Specification of an OPC Server for the CAEN SY127 HV supply

Philippe GRAS
Oct., 28 1998, rev. May, 12 1999

In this document we define the specification of the OPC Server for the CAEN SY127 HV supply we have
proposed to design. OPC, OLE ! for Process Control, is a standard interface for process control allowing
standard communication (that is without need of custom drivers) between devices and software. The device
and the software have to be OPC designed. Generally the device is delivered with an application that runs on
a PC and provides the OPC interface. The device or the application delivered with is called OPC server and
the software that we want to connect to the device, OPC client. We have proposed to write an application to
provide an OPC interface for a not OPC-designed device. We will call this application the OPC server. After
having given you an overview of our system, we will define the parameters of the power supply that will be
accessible from outside, then we will give the OPC interfaces that will be implemented.

Revision of May, 12th 1999

I have added some notes to specify what is actually not supported by the OPC Server, we have now
implemented (version 1.0). It is specially about Caen channel groups. Those groups are not supported in
consequence of difficulties to deal with arrays with OPC. The difficulties are:

e The OPC clients we used for testing during development do not support arrays.

e The engineering units are common for all the elements of an array.

1 Architecture of our system

1.1 SY127 system physical architecture
The system where the OPC server will be used has to include at minimum:
e a PC with Windows NT to run the OPC server,

e an A303A PC CAENET Controller, which is a card to plug in an ISA slot of the PC to interface it to
CAENET Bus, used by SY127 crates,

the SY127 crates: theoretically up to 99,

A128HS communication controllers to control the crates from the caenet bus: 1 by crate,

e Channel boards which provide each 4 channels: up to 10 boards on each crate.

The drawing of figure 1 shows the interconnections between these elements.
Now the physical architecture of our system is defined we will see how the software part is organised.

1.2 Software architecture

OPC is built on the COM and DCOM layer. COM is an acronym for Compound Object Model. COM is
the standard of Microsoft allowing programs (dynamic libraries or executables), written in any language but
according to this standard, to communicate. DCOM (Distributed COM) is roughly the extension of COM to
remote systems, allowing to two programs on two different computers to communicate.

LObject Linking Embedding. This technology was developed by Microsoft.

,,,,,,,,,,,,,,,, SY127 Crate

I
Boad# —= 01234567809 .
HAEEEEEEEEEES
ﬁ%@@@@@@(a@@@ Channels
;ﬁ@@@@@@@@@@ 1~ #0103
/15]elo|e]e|o]o]o|o]o|of !
SY127 Crate
I
I
4 0123456789
ANPEEEEEEEEEEN
V| F|e|ele|efe|e|e|elo|e Channels
;ﬂ@@@@@@@@@@ #0103
<<@®®®®@®®®@
! |
.
L)
L)
SY127 Crate
Y (N d it)
I
' 0123456789 |
NAEEEEEEEEEEN
A303A v |Ele|ele|ele|e|eofele|e Channels
;ﬁ@@@@@@@@@@ 1~ #0103
1 |[<lelo|e]e|e]o]o|o]o|of

Figure 1: Architecture of a sample system using the OPC Server for SY127.

OPC OPC
OPC Server Client Client
(local) (remote)
Hardware|
(A303A DCOM COM COM DCOM
PC card)
Network Network
Protocol Protocol
Networ k

Figure 2: Architecture of the software.

The programs that are connected to an OPC server are called clients. OPC is multi-client and multi-server,
that is several clients can be connected to a common server and one compound can be the client of several
servers.

The figure 2 shows the layer architecture of the software.

2 OPC Items

The OPC server will offer to its clients to access to a certain number of parameters defining the state of
the power supply. The parameters accessible by the clients are called OPC Items.

First, let’s see the parameters of the SY127 that the manufacturer let us to access. Then we will define the
OPC server parameters accessible by the OPC clients, i.e. the OPC items.

2.1 CAEN SY127 parameters

The parameters of the CAEN SY127 are listed in the table 1. The SY127 crate allows us to define groups
of channels to access in only one command to the value of a parameter of each channel of a channel set.A

write access will give the same value for all the channels belonging to the group, a read access will return the
value of each channel of the channel group. 7 channel groups can be defined. There is one more channel group
which is a set of all the channels. This channel group is called “group all”. Write access to a channel group
can be done in relative value, that is value will be add the original value of the concerned parameter for each
channel of the group.

According to the list of parameters of table 1 we will define the OPC items our server will have.

2.2 Notion of OPC Item and of OPC group

The OPC server will propose to the client a certain number of parameters that will define the state of the
device. As the parameter may be the client can read it, write it or both. These parameters are called OPC
items.

Among all the OPC items the OPC server can provide the client can choose the ones it wants to access. In
order to do it, the client will define a set of item, called OPC group, by giving a name for the set and the list
of the items composing it. The client can define as many OPC groups it wants. The client can add or remove
any item of a group it has previously defined at any time. A single item can belong to several groups defined
by one client.

N.B.: we shall not confuse an OPC group with the channel groups described in part 2.1.

We will define the OPC parameters of the OPC server according to the CAEN SY127 parameters previously
browsed. We will distinguish three types of items:

e channel dependent items: for one type of parameter, e.g. V0, we will need as many items as we’ve got
channels,

e channel group dependent items,

e crate dependent items.

For the group dependent items we have define for one readable and writable physical parameter three OPC
items:

e one for read access,
e one for write access in absolute value mode,
e one for write access in relative value mode.

This is because, when the OPC client will ask to the OPC server to read the value the OPC server will return
an array containing the value of each channel composing the channel group and when the client ask to
write a value it will send to the server a value common for all the channels composing the channel
group?®.

These items are listed in table 2.2. The data of an OPC Item are of VARIANT type. VARIANT type is
part of OLE Automation technology. A variant is a structure that can contain different type of data. The
type of the data is identified in a field of the VARIANT structure. The “Variant type” given in the table 2.2
is the type of the data contained in the VARIANT structure. The table 2 gives the description of these types.

In the VI_ARRAY’s the values will be ordered in increasing channel number. The item craz.grzz.Get.Ch
allows to get the channel corresponding to each array index value.

3 OPC Interfaces supported

An OPC server is composed of 3 COM object:
e OPClItem object.
e OPCGroup object. This object allows the clients to organise the items it needs.

e OPCServer object. This object allows the client to manage OPCGroup objects.

2The switching between value 0 and value 1 is performed by two external NIM input levels (VSEL,ISEL)
3Since the clients used to test the OPC Server do not support arrays as item values, the current version (1.0) of the OPC
Server does not support group dependent items.

A4
.{Q,QJ 0’9
) \ Y Q,Qé\
& e > Description
fb&@ ¥ Q)@% WB%O\ QQ} >
T GYREASD
V0 2 [RW|1/Ch | Channel voltage value number 0. 2
V1 2 |[RW|1/Ch | Channel voltage value number 1. 2
10 2 |RW|1/Ch | Channel intensity value number 0. 2
11 2 |RW|1/Ch | Channel intensisty value number 1. 2
Rup 2 |RW|1/Ch | Ramp up speed value.
Rdwn 2 |RW|1/Ch| Ramp down speed value.
TripVal 2 |RW|1/Ch | The trip delay value.
ChName 10 [RW|1/Ch| The name of the channel (up to 9 char, terminated by the null
character.)
Ch2GrpAss 1 |RW|1/Ch | The assignement of the channel to the CAEN groups.
N 1 R
LTI T Tl
1— belongs to the group. 0— doesn’t belong to the group.
Status 1 1/Ch | One byte composed as following:
MSB IRZWIR?A]:IOE\’/IUIiVIO?/VIOQUIT:ipIOOfﬂl LSB
Rdw 1/8| R [1/Ch| set to 1 when the channel voltage is ramping down.
Rup 1/8| R |1/Ch | set to 1 when the channel voltage is ramping up.
OVI 1/8| R |1/Ch| set to 1 when the channel is in over-current state.
UNV 1/8| R |1/Ch| set to 1 when the channel is in under-voltage state.
(OAAY 1/8| R |1/Ch | set to 1 when the channel is in over-voltage state.
On 1/8|RW|1/Ch | set to 1 when the channel is ON. Writable through an ON/OFF
command which affects too the OFF bit.
Trip 1/8|RW|1/Ch | set to 1 when the channel has tripped.
Off 1/8RW|1/Ch| set to 1 when the channel is OFF. Writable through an ON/OFF
command which affects too the ON bit.
Vmon 2 | R |1/Ch | The monitored value of the channel voltage.
Imon 2 | R |1/Ch | The monitored value of the channel current.
BoardID 1 | R |1/Ch | One byte composed as following:
MSB [Polarity[Board ID # < 6..0 >| LSB
The BoardID identify the type of 4-channel board.
Protect 1 1/Cr | One byte composed as following:
MSB H7V AL;NIAcfiveAcfiveAL;M Kezyb PVlVD P\ONR LSB
ENBIL| \4 T ENBLENBL|STAT]
HV ENBL |1/8] R | 1/Cr | Set to 1 if HV-ENABLE is ON, 0 if OFF.
ALRM 1/8| R | 1/Cr | Set to 1 when an alarm for OVV, UNV, TRIP occured in any
channel. Set to 0 by a clear alarm command. Bit 3 and 7 of the
Protect byte have the same meaning
Active V 1/8| R | 1/Cr | Set to 0 if active voltage value is VO, set to 1 if it is V1.
Active I 1/8] R | 1/Cr | Set to 0 if active current value is I0, set to 1 if it is I1.
Keyb ENBL [1/8 RW| 1/Cr | Set to 1 if Keyboard is enable, to 0 if disable.
PWD 1/8|RW| 1/Cr | Set to 1 if password is enable, to 0 if disable.
PWR STAT |1/8 RW| 1/Cr | If 1 and if the channel were ON before a power-off it will be auto-
matically switched ON at the next power-on.
MainfID 44 | R | 1/Cr | Mainframe identifier packet. This contains the string “SY127 Vx.x
(Main Vy.y)” for software version 6.6 or higher.

Table 1: Parameters of the SY127 HV supply system.

Variant type Description

VT_R4 float coded in 4 bytes

VT_UIl unsigned char (1byte)
VT_BOOL boolean

VT_EMPTY no data

VT_ARRAY of Y | secured array of Y type elements
VT_BSTR String (Unicode).

Table 2: Description of the variant types.

The functions that a COM object provides to its clients are regrouped by functionalities in what is called
an COM interfaces, in this case OPC interfaces. The OPC specification define the interfaces than the OPC
objects have to provide. Some are optional. In this part we give the list of the OPC interfaces which will be
implemented in the OPC server for SY127. For the functions that composed the OPC interfaces, see OPC
Data Access Specification 1.0A pp 16ff.

3.1 Custom interfaces

The custom interfaces are made for the client programs implemented with a compiled language.

OPCServer object

e [OPCServer. This is the main interface of the OPCServer object.

e [OPCBrowseServerAdressSpace. This interface allows a client to ask for the list of available items. We
want to implement this interface which is optional according to OPC specifications v1.0A.

e [IOPCServerPublicGroups]. This interface allows to several clients to use a common group which is
called a public group. We may be interested by this optional interface in a next version.

OPCGroup object

e IOPCGroupStateMgt. This interface is used to clone groups and to set the name of a group.
e IOPCSynclO. This interface allows a client to perform synchronous input/output.

e IOPCAsynclO. This interface allows a client to perform asynchronous input/output. Although this
interface is not optional according to OPC specification 1.0A, it will be implemented only in a next
version.

e IOPCItemMgt. This interface allows a client to add, remove and control the behaviour of the items of
an OPC group.

e IDataObject. This interface allows the creation of an Advice connection between a client and an OPC
group. See the OLE programming manual for more details. Although this interface is not optional
according to OPC specification 1.0A, it will be implemented only in versions containing the IOPCSyncIO
interface.

e [IOPCPublicGroupStateMgt]. This interface allows to convert a private group to a public group. It will
be implemented in the possible version containing IOP CServerPublicGroupsDisp interface.

EnumOPCItemAttributes object

e [EnumOPCItemAttributes. This interface allows a client to know the contents of a group and the
attribute of each item.

K N
NE &9; \&;0 ,,@‘S’O
A S
SRS & < -
Q &S %‘v\gf S \:@ “O\Q)\ Description
_ 0@@?35\0_ e S X D
N g N N <
crrz.chyy. VO VT_R4 RW| Value number 0 of the channel voltage set-
ting.
crzz.chyy. V1 \% VT_R4 RW| Value number 1 of the channel voltage set-
ting.
crzz.chyy.10 mA VT_R4 RW| Value number 0 of the channel maximum cur-
rent setting.
crzz.chyy.Il mA VT_R4 RW| Value number 1 of the channel maximum cur-
rent setting.
crzz.chyy.Vmon \'% VT_R4 RW/| Monitored value of the channel voltage.

g crzz.chyy.Imon HA VT_R4 RW/| Monitored value of the channel current.

£ | crzz.chyy.RupS Vst VT_R4 RW| Value of the ramp-up speed setting.

< | crzz.chyy.RdwnS Vst VT_R4 RW| Value of the ramp-down speed setting.

< | crazz.chyy. TripD S VT_R4 RW| Value of trip delay.

é crzz.chyy.Status VT_UI1 R | Status byte of the channel. (See Status in the

2 table 1).

< | crzz.chyy.Rdwn VT_BOOL R | bit 7 of the Status byte. (see table 1)

% crzz.chyy.Rup VT_BOOL R | bit 6 of the Status byte. (see table 1)

g crzz.chyy.OVI VT_BOOL R | bit 5 of the Status byte. (see table 1)
crzz.chyy. UNV VT_BOOL R | bit 4 of the Status byte. (see table 1)
crazz.chyy.OVV VT_BOOL R | bit 3 of the Status byte. (see table 1)
crzz.chyy.On VT_BOOL RW)| bit 2 and inverse of bit 0 of the Status byte.

(see table 1)
crzz.chyy. Trip VT_BOOL R | bit 1 of the Status byte. (see table 1).
crzz.chyy.BoardID VT_UI1 R | Identification byte of the board. See details
in the table 1).
crzz.chyy.Groups VT_UI1 RW| Channel to group assignment byte. See
Ch2GrpAss in the table 1).
crzz.chyy. Name VT_BSTR RW| Name of the channel.
= | craz.grzz.Get.VO A% VT_ARRAY of | R | Values number 0 of the channel voltage set-
g VT_R4 tings.
3 crzz.grzz.Get.V1 A% VT_ARRAY of | R | Values number 1 of the channel voltage set-

& VT_R4 tings.

%\ crzz.grzz.Get. 10 mA VT_ARRAY of | R | Values number 0 of the channel maximum

b VT_R4 current settings.

é crzz.grzz.Get.I1 mA VT_ARRAY of | R | Values number 1 of the channel maximum
= VT_R4 current settings.

% | crax.grzz.Get.Vmon \% VT_ARRAY of | R | Monitored values of the channel voltages.

= VT_R4

2 | craz.grzz.Get.Imon HA VT_ARRAY of | R | Monitored values of the channel currents.

Py VT_R4

% crzz.grzz.Get. RupS V.s~1| VT_ARRAY of | R | Values of the ramp-up speed settings.

= VT_R4

é craz.grzz.Get.RdwnS |[V-s71| VT_ARRAY of | R | Values of the ramp-down speed settings.

= VT_R4

& | craz.grzz.Get. TripD S VT_R4 R | Value of trip delay.

2 crax.grzz.Get.Status VT_ARRAY of | R | Status bytes of the channel. See details in

2 VT_UI1 the table 1.

& | craz.grzz.Get.Rdwn VT_ARRAY of | R | bit 7 of the Status byte. (see table 1)
VT_BOOL

Table 3: OPC items of the server. (1/3)

DAY A\
“O@-&,@ 0&?; Qf; g {@‘29
&?5“%*15”% ¥ e 44&
9O @ a&”&%@”‘ " &8 \g\ Description
RE ¢ N g &8 <& S
crzr.grzz.Get.Rup VT_ARRAY of | R | bit 6 of the Status byte. (see table 1)
VT_BOOL
craz.grzz.Get.OVI VT_ARRAY of | R | bit 5 of the Status byte. (see table 1
VT_BOOL
crzz.grzz.Get.OVV VT_ARRAY of | R | bit 4 of the Status byte. (see table 1
VT_BOOL
crzz.grzz.Get.On VT_ARRAY of | R | bit 3 and inverse of bit 0 of the Status byte.
VT_BOOL (see table 1
crzz.grzz.Get. Trip VT_ARRAY of | R | bit 1 and inverse of bit 0 of the Status byte.
VT_BOOL (see table 1
crzz.grzz.Get.BoardID VT_ARRAY of | R | Identification byte of the board. See details
. VT_UI1 in the table 1.
= | crzzgrzz.Get.Groups VT_ARRAY of | R | Channel to group assignment byte. See de-
8 VT_UIl tails in the table 1.
5 crzz.grzz.Get.Ch VT_ARRAY of | R | Numbers of the channels composing the
g VT_UI1 group.
g crzz.grzz.aSet. VO A% VT_R4 W | Set the channel voltages VO to a common
= value.
2 | crazm.grzzaSet. V1 \Y% VT_R4 W | Set the channel voltages V1 to a common
2 value.
*é crazx.grzz.aSet.I0 mA VT_R4 W | Set the channel maximum currents 10 to a
— common value.
é crzz.grzz.aSet.I1 mA VT_R4 W | Set the channel maximum currents I1 to a
,% common value.
£ | crzz.grzz.aSet. RupS |V-s~! VT_R4 W | Set the channel ramp-up speeds to a common
é value.
g | craz.grzz.aSet.RdwnS V! VT_R4 W | Set the channel ramp-down speeds to a com-
3 mon value.
& | crax.grzz.aSet. TripD S VT_R4 W | Set the channel trip delays to a common
= value.
O crzz.grzz.aSet.On VT_BOOL W | Set to 1 bit 3 and to 0 bit 0 of the status byte
of the channels. (see table 1)
crzz.grzz.rSet. VO A% VT_R4 W | Add a value to the channel voltage VO values.
crzz.grzz.rSet. V1 A% VT_R4 W | Add a value to the channel voltage V1 values.
crzz.grzz.rSet. 10 mA VT_R4 W | Add a value to the channel maximum current
10 values.
crzz.grzz.rSet. 11 mA VT_R4 W | Add a value to the channel maximum current
I1 values.
crzz.grzz.rSet. RupS V! VT_R4 W | Add a value to the channel ramp-up speed
values.
crzr.grzzrSet. RdwnS [V-s—1 VT_R4 W | Add a value to the channel ramp-down speed
values.
crzz.grzz.rSet. TripD S VT_R4 W | Add a value to the channel trip delay values.

Table 4: OPC items of the server.(2/3)

NS N
~QQ§@ 0&?2 Q\&g {@‘S‘O
Sl © &S
O T O N\) Description
\Y fz;@b°° e 3 & &\} “O\QJ eserp
& &Q@. R X & %@?
ey S < <
crzz.Protect VT_UI1 RW| Protection Byte of the crate. See details in
the table 1. Only the RW bits (see below)
are affected by a write access.
crzz. HVENBL VT_BOOL R | bit 7 of the crate protection byte.
crzz.ALRM VT_BOOL R | bit 6 and bit 3 of the crate protection byte.
w | crzz.ActiveV VT_BOOL R | bit 5 of the crate protection byte.
% crzz.Activel VT_BOOL R | bit 4 of the crate protection byte.
'ji crzz. KbdENBL VT_BOOL RW| bit 2 of the crate protection byte.
g | ccoz.PWD VT_BOOL RW| bit 1 of the crate protection byte.
E | crazPWRStat VT_BOOL RW| bit 0 of the crate protection byte.
% crzz. MFramelD VT_BSTR R | Mainframe identifier of the crate. See details
S in table 1.
E@ crzz.BoardID VT_ARRAY of 10 | R | Identifiers of the 4-channel boards of the
O VT_UI1 crate. See details in table 1.
crzz.ClrAlrm VT_EMPTY W | Write access to this item clear the alarms.
crzz.FormatEEPROM VT_EMPTY W | Write access to this item then to the
crrzz.ConfFormatEEPROM item clear the
EEPROM of the crate which stores all the
crate parameters during power off.
crzz. ConfFormatEEPROM VT_EMPTY W | see crzz.FormatEEPROM above.

Table 5: OPC items of the server.(3/3)

3.2 Automation interfaces

Those interfaces are made to be called by a script language command. Therefore it permits, for example,
to connect to the OPC server from an Excel sheet. Although those interfaces are not optional according to
the v1.0A OPC specification, the automation interface is not implemented in the National Instrument TAS
toolkit.

We should be able to get from the OPC foundation a dll that wraps the custom interface to provide an
automation interface.

OPCServer object

e [OPCServerDisp. Equivalent to IOPCServer interface but for automation.

e IOPCBrowseServer AdressSpaceDisp. Equivalent to IOPCServer AdressSpace but for automation.

e [IOPCServerPublicGroupsDisp]. Equivalent to IOPCServerPublicGroups but for automation. Will be

implemented only if the IOPCServerPublicGroups will be implemented.
OPCGroup object

o [OPCItemMgtDisp. Automation equivalent to IOPCItemMgt interface.
e IOPCGroupStateMgtDisp. Automation equivalent to IOPCGroupStateMgt interface.
e IOPCSynclODisp. Automation equivalent to IOPCSynclO interface.

e IOPCAsynclODisp. Automation equivalent to IOPCAsyncIODisp interface. This won’t be implemented
in versions not including the IOPCAsyncIODisp interface.

e [IOPCPublicGroupStateMgtDisp]. Automation equivalent to IOPCPublicGroupStateMgt.This won’t be
implemented in versions not including the IOPCServerPublicGroups interface.

OPCItem object

e IOPCItemDisp. This interface provides properties and methods on the Item object.

This OPC server for SY127 will be implemented in C++4 on Windows NT. But the DCOM implementation
of Software AG American for Unix platform may allow to implemented this OPC Server for Unix.

