

LHCb Trigger and Data Acquisition System

Beat Jost Cern / EP Presentation given at the 11th IEEE NPSS Real Time Conference June 14-18, 1999 Santa Fe, NM

- □ Introduction
- □ General Trigger/DAQ Architecture
- □ Trigger/DAQ functional components
 - > Selected Topics
 - →Level-1 Trigger
 - ⇒Event-Building Network Simulation
- □ Summary

LHCP Introduction to LHCb

- Special purpose experiment to measure precisely CP violation parameters in the BB system
- Detector is a single-arm spectrometer with one dipole
- Total b-quark production rate is ~75 kHz
- Expected rate from inelastic p-p collisions is ~15 MHz
- Branching ratios of interesting channels range between 10⁻⁵-10⁻⁴ giving interesting physics rate of ~5 Hz

LHCb in Numbers

Number of Channels	900000
Bunch crossing rate	40 MHz
Level-0 accept rate	1 MHz
Level-1 accept rate	40 kHz
Readout Rate	40 kHz
Event Size	100 kB
Event Building Bandwidth	4 GB/s
Level-2 accept rate	~5 kHz
Level-3 accept rate	~200 Hz
Level-2/3 CPU Power	2-10 ⁶ MIPS
Data rate to Storage	20 MB/s

LHCB Front-End Electronics

 Data Buffering for Level-O latency
Data Buffering for Level-1 latency
Digitization and Zero Suppression
Front-end Multiplexing onto Frontend links

LHCS Timing and Fast Control

- Provide common and synchronous clock to all components needing it
- Provide Level-0 and Level-1 trigger decisions
- Provide commands synchronous in all components (Resets)
- Provide Trigger hold-off capabilities in case buffers are getting full

Slide 8

LHCP Level-0 Trigger

- Large transverse Energy (Calorimeter) Trigger
- Large transverse momentum Muon Trigger
- □ Pile-up Veto
- Implemented in FPGAs/DSPs basically hard-wired

Input rate: 40 MHz Output rate: 1 MHz Latency: 4.0 µs (fixed)

LHCB Level-1 Trigger

- D Purpose
 - > Select events with detached secondary vertices
- □ Algorithm
 - > Based on special geometry of vertex detector (r-stations, φ-stations)
 - > Several steps
 - \Rightarrow track reconstruction in 2 dimensions (r-z)
 - \Rightarrow determination of primary vertex
 - search for tracks with large impact parameter relative to primary vertex
 - ⇒full 3 dimensional reconstruction of those tracks
 - > Expect rate reduction by factor 25

Technical Problem: 1 MHz input rate, 3 GB/s data rate, small event fragments, Latency

Level-1 Trigger (2)

Implementation

- ~32 sources to switching network
- > Algorithm running in processors (~200 CPUs)
- > Basic idea is to have a switching network between data sources and processors
- In principle very similar to DAQ, however the input rate of 1 MHz poses special problems.

LHCS DAQ Functional Components

□ Readout Units (RUs)

- Multiplex Front-end links onto Readout Network links
- > Merge input fragments to one output fragment

Subfarm Controllers (SFCs)

- > assemble event fragments arriving from RUs to complete events and send them to one of the CPUs connected
- \succ Load balancing among the CPUs connected

Readout Network

- provide connectivity between RUs and SFCs for event-building
- provide necessary bandwidth (4 GB/sec sustained)

CPU farm

- > execute the high level trigger algorithms
 - ➡ Level-2 (Input rate: 40 kHz, Output rate: 5 kHz)
 - → Level-3 (Input rate: 5 kHz, Output rate: ~100 Hz)
- ≻ ~2000 processors (à 1000 MIPS)

LHCB Control System

Common integrated controls system

- > Detector controls (classical 'slow control')
 - ⇒High voltage
 - ⇒Low voltage
 - ⇒Crates
 - ⇒ Temperatures
 - \Rightarrow Alarm generation and handling
 - ⇒etc.

> DAQ controls

- ⇒Classical RUN control
- Setup and configuration of all components (FE, Trigger, DAQ)
- → Monitoring

> Same system for both functions

Configuration DB, Archives. Storage Logfiles, etc. \circ ° WAN LAN ROC IOS IOS IOS IOS Other systems (LHC, Safety, ...) Readout system PLC PLC PLC PLC LHC Exp. Sub-Detectors & Experimental equipment

KHCB Event-Building Network

□ Requirements

- > 4 GB/s sustained bandwidth
- ≻ scalable
- > expandable
- >~100 inputs (RUs)
- > ~100 outputs (SFCs)
- > affordable and if possible commercial (COTS, Commodity?)

Readout Protocol

- Pure push-through protocol of complete events to one CPU of the farm
 - Simple hardware and software
 - ***** No central control \rightarrow perfect scalability
 - Full flexibility for high-level trigger algorithms
 - \blacktriangle Large bandwidth needed
 - Avoiding buffer overflows via 'throttle' to trigger

KHCS Event-Building Network Simulation

□ Simulated technology: Myrinet

- >Nominal 1.28 Gb/s
- > Xon/Xoff flow control
- > Switches:
 - ⇒ideal cross-bar
 - ⇒8×8 maximum size (currently)
 - →wormhole routing
 - ⇒source routing
 - ⇒No buffering inside switches
- Software used: Ptolemy discrete event framework

Realistic traffic patterns

- ≻ variable event sizes
- > event building traffic

LHCS Network Simulation Results

Results don't depend strongly on specific technology (Myrinet), but rather on characteristics (flow control, etc)

Switch Size	Fifo Size	Switching Levels	Efficiency
8 x 8	N A	1	52.5%
32x32	0	2	37.3%
32x32	256 kB	2	51.8%
64x64	0	2	38.5%
64x64	256 kB	2	51.4%
96x96	0	3	27.6%
96x96	256 kB	3	50.7%
128x128	0	3	27.5%
128x128	256 kB	3	51.5%

□FIFO buffers between switching levels allow to recover scalability □50 % efficiency "Law of nature"

<u>LHCb</u> Summary

□ LHCb is a special purpose experiment to study CP violation

- Triggering poses special challenges
 - > Similarity between inelastic p-p interactions and events with B-Mesons

DAQ is designed with simplicity and maintainability in mind

- > Push readout protocol \rightarrow Simple, e.g. No central event manager
- > Harder bandwidth requirements on readout network
- Simulations suggest that readout network can be realized by adding FIFO buffers between levels of switching elements

Unified approach to Controls

- > Same basic infrastructure for detector controls and DAQ controls
- > Both aspects completely integrated but operationally independent