

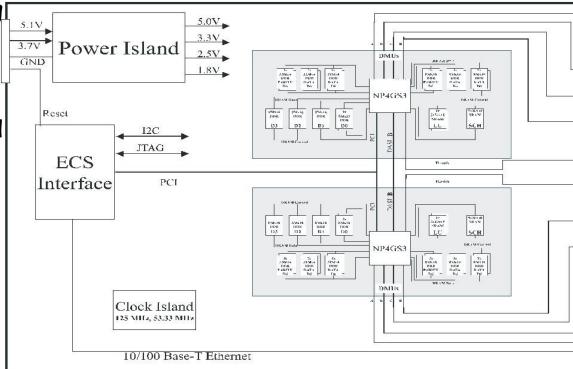
Network Processor based RU Implementation, Applicability, Summary

Readout Unit Review 24 July 2001

Beat Jost, Niko Neufeld Cern / EP

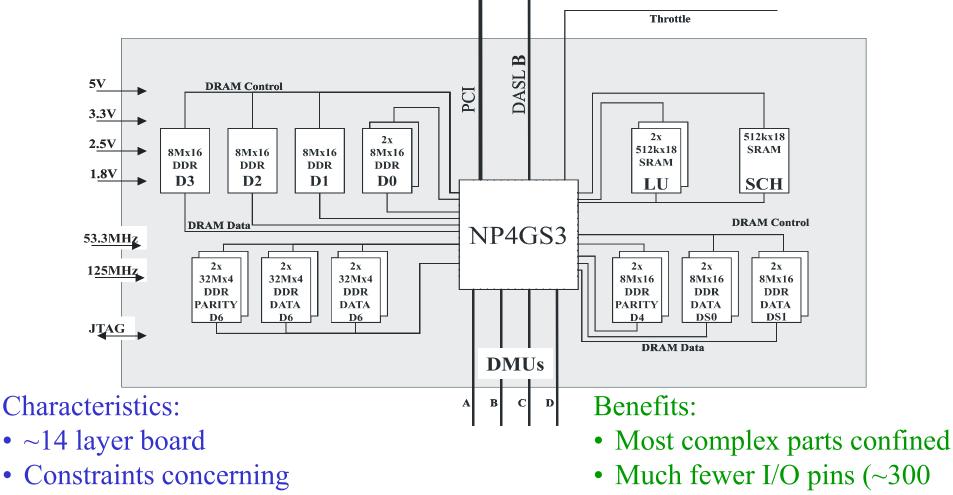
1

<u>LHC</u> Outline


- □ Board-Level Integration of NP
- Applicability in LHCb
 - > Data-Acquisition
 - ⇒Example: Small-scale Lab Setup
 - ➤ Level-1 Trigger
- □ Hardware Design, Production and Cost
- □ Estimated Scale of the Systems
- □ Summary of Features of a Software Driven RU
- Summaries
- Conclusions

LHCS Board-Level Integration

9Ux400 mm single width VME-like board (compatible with LHCb standard boards)


Architecture

- 1 or 2 Mezzanine Cards containing each
 - > 1 Network Processor
 - > All memory needed for the NP
 - \succ Connections to the external world
 - ➡ PCI-bus
 - ➡ DASL (switch bus)
 - Connections to physical network layer
 - ⇒ JTAG, Power and clock
- PHY-connectors
- Trigger-Throttle output
- Power and Clock generation
- LHCb standard ECS interface (CC-PC) with separate Ethernet connection

LHCK Mezzanine Cards

Board layout deeply inspired by design of IBM reference kit

impedances/trace lengths have to be met

Beat Jost, Cern

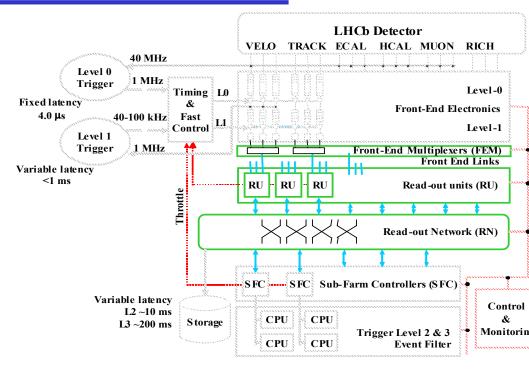
compared to >1000 of the NP

• Modularity of overall board

LHCS Features of the NP-based Module

- The module outlined is completely generic, i.e. there is no a-priori bias towards an application.
- The software running on the NP determines the function performed
- Architecturally it consists just of 8, fully connected, Gb Ethernet ports
- □ Using GbEthernet implies
 - > Bias towards usage of Gb Ethernet in the Readout network
 - Consequently needs Gb Ethernet-based S-Link interface for L1 electronics (being worked-on in Atlas)

> No need for NICs in Readout Unit (availability/form-factor)


□ Gb Ethernet allows to connect at any point in the dataflow a few PCs with GbE interfaces to debug/test

KKCS Applicability in LHCb

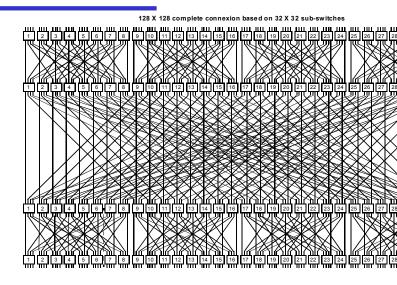
Applications in LHCb can be

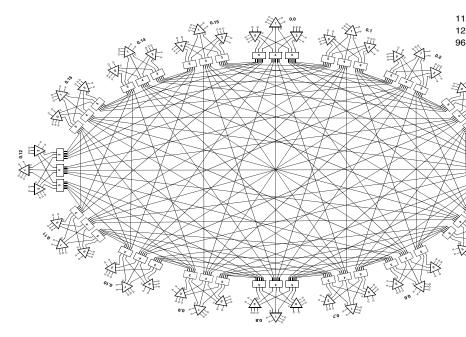
> DAQ

- → Front-End Multiplexing (FEM)
- ⇒Readout Unit
- Building Block for switching network
- ➡ Final Event-Building Element before SFC
- ≻ Level-1 Trigger
 - ⇒Readout Unit
 - ➡ Final Event-Building stage for Level-1 trigger
 - ⇒SFC functionality for Level-1
 - Building block for event-building network

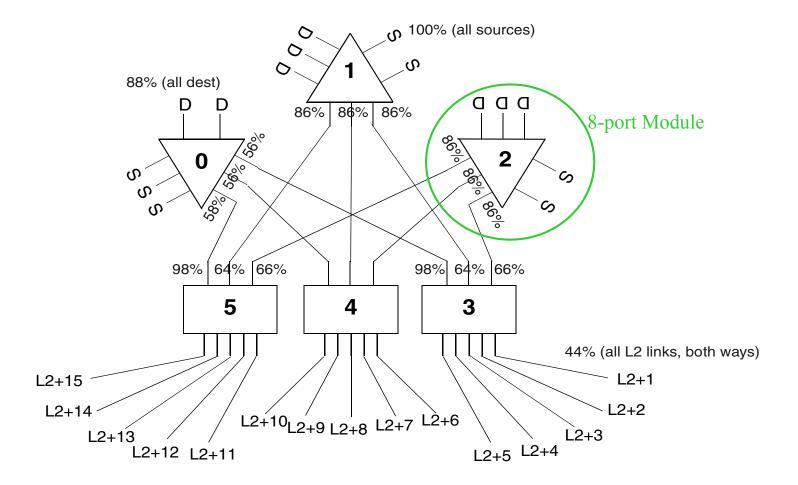
(see later)

LHCS DAQ - FEM/RU Application

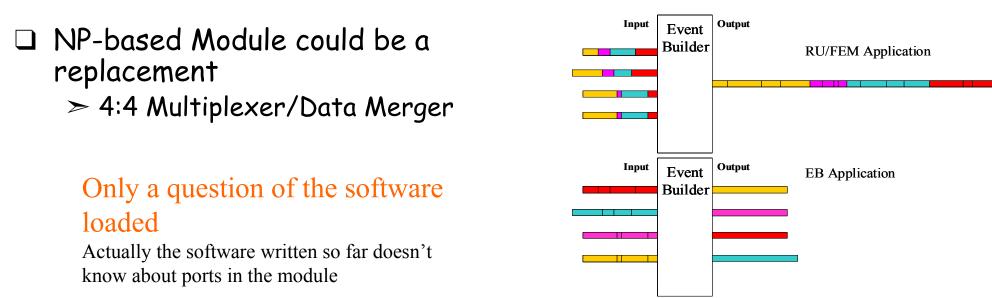

- \Box FEM and RU applications are equivalent
- □ The NP-Module allows for any multiplexing N:M with N + $M \le 8$ (no de-multiplexing!), e.g.
 - > N:1 data merging
 - Two times 3:1 if rate/data volumes increase or to save modules (subject to partitioning of course)
- □ Performance good enough for envisaged trigger rates (≤100 kHz) and any multiplexing configuration (Niko's presentation)


LHCK DAQ - Event-Building Network

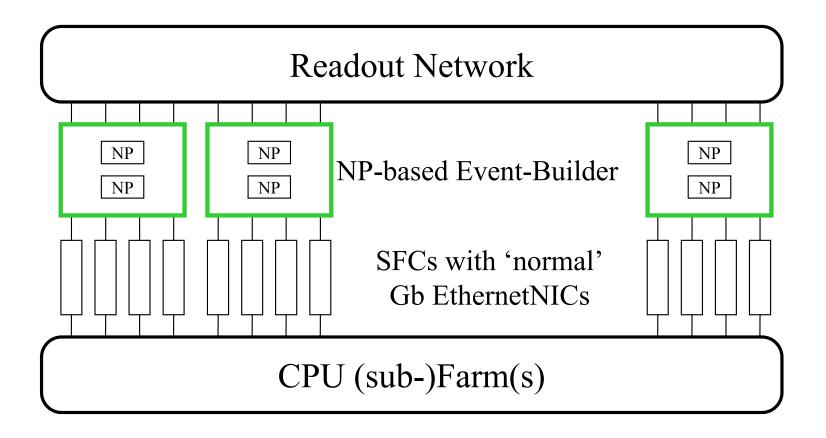
- NP-Module is intrinsically an 8-port switch.
- Can build any sized network with 8-port switching element, e.g.
 - Brute-force Banyan topology, e.g. 128x128 switching network using 128 8port modules
 - More elaborate topology, taking into account special traffic pattern (~unidirectional), e.g. 112x128 port topology using 96 8-port modules


Benefits:

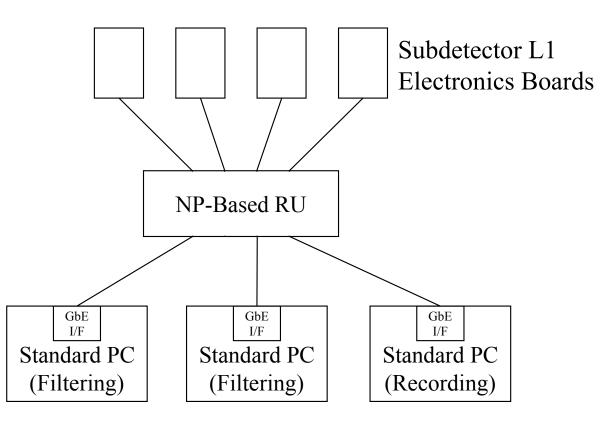
- Full control over and knowledge of switching process (Jumbo Frames)
- Full control over flow-control
- Full Monitoring capabilities (CC-PC/ECS)



LHCS Event-Building Network - Basic Structure


LHCS DAQ - Final Event-Building Stage (I)

- Up to now the baseline is to use "smart NICs" inside the SFCs to do the final event-building.
 - > Off-load SFC CPUs from handling individual fragments
 - > No fundamental problem (performance sufficient)
 - > Question is future directions and availability.
 - Market is going more towards ASICs implementing TCP/IP directly in hardware.
 - → Freely programmable devices more geared for TCP/IP (small buffers)

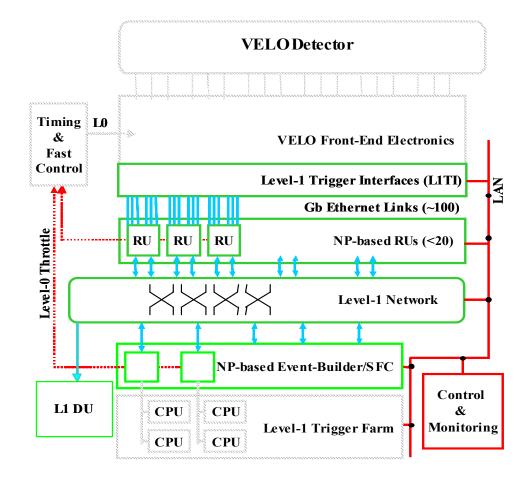


LHCB Final Event-Building Stage (II)

- □ Same generic hardware module
- Same software if separate layer in the dataflow
- SFCs act 'only' as big buffers and for elaborated load balancing among the CPUs of a sub-farm

LHCS Example of small-scale Lab Setup

Centrally provided:


- > Code Running on NP to d event-building
- > Basic framework for filter nodes
- > Basic tools for recording
- Configuration/Control/N nitoring through ECS

LHCS Level-1 Trigger Application (Proposal)

Basically exactly the same as for the DAQ

- Problem is structurally the same, but different environment (1.1 MHz Trigger rate and small fragments)
- > Same basic architecture
- > NP-RU module run in 2x3:1 mode
- > NP-RU module for final eventbuilding (as in DAQ) and implementing SFC functionality (load-balancing, buffering)

Performance sufficient! (see Niko's presentation)

LHCS Design and Production

- 🗆 Design
 - > In principle a 'reference design' should be available from IBM
 - > Based on this the Mezzanine cards could be designed
 - > The mother-board would be a separate effort
 - > Design effort will need to be found
 - ⇒ inside Cern (nominally "cheap")
 - ➡ Commercial (less cheap)
 - > Before prototypes are made, design review with IBM engineers and extensive simulation performed

Production

- > Mass production clearly commercial (external to Cern)
- > Basic tests (visual inspection, short/connection tests) by manufacturer
- > Functional testing by manufacturer with tools provided by Cern (LHCb)
- > Acceptance tests by LHCb

LHCB Cost (very much estimated)

- □ Mezzanine Board
 - Tentative offer of 3 k\$/card (100 cards), probably lower for more cards.
 -> 6 k\$/RU
 - > Cost basically driven by cost of NP (goes down as NP price goes down)
 - \Rightarrow ~1400 \$ today, single quantities
 - → ~1000 \$ in 2002 for 100-500 pieces
 - ⇒ ~500 \$ in 2002 for 10000+ pieces
 - ₩ 2003????
- Carrier Board
 - *≻ CC-PC*: ~150 \$
 - > Power/Clock generation: ??? (but cannot be very expensive?)
 - > Network PHYs (GbE Optical small form-factor): 8x90\$
 - > Overall: ~2000 \$?
- □ Total: <~8000\$ (100 Modules, very much depending on volume)
- Atlas has shown some interest in using the NP4GS3 and also in our board architecture, in particular the Mezzanine card (volume!)

LHCB Number of NP-based Modules

DAQ						
		Туре		Installed Bandwidth		
FEM	50	8-port				
RU	90	8-port		11.25 GB/s		
Readout Network	96	8-port		14 GB/s		
Event-Builder	23	8-port				
Total Units	259					
Cost [\$]			2072000			
only FEM/RU	140					
Cost [\$]			1120000			

Level-1							
				installed Bandwidth			
FEM							
RU	32	8-port		8 GB/s			
Readout Network	48	8-port					
Event-Builder							
Total Units	80						
Cost [\$]			640000				
only FEM/RU	32						
Cost [\$]			256000				

Notes:

- For FEM and RU purposes it is more cost effective to use the N based RU module in a 3:1 multiplexing mode. This reduce the number of physical boards b factor ~1/3
- For Level-1 the number is determined by the speed of the output link. A reduction in the fragment header can lead to a substantial saving. Details to be studied.

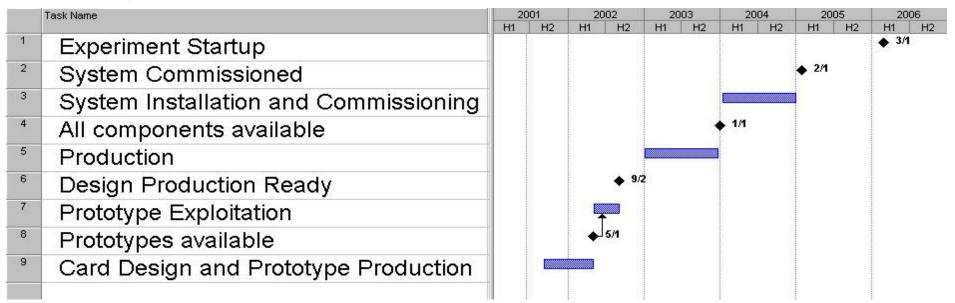
LHCB Summary of Features of a Software-Driven RU

- Main positive feature is the offered flexibility to new situations
 - > Changes in running conditions
 - > Traffic shaping strategies
 - > Changes in destination assignment strategies
 - ≻ Etc...

but also elaborate possibilities of diagnostic and debugging

- > Can put debug code to catch intermittent problems
- > Can send debug information via the embedded PPC to the ECS
- > Can debug the code or malfunctioning partners in-situ

- NP-based RU fulfils the requirement in speed and functionality
- There is not yet a detailed design of the final hardware available, however a functionally equivalent reference kit from IBM has been used to prove the functionality and performance.


Kick Summary (II) - Features

- □ Simulations show that performance is largely sufficient for all applications
- Measurements confirm accuracy of simulation results
- Supported features:
 - > Any network-based (Ethernet) readout protocol is supported (just software!)
 - > For all practical purposes wire-speed event-building rates can be achieved.
 - > To cope with network congestion 64 MB of output buffer available
 - \succ Error detection and reporting, flow control
 - ➡ 32-bit CRC per frame
 - ➡ Hardware support for CRC over any area of a frame (e.g. over transport header). Software defined.
 - Embedded PPC + CC-PC allow for efficient monitoring and exception handling/recovery/diagnostics
 - Break-points and single stepping via the CC-PC for remote in-situ debugging of problems
 - > At any point in the dataflow standard PCs can be attached for diagnostic purposes

LHCP Summary (III) - Planning

Potential future work programme

- > Hardware: It's-a-depends-a... (external design: ~300 k\$ design+production tools)
- ~1 m·y of effort for infrastructure software on CC-PC etc. (test/diagnostic software, configuration, monitoring, etc.)
- Online team will be responsible for deployment, commissioning and operation, including Picocode on NP.
- Planning for module production, testing, commissioning (depends on LHC schedule)

LHCS Summary (IV) - Environment and Cost

- Board: aim for single width 9Ux400 mm VME, power requirement: ~60 W, forced cooling required.
- Production Cost
 - Strongly dependent on component cost (later purchase > lower price)
 - > In today's prices (100 Modules):
 - → Mezzanine card: 3000 \$/card (NB: NP enters with 1400\$)
 - ← Carrier card : ~2000 \$ (fully equipped with PHYs, perhaps pluggable?)
 - ➡ Total: ~8000 \$/RU (~5000 \$ if only one mezzanine card mounted)

LHCB Conclusion

- NPs are a very promising technology even for our applications
- Performance is sufficient for all applications and software flexibility allows for new applications, e.g. implementing the readout network and the final eventbuilding stage.
- Cost is currently high, but not prohibitive and is expected to drop significantly with new generations of NPs (supporting 10 Gb Ethernet) entering the scene.
- Strong points are (software) flexibility, extensive support for diagnostics and wide range of possible applications
 One and only one module type for all applications in LHCb