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Abstract 
Network Processors are a recent development targeted at 

the high-end network switch/router market. They usually 
consist of a large number of processing cores, multi-threaded 
in hardware, that are specialized in analysing and altering 
frames arriving from the network. For this purpose there are 
hardware co-processors to speed-up e.g. tree-lookups, 
checksum calculations etc. The usual application is in the 
input stage of switches/routers to support de-centralized 
packet or frame routing and hence obtain a better scaling 
behaviour. 

In this paper we will present the use of Network 
Processors for data merging in the LHCb dataflow system. 
The architecture of a generic module will be presented that 
has the potential to be used also as a building block of the 
event-building network for the LHCb software trigger. 

I. INTRODUCTION 
Network processors are a relatively new development. The 

first one was introduced by C-Port (now Motorola) in 1999. 
Nowadays every major and a lot of smaller chip-manufacturer 
has one in their product line.  

A network processor is a dedicated processor for network 
packet (=frame) handling. It provides fast memory and 
dedicated hardware support for frame analysis, address look-
up, frame manipulation, check summing, frame classification, 
multi-casting and much more. All these operations are driven 
by software, which runs in the network processor (NP) core. 
These processors are usually multi-threaded in hardware, 
multiple threads are running at the same time with zero-
overhead context switching. They were primarily designed as 
powerful and flexible front-ends for high-end network 
switches and switching routers. Because they are software 
driven they can easily be customised to various network 
protocols, requirements or new developments. They allow to 
create really big switching frameworks, because the 
decentralise the address resolution and forwarding functions 
traditionally performed by a single, powerful control 
processor. Thus they enable switch manufactures to construct 
large switches (up to 256 Gigabit ports and more), with 
dedicated software in a short time. Currently the “Gigabit” 
generation of network processors is on the market, while the 
next one will be able to handle 10 Gigabit speeds (either as 
10-Gigabit Ethernet or OC-192). These processors will be 
available in the course of 2002. More information can be 
found in [1].  

We present the use of a specific network processor, the 
IBM NP4GS3 to implement a versatile module for LHCb. 
The NP4GS3 can be operated either together with a switching 
fabric or in back-to-back with a second NP4GS3. In this note 
we will summarise our experiences so far, and will 
demonstrate how a NP-based module can fulfil many uses in 
the LHCb data acquisition system, but also potentially in the 
Level 1 trigger system. 

II. THE IBM NP4GS3 
The IBM NP4GS3 is a network processor, which 

comprises 8 dual processor units (DPPU), each being able to 
run 2 out of 4 total threads at the same time. Each DPPU 
shares a set of coprocessors, which regulate the efficient 
access to external resources, such as port queues, memory, 
tree look-up, check-summing and policy. The chip includes 
also 4 media access controllers, to which Gigabit Ethernet 
Physical Layer Interfaces (PHYs) can be directly attached 
either using the GMII or the 8/10 bit encoding. The processor 
has a 128 kB fast, on-chip input buffer, and a 64 MB output 
buffer, made from DDR RAM chips. The access to the 
memory is via a 128-bit wide data-path.  The chip also 
includes a PPC 405 core for control and monitoring and 
exception handling. This PPC can run an operating system, if 
desired Also attached are various memory interfaces for very 
fast and fast address look-up memory, in total up to 64 MB. 
For more details the datasheet can be consulted [2]. 

  

The data-flow through the NP4GS3 is shown in Figure below. 

 
Figure 1: Main components of the NP4GS3 together with an 
indication of the standard data-flow paths. Data can be accessed and 
modified at the input/ingress and output/egress stage, leading to two 
different event building algorithms. One of the two DASL interfaces 
is always wrapped, so that each NP can send to itself. Also indicated 
are the various external memories. 



Data is coming in from the ports, are stored in the ingress 
memory, can be accessed here and are then transferred to the 
Switch Interface Link (the DASL). From here they can either 
reach their own blade or a twin processor connected back to 
back to the first one. They will arrive in any case in the output 
buffer or egress memory, where they can be accessed a 
second time, before they are finally put on to one of several 
output queues for transfer over the network. 

III. A VERSATILE 8 GIGABIT PORT MODULE 
The IBM NP4GS3 has a high-speed interface to connect to 

a switching engine, the Data Aligned Synchronous Link 
(DASL). In fact it has 2 such interfaces. When there is no 
switching engine to connect to, one of these interfaces can 
used to connect to another NP4GS3, thus creating effectively 
an 8-port switch. The other DASL will be usually wrapped to 
itself to ensure full connectivity.  

In addition to the DASL the NP4GS3s (can) share the 
following resources: power and clock distribution and access 
to a PCI interface for configuration and monitoring. Each 
NP4GS3 requires its own memories and physical layer 
interfaces.  The Media Access Controller (MAC) is already 
incorporated on-chip. 

Since the network processor and memory carrying part of 
the module is by far the more complex and deep (in terms of 
layers), it is very attractive separate this module of as a 
daughter/piggy-pack board, which carries everything 
belonging to one NP4GS3 alone (except the physical layers 
interfaces), and feeding out the connections for PCI, DASL 
(to the other Processor if present) and PHYs.  

The common, “simpler” functionality and the control 
processor (Credit Card PC) would be housed on a 
motherboard. The two boards will be described in more detail 
in the following:   

A. Motherboard 
The mother board will provide all common “infra-

structure” needed for the operation of the NP4GS3’s. This 
includes power generation, clock generation and the physical 
layer interfaces. It will also include a Credit-Card PC (CC-
PC) , the standard LHCb interface to the Experimental 
Control System (ECS). It provides the connectors for the two 
carrier cards with the Network Processors. These connectors 
carry the following lines and interfaces: DASL, PCI, JTAG, 
DMU. PCI is used by the CC-PC to configure and monitor the 
NPs and also to communicate with the embedded PowerPC. 
JTAG is needed for the boundary scan and for the hardware 
debugging using RISCWatch [3]. The DASL is used to 
connect two NPs, as has been said already. The DMU (Data 
Mover Unit) interfaces connect the Media Access Controllers 
integrated on the NP4GS3 to the physical interfaces. These 
could be hot-plugable, thus allowing more flexibility in 
configuring them either as 1000BaseT (CAT 5 copper) or 
1000BaseSX (multi-mode fibre).   

Except for some length requirements on the DMU and 
DASL lines and some necessary screening for the high 

frequency signals this mother-board will not be particularly 
complex. A simple layout is shown in Figure 2.  

 
 

 
Figure 2: Mother-board for the NP4GS3 carriers. It provides power, 
clock and PCI to both NPs. Also shown are the 9 physical connectors 
(8 for the NPs, one for the CC-PC). 

B. Piggy-back Board 
This board will be comparatively complex, with ~ 12 layers 
and has rather stringent requirements on timing and distances. 
To have it on a small carrier board has therefore quite some 
advantages: the multi-layer board can be kept small, which 
eases production, and the flexibility to connect different 
physical layers is kept. An simplified block-diagram is shown 
in  Figure 3:. 
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Figure 3: The piggy-back or carrier board will house the NP4GS3 
processor and its associated memory-chips.  

IV. APPLICATIONS IN LHCB 
The flexibility of the module allows for a range of 

applications in the LHCb Data Acquisition system. They are 
shortly discussed here. For details about the LHCb DAQ 
system see for example [4]. 



1) Readout Unit 

The most obvious application is as a Readout Unit, which 
is interfacing/multiplexing front-end links to the Readout 
Network. The network processor is in this context as a fast 
sub-event merger, to assign destinations and function as a 
front-end to the event building switching network. The 
Readout Unit always has one (and only one) output to the 
Readout Network (RN), it can have several inputs (usually 
either 2 or 4). The NP-based Readout Unit will merge the sub-
fragments and send them out to the network, using addresses 
determined by a pre-loaded address table. It will respect flow-
control messages (“X-On/X-Off”) from the network, to cope 
with local congestion, and it will itself have the possibility to 
throttle the trigger, when its buffers are about to overspill. 

2) Front-end Multiplexer 

The Front-end Multiplexer (FEM) application is basically 
the same as the Readout Unit. The multiplexing factor will be 
anywhere, between 7 and 2. For multiplexing factors smaller 
then 4, 2 FEMs can be implemented using a single, fully 
equipped module. 

3) Main Event builder 

The main event builders task is to collect all the fragments 
belonging to a specific event, originating from the RUs. This 
will be some 100 fragments, which have to be assembled into 
one contiguous event and sent to the Sub farm Controller 
(SFC). The fragments will arrive out of the order from the 
network, because the LHCb data acquisition does not have 
(nor does it want or need) any synchronisation after the 
Level 1 derandomisers. They have to be re-arranged into 
correct order and the possibly empty data and error blocks 
have to be merged.. Since the rates are low at this stage, one 
module could drive 4 event building streams, that is it can 
feed 4 SFCs. 

4) Elementary Switching Module 

The 8-port module can also be used as the building 
network for the switching network itself. Performance-wise 
this is definitely no problem, because this is the original 
domain of the network processors from their conception. The 
question is then more if such a switching network can be cost-
effective on a price/port basis. Obviously one needs quite a lot 
of them, because one has to provide interconnections, which 
serve the purpose of the backplane in a conventional 
monolithic switch. There are however studies on how to 
reduce the number of modules, by making intelligent use of 
the traffic patterns in a data acquisition system see for 
example [4]. Additional advantages would be, that such a 
module would allow full control over switching process and 
functionality. Flow control, traffic shaping, check-summing 
could be implemented at will and customised for maximum 
performance in the DAQ. Furthermore such a switching 
network could do the final, main event building in its last 
stage. 

 

V. EXAMPLES OF SOFTWARE FOR APPLICATIONS 

A. Sub-event merging in a Readout Unit 
The task here is to collect up to 7 fragments arriving at a 

rate of  at most 100 kHz. The fragments have an average size 
of a few 100 Bytes, which increases after successive levels of 
multiplexing. Sub-event building proceeds by analysing the 
fragment headers and waiting until all fragments belonging to 
an event have been received or a time-out condition has 
occurred. In any case event-building will start, in the latter 
case an error will be flagged in the error block. The frames 
will then be connected by adapting the link-pointers, moving 
as little data as possible. At the boundaries of original frames, 
it sometimes becomes necessary to actually copy some data to 
fill from the bottom. New frames are being built until a pre-
defined maximum transfer unit has been reached. The frame 
is then dispatched, and the procedure is iterated until all data 
have been used up.  

Care has to be taken to avoid corruption of the static data, 
due to multiple threads wanting to access them at the same 
time. The NP4GS3 provides a powerful semaphore 
mechanism to handle these situations. 

Performance of egress event building according to 
simulation is shown in Figure 4:, only 16 out of 32 threads 
have been enabled, an improvement of at least 50% can still 
be expected. 
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Figure 4: Performance of the Egress Event Building as a function of 
the average input fragment size. The green area shows the range of 
possible L1 trigger rates. 

B. High rate event-building 
Another application which could be of interest for the 

LHCb Level 1 trigger is sub-event merging at high rates of 
incoming fragments. Here very small fragments of some 30 to 
50 Bytes are coming on 2 to 3 links at rates above 1 MHz.  

The very high speed of the ingress memory, makes it ideal 
to perform event-building at high data rates and high trigger 
rates. The main idea is to store the data fragments waiting for 
all belonging to the same event having arrived and then copy 



the payload to form a new fragment to be sent towards the 
output ports. After stripping of the transport headers only part  
of the incoming data is transferred to the egress side after the 
event-building process, including the new transport structure 
for the outgoing event fragment. It has been shown that this 
strategy allows for event-building performances far beyond 
the capabilities of the output port. The performance is shown 
in Figure 5:. 
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Figure 5: Performance of Ingress event-building from simulation as 
a function of the average incoming packet size. The straight line 
shows the fixed level 1 trigger rate of 1.1 MHz. The limitation on 
performance comes from the output link bandwidth only. 

VI. MEASUREMENTS  WITH THE IBM POWERNP 
REFERENCE PLATFORM 

The results presented so far have been obtained using 
simulation. It is therefore interesting to assess how reliable the 
timing information of the simulation is. Since the latest 
version of the processor (revision 2.0) is not yet available on a 
reference platform, some parts of the sub-event building code 
cannot run un-modified on the reference design hardware. 
However, it has been possible to compare a representative set 
of algorithms on simulation and real hardware. The results 
agree well. They will be described in the following:  

A. The IBM N4GS3 Reference Platform  
The IBM NP4GS3 Reference Kit [6] aims at providing 

users with an implementation, which allows exploring most of 
the functions of the processor. The chassis with the important 
cards is shown in Figure 6. The configuration used for our 
measurements consisted of a chassis, a control processor (a 
PPC 705 based cPCI computer), two carrier boards with a 
NP4GS3 and 4 daughter cards, each with 2 Gigabit Ethernet 
SX optical ports. Furthermore we had a RiscWATCH ([3]) 
probe attached to the JTAG interface of one of the blades, 
which allows to access the network processor’s internal 
registers directly from the NPSCOPE debugger (via Ethernet). 

 
Figure 6: Main components of the NP4GS3 reference platform. The 
packet routing switch board is not included in our set-up.  

B. Test set-up 
The test set-up shown in Figure 7: consisted of 4 Netgear 

Gigabit Ethernet NICs, running a dedicated firmware, which 
made them traffic generators and sinks. The internal clock of 
the NICs allowed to measure latencies with approximately 
1 µs precision. More information about these “smart NICs” 
can be found in [7]. 

 

 
. 

 

Figure 7: Test-setup for the NP4GS3 reference kit. The data are fed 
and read back using Tigon 2 based Gigabit Ethernet NICs. Download 
of NP software and monitoring of the NP is done via JTAG using the 
RISCWatch probe 

The network processor is accessed remotely via the 
RiscWATCH. This configuration allowed to test 3 to 1 event-
building. Each NIC has an internal clock which has been used 



to measure the latencies imposed by the event building code. 
This clock has an intrinsic resolution of 1 micro-second. The 
generation of frames and the evaluation of  the time-
differences in the receiving NICs, which are the same as the 
senders.To synchronise the NIC (the sources), which is 
necessary for the reasons outlined above, a special frame is 
send by one of the NICs to the NP, which then multi-casts it 
to all NICs. This triggers the collective sending of the packets, 
within 0.5 microseconds. 

C. Results 
The main aim of all measurements was to understand the 

accuracy of the simulation. The simulation is claimed to be 
cycle precise. It takes into account the contention between 
threads. However, it does  not accurately simulate all external 
resources with their associated latencies. It was therefore 
especially interesting to see to what extend simulation results 
can be trusted. One problem with these measurements is that 
the version of the NP on these boards is not the latest. It lacks 
the semaphore coprocessor, a unit specifically designed for 
efficient resource protection to avoid race conditions in a 
multi-threaded application. Since our code heavily relies on  
this feature, it was necessary to tune the test conditions 
somewhat. This has been done by doing either a single thread 
measurement or by reducing the spread in the arrival time of 
the fragments by careful synchronisation. This does not 
change the run-time of the code, the simulations for both 
versions agree on that. It allows, however to avoid the 
occurrence of synchronisation problems which would 
otherwise be avoided by the semaphore coprocessor. We are 
confident that these measurements give a realistic impression 
of the performance of our sub-event building codes. 

Measurements have been done only in the “high rate“ 
environment, which means short frames at high rates, since 
this is the more demanding and critical application. 

Table 1: Comparison of measurements with simulation results. The 
handling time per fragment is shown in microseconds. The 

measurement times are shown once raw as measured, and second 
corrected, with the round-trip and handling time in the NICs 

subtracted. 

 Measurement 
[µs/fragment] 

Simulation 
[µs/fragment] 

1 source 
1 thread 

6.6(4.9) 4.9 

4 sources 

1 thread 

4.5(2.8) 3.2 

1 source 

16 threads 

1.7 (0.0) 0.5 

 

First the round-trip time of a packet has been measured. 
This is necessary to subtract any overheads coming from the 
transport over the DASL, the cables and especially the 
creation and time-stamping in the NICs, which are not 

included in the simulation. This time has been found to be 
1.7 µs. It can be seen as an intrinsic resolution of the 
measurements. Since the whole system is pipe-lined (many 
threads working) time-intervals smaller than this intrinsic time 
cannot be accurately measured. This is the reason for the 
apparently strange value 0.0 in the last row of the following 
table.   

Several scenarios have been tried, varying the number of 
active threads and active sources. The results are summarized 
in Table 1:. 

 

VII. CONCLUSIONS 
In this paper we have presented the use of a Network 

Processor for several applications in the LHCb Data 
Acquisition System. An integrated module has been 
described, whose function would be determined only by the 
software driving it, providing maximum flexibility and 
excellent debugging capabilities.  

Two such sample software codes have been developed and 
benchmarked using a cycle-precise simulation . 

The simulation results have been compared with 
measurements obtained with the reference platform of the 
IBM PowerNP. The results are in very good agreement, 
making us confident that we will have one, and only one, 
powerful, versatile module for the LHCb Data Acquisition. 
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