking /perf_tune.html.

GCC home page. http://www.gnu.org/software/gcc/gec.html.
Linuz HeadQuarters. http://www.linuxhq.com.

ONX Literature, Neutrino System Architecture.
http://www.qnx.com/literature/nto_sysarch/kernel3.html.

ALTEONNETWORKS, Tigon/PCI Ethernet Controller. Revision
1.04.

ALTEONWEBSYSTEM. Private communication.

ALTEONWEBSYSTEMS, Alteon WebSystem, Weeb Speed for e-
Buisiness. http://www.alteonwebsystem.com.

—, Gigabit Ethernet/PCI Network Interface Card, Host/NIC
Software Interface Definition. Revision 12.4.11.

E. BArsoTTI, A. BOOTH, AND M. BOWDEN, Effects of various
event building techniques on data acquisition system architectures,
in Computing for high luminosity and high intensity facilities, 1990.

C. Bi1ZEAU ET AL., On the Feasibility og High Performance ATM-
based Fvent Builders, in DAQY6 Conference Proceedings, 1996.

D. BUCAR, Reducing Interrupt Latency.
http://www.e.kth.se/ €96_dbu/ex/literature_study.html.

177

178

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

[22]

[23]

[24]

BIBLIOGRAPHY

CERN, CERN home page. http://www.cern.ch.

S LHC, The Large Hadron Collider Project.

http://lhc.web.cern.ch/lhc.

D. E. CoOMER AND D. L. STEVENS, Internetworking with TCP/IP,
PRENTICE HALL, 1994.

M. CoSTA ET AL., Results from an ATM-based FEvent Builder
Demonstrator, in IEEE Transactions on Nuclear Science, 1996.

M. DELLA NEGRA ET AL., Technical Proposal (CMS collaboration),
technical report, CERN/LHCC/95-71, 1995.

J.-P. DUFEY ET AL., The LHCb Trigger and Data Acquisition Sys-
tem, in 11th IEEE NPSS Real Time Conference, 1999.

J.-P. DUFEY, B. JosT, N. NEUFELD, AND M. ZUIN, Event Build-
ing in an Intelligent Network Interface Card for the LHCb Readout
Network, in DAQ2000 Conference Proceedings, 2000.

J.-P. DUFEY AND I. MANDJAVIDZE, DAQ Implementation Studies.
Internal note LHCb/98-029 (unpublished), 1998.

F. HARRIS AND M. FRANK, LHCbH Data Flow Requirements. Inter-
nal note LHCb/98-027 (unpublished), 1998.

H. J. HILKE ET AL., Technical Proposal (LHCb collaboration), tech-
nical report, CERN/LHCC/98-4, 1998.

P. JENNI ET AL., Technical Proposal (ATLAS collaboration), tech-
nical report, CERN/LHCC/94-43, 1994.

B. Jost, Timing and Fast Control. Internal note LHCb/99-001
(unpublished), 1998.

B. JosT ET AL., DAQ Architecture and Readout Protocols. Internal
note LHCb/98-031 (unpublished), 1998.

BIBLIOGRAPHY 179

[25]

[26]

[27]

28]
[29]

[30]
[31]
32]

33]

[34]

[35]

[36]

D. E. KNutH, FUNDAMENTAL ALGORITHMS, The Art of Com-
puter Programming, second edition, Addison Wesley, 1973.

M. F. LETHEREN, Architectures and technologies for data acquisi-
tion at the LHC experiments, in Second workshop on electronics for
LHC experiments, 1996.

C. MIRON ET AL., Fibre Channel Performance with IBM Equip-
ment. Internal note RD11/95-05, 1995.

MyRicoM, Myrinet Products. http://www.myricom.com.

R. O. ONVURAL, Asynchronous Transfer Mode Networks, second
edition, Artech House, 1995.

A. RuBIN1, LINUX Device Drivers, O’REILLY, 1998.
R. SEIFERT, Gigabit Ethernet, Addison Wesley, 1998.

T. SHANLEY AND D. ANDERSON, PCT System Architecture, Addi-
son Wesley, 1995.

C. E. SPURGEON, FEthernet, The Definitive Guide, O’REILLY,
2000.

A. S. TANENBAUM, Computer Networks, third edition, PRENTICE
HALL, 1996. Page 1.

—, Computer Networks, third edition, PRENTICE HALL, 1996.
Pages 534-535.

UNIVERSITY OF CALIFORNIA AT BERKELEY, The Ptolemy Project.
http://ptolemy.berkeley.edu/.

