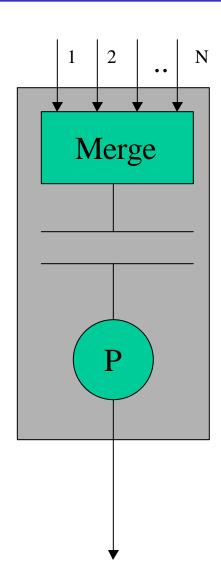
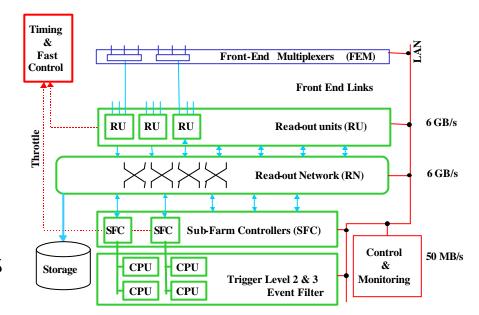
LHCb Readout Unit Project

Data merging applications (FEM,RU,L1T) Assessment Criteria


John Harvey CERN EP/LBC

July 24, 2001

Data Merging

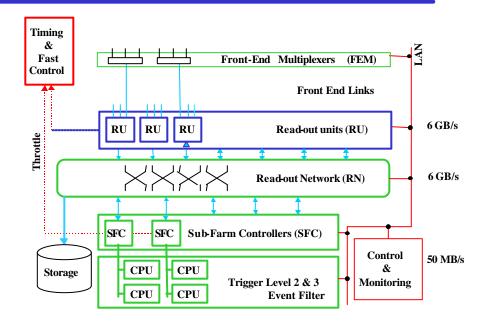

- The Readout Unit is being devised to realise functional components where data are merged
- Typically event data from N links are received, stored, assembled for ordered output as simple sub-events
- Different implementation configurations have been considered to allow for a range of applications

Data Merging in DAQ - FEM

- Subdetector requirements
- FEM works at Level 1 Yes rate
 40 kHz -100 kHz
- No output blocking minimal buffering
 - ~ 1 event
- Output compatible to RU input
- Output should be compatible with input so that multiple levels of multiplexing can be used

FEMUX - Subdetector Requirements 1)

	VELO	RI CH1	RI CH2	ΙΤ	ОТ	SPD/PS	ECAL	HCAL	MUON
No. of links	100	21	34	108	60	94	188	47	180
Mux Ratio	4:1			4:1		16:1	16:1	16:1	18:1
Rate (MB/s)	7	6	9	14	30	4	4	2	3
Unit	FEMUX	-	-	FEMUX	-	CROC	CROC	CROC	Data concen
No of units	25	0	0	27	0	8	14	4	10


- Rate is data rate after multiplexing at 40 kHz
- CALO and MUON use the crate backplane for data concentration
- RICH and OT don't need FEMs (data already sufficiently concentrated)
- ✓ VELO and IT need 25 and 27 FEMs respectively, with a mux ratio of 4:1

Data Merging in DAQ - Readout Unit

- ✓ Working at Level 1 YES rate
 ✓ 40 kHz -100 kHz
- ∠ Large event fragments
 ∠ ~250B/input link
- Possible output blocking
- ✓ Significant buffering of events

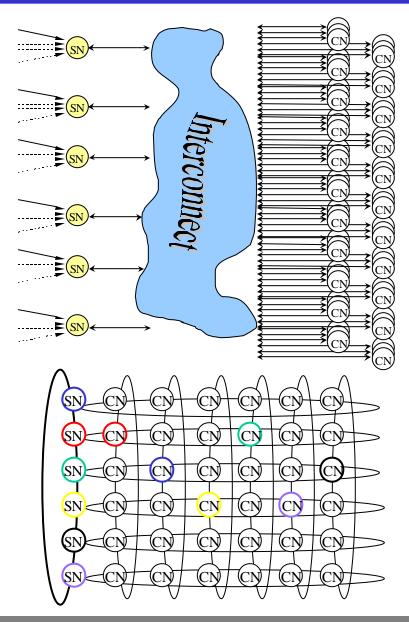
 ✓ ~100-1000 events (~ 1 MB)
- Flow control throttle to RS

- Format sub-event structure note that segmentation in RU and reassembly in SFC required by all network technologies (c.f. NIC)
- Possibility to implement traffic shaping e.g. constant bit rate
- Flexible determination of destination assignment (programmability)
 - Simplest round robin, consecutive triggers (spill-over),
 - Updates to cope with 'out of service' cpus
 - Support of partitioning

RU - Subdetector Requirements 1)

	VELO	RI CH1	RI CH2	ΙΤ	ОТ	SPD/PS	ECAL	HCAL	MUON
No. of links 203	25	21	34	27	60	8	14	4	10
Mux Ratio	4:1	4:1	4:1	2:1	2:1	2:1	4:1	2:1	4:1
No. of RU's 79	7	6	9	14	30	4	4	2	3
Rate/RU (MB/s)	32	44	44	28	34	56	40	34	30

- Assume that the data rate per RU should not exceed 50MB/s
 - Dictated by performance of readout network
- Assumed a L1 rate of 40kHz
 - In case of higher L1 rate will need less FEM's and more RU's


1) lhcb-elec.web.cern.ch/lhcb-elec/html/sub-detectors.htm

'Overview of front-end electronics in sub-detectors' J. Christiansen

Data Merging in the Level 1 Trigger

- Purpose is to select events with detached secondary vertices
- ∠ Algorithm running on ~200 cpus
- Network interconnecting the computing nodes of a processor farm to the data sources
- ~25 sources to a network, currently based on shared memory / torus topology
- Working at Level 0 Yes rate ~1.1 MHz
- Latency restrictions (~10's ?sec)
- ≤ Small event fragments (~30B avg)
- ✓ Medium buffering (~10-100 events)
- Output to network card (NIC)
- Possible output blocking
- Flow control throttle to TFC

Assessment Criteria

- Functionality assessed against functional requirements
 - I ncluding environment requirements (space, power, ...)
- Performance assessed against performance requirements
- Cost assessed against overall absolute cost
- System-based acceptance test, problem diagnosis
- Support for system integration and commissioning, longterm consolidation
- Flexibility assessed against unforeseen requirements (new running modes, protocols, upgrades,...)
- Maintenance and Support managing component obsolescence, possibility to support and adapt over lifetime
- Generality range of applicability in LHCb (scope)
 - Cost/benefit of single vs multiple moduletype
- Commonality use in more than 1 experiment

Input information to review

- Description of design process
- Design features and description of board layout support for:
 - Readout protocols and data formatting
 - Event fragment rates and buffer capacity
 - Error detection and reporting, flow control
- Results of simulation studies
- Results of prototyping test procedures and performance measurements
- System implementation details space, power, cooling
- Potential future work programme
 - Effort/resources to finalise design and produce final boards
 - Participation in small scale tests and full-scale commissioning

J. Harvey

- Schedule for module production, testing, commissioning
- Cost estimate