
Schedule: Timing Topic
20 minutes Lecture
0 minutes Practice
20 minutes Total

Gaudi Framework Tutorial, April 2006

1
Introduction

Gaudi Tutorial: Introduction 1-2

1-2 Gaudi Framework Tutorial, April 2006

What is a Framework?

Framework Definition [1,2]
• An architectural pattern that codifies a

particular domain. It provides the suitable
knobs, slots and tabs that permit clients to use
and adapt to specific applications within a
given range of behavior.

In practice
• A skeleton of an application into which

developers plug in their code and provides
most of the common functionality.

[1] G. Booch, “Object Solutions”, Addison-Wesley 1996

[2] E. Gamma, et al., “Design Patterns”, Addison-Wesley 1995

What is a Framework
We have developed the Gaudi object-oriented framework with the intention of using it to develop all event
data processing applications running in the various processing environments. Examples include the high level
triggers that acquire their data directly from the on-line system, the event simulation software that runs off-
line in a batch environment and the event visualization software which is used interactively. The basis of the
framework is the architecture which defines the basic components and how they are interfaced. The
framework is real software that implements the architecture and ensures that its design features are respected.
Use of the framework in all applications will help to ensure the integrity of the overall software design and
will result in maximum reuse of the core software components.
Although GAUDI has been developed in the context of the LHCb experiment, it has been designed to be
easily customizable, so that it can be adapted to the different tasks and integrated with components from other
frameworks. It can easily be adapted for use in other experiments.

Gaudi Tutorial: Introduction 1-3

Framework benefits
The main benefit of adopting a framework is to give a frame to the developments of the different groups and
people, adopt a common vocabulary, etc. Without a framework, the different contributions will be very
difficult to integrate into a coherent application like the reconstruction program. It is secondary in
importance which concrete framework you adopt, the important thing is to have one.

1-3 Gaudi Framework Tutorial, April 2006

Framework Benefits

• Common vocabulary, better
specifications of what needs to be done,
better understanding of the system.

• Low coupling between concurrent
developments. Smooth integration.
Organization of the development.

• Robustness, resilient to change
(change-tolerant).

• Fostering code re-use

Gaudi Tutorial: Introduction 1-4

1-4 Gaudi Framework Tutorial, April 2006

Transient
Event Store

Gaudi Object Diagram

Converter

Algorithm

Event Data
Service

Persistency
Service

Data
Files

AlgorithmAlgorithm

Detec. Data
Service

Persistency
Service

Data
Files

Transient
Detector

Store

Message
Service

JobOptions
Service

Particle Prop.
Service

Other
Services Histogram

Service
Persistency

Service
Data
Files

Transient
Histogram

Store

Application
Manager ConverterConverterEvent

Selector

Gaudi Object Diagram
The main components of the GAUDI software architecture can be seen in the object diagram in the slide.
Object diagrams are very illustrative for explaining how a system is decomposed.
The essence of data processing applications are a set of Algorithms. This is what is shown in the diagram.
These Algorithms require the functionality provided by a set of Services. See next slides.

Gaudi Tutorial: Introduction 1-5

1-5 Gaudi Framework Tutorial, April 2006

Definition of Terms

• Algorithm
– Atomic data processing unit (visible

& controlled by the framework)
• Data Object

– Atomic data unit (visible and
managed by transient data store)

• Transient Data Store
– Central service and repository for

data objects (data location, life cycle,
load on demand, …)

Algorithm
The essence of the event data processing applications are the physics algorithms, which are encapsulated into
a set of components that we call Algorithms. Algorithms implement a standard set of generic interfaces and
can be called without knowing what they really do. In fact, a complex algorithm can be implemented by using
a set of simpler ones.

Data Object and Transient Store
The data objects needed by the algorithms are organized in several transient data stores, depending on the
nature of the data itself and its lifetime: event data, detector data, statistical data.. Although the stores behave
slightly differently, particularly with respect to the data lifetime (e.g. the event data store is cleared for each
event), their implementations have many things in common and are based on a common component.

Mapping to the old FORTRAN terms
•An Algorithm is equivalent to a FORTRAN subroutine that produces new ZEBRA banks from some input
banks
•Data Object is equivalent to a ZEBRA bank
•Transient Data Store is equivalent to the ZEBRA common block

Gaudi Tutorial: Introduction 1-6

1-6 Gaudi Framework Tutorial, April 2006

Definition of Terms (2)
• Services

– Globally available software components
providing framework functionality

• Tools
– Globally or locally available components to

allow sharing of code between algorithms
• Data Converter

– Provides explicit/implicit conversion from/to
persistent data format to/from transient data

• Properties
– Control and data parameters for Algorithms

and Services

Services
Services are a category of components that should offer all the services directly or indirectly needed by the
algorithms. This approach releases the algorithm builder from having to develop the routine software tasks
that are typically needed in a physics data processing application. Some examples of services can be seen in
the object diagram. They include:

– The services for managing the different transient stores (event data service, detector data
service,...) should offer simplified data access to the algorithms.

– Tools can be locally owned by an algorithm or globally available. They are components that
allow sharing of code between algorithms (e.g. track extrapolation)

– The different persistency services provide the functionality needed to populate the transient data
stores from persistent data and vice versa. These services require the help of specific converters
which know how to convert a specific data object from its persistent representation into its
transient one, or the other way around.

– The job options service, message service and particle properties service.

Gaudi Tutorial: Introduction 1-7

1-7 Gaudi Framework Tutorial, April 2006

Algorithm

• Users write Concrete Algorithms
– Most of the tutorial will be devoted to

that
• It is called once per physics event
• Implements three methods in addition

to the constructor and destructor
– initialize(), execute(), finalize()

Algorithms
Algorithm encapsulates the physics contents of the data processing program. It is the “place holder” foreseen
by the framework for the end-user code. This is why most of the tutorial will be devoted to development of
algorithms.
Algorithms are scheduled to be executed explicitly once per physics event. If the complexity requires, the
algorithm can be made as a composite of a number of sub-algorithms. The complex algorithm schedules
explicitly the execution of the sub-algorithms in the proper order to produce the desired results. If an
algorithm requires some data that happens to be produced by another algorithm, then the system has to ensure
by explicit coding that the algorithms are executed in the correct sequence.

Gaudi Tutorial: Introduction 1-8

1-8 Gaudi Framework Tutorial, April 2006

Interfaces

Concrete
Algorithm

EventDataSvc
IDataProviderSvc

IDataProviderSvc

IHistogramSvc

IMessageSvc

IAlgorithm IProperty

Obj_B

DetectorDataSvc

HistogramSvc

MessageSvc

ParticlePropertySvc IParticlePropertySvc

ApplicationMgr
ISvcLocator

Obj_A

Basic abstract interface concept
This figure illustrates the concept of an Concrete Algorithm implementing a couple of abstract interfaces
(IAlgorithm, IProperty) and at the same time “using” a number of other abstract interfaces offering some
services (histogramming, messages, particle properties, etc,). The interaction between the algorithm and the
services are always through this interfaces. This is the technique that minimizes the coupling between
software and allows to be able to replace different implementation without affecting the algorithm clients.

The figure shows the full names of the services (needed e.g. when setting their properties). Methods with
shorter name are available in the Algorithm base class to access these services (e.g. eventSvc(), detSvc(),
histoSvc(), msgSvc())

Gaudi Tutorial: Introduction 1-9

1-9 Gaudi Framework Tutorial, April 2006

VCR Interface Model

VCR

IEuroConnectorIRfInput

IUserInterface IInfraredInput

TV set

• Each interface is specialized in a
domain.

• Interfaces are independent of
concrete implementations.

• You can mix devices from
several constructors.

• Application built by composing.
• Standardizing on the interfaces

gives us big leverage.

VCR Interface Model
This analogy illustrates the building of a system from a number of components connected by their interfaces.
It clearly shows the advantages of standard interfaces and the possibility to evolve the system by replacing
some of the components without having to re-do the rest of the system.

Gaudi Tutorial: Introduction 1-10

1-10 Gaudi Framework Tutorial, April 2006

Interfaces in Practice

class IMyInterface {
virtual void doSomething(int a, double b) = 0;

}

IMyInterace.h

#include “IMyInterface.h”

ClientAlgorithm::myMethod() {
// Declare the interface
IMyInterface* myInterface;
// Get the interface from somewhere
myInterface = svc<IMyInterface>(“MyServiceProvider”);
// Use the interface
myInterface->doSomething(10, 100.5);

}

ClientAlgorihtm.cpp

Interfaces in Practice
The declaration of the interface (IMyInterface.h) contains a number of abstract methods (= 0). The client of
the interface does not know who is implementing the interface, it has no necessity to know it. It needs to
include only the interface definition (this is the contract between the client and the implementation)
Notice that an interface (class with abstract methods) can not be instantiated. You can not call “new
IMyInterface”, therefore you need to have a mechanism to instantiate objects implementing the interface
indirectly. This is one of the functionalities offered by the framework.

The templated svc function in the example locates the service whose name is “MyServiceProvider”, and
returns a pointer of type IMyInterface*. The algorithm can then use this service. Note that the algorithm only
has a pointer to the service, which is guaranteed to be valid. It does not own the service so it does not have to
worry about deleting it.

Gaudi Tutorial: Introduction 1-11

1-11 Gaudi Framework Tutorial, April 2006

Algorithm & Transient Store

Algorithm
A

Algorithm
B

Algorithm
C

Transient Event
Data Store

Data T1

Data T2, T3

Data T2

Data T3, T4

Data T4

Data T5

Data T1Data T1

Data T5

Real dataflow

Apparent dataflow

Algorithm & Transient Store
In order to minimize the coupling between algorithms, the transient data store acts a “black-board” between
algorithms. An Algorithm does not need to know from where the data has been produced, it only knows what
data it requires and what data will be producing.
As in shown in the viewgraph, we can create “data-flows” using a number of Algorithms known only, their
inputs and outputs, by scheduling them in the adequate order.

Not e that for this to work, a contract must be made between algorithms, that a given algorithm cannot modify
data that is already on the Transient Store. In general, when an algorithm puts data on the transient store, it
relinquishes ownership of that data. The data is then owned by the TES and should be considered as read only
– the TES will eventually take care of deleting it.

Gaudi Tutorial: Introduction 1-12

1-12 Gaudi Framework Tutorial, April 2006

Gaudi Services
• JobOptions Service
• Message Service
• Particle Properties Service
• Event Data Service
• Histogram Service
• N-tuple Service
• Detector Data Service
• Magnetic Field Service
• Random Number Generator
• Chrono Service
• (Persistency Services)
• (User Interface & Visualization Services)
• (Geant4 Services)

Gaudi Services
Open ended list of available services in Gaudi. The services in the top of the list will be the ones that will be
used and exercised during the tutorial. Many of the existing services are not really used directly by the
Algorithms implementing a physics algorithm but they are used by the Framework itself in implementing
some of the functionalities (persistency, visualization, interactivity, etc.)

Gaudi Tutorial: Introduction 1-13

1-13 Gaudi Framework Tutorial, April 2006

Gaudi Product Sheet
• Current release

– v18r3 (March 06)
• Supported Platforms

– Scientific Linux (CERN) 3 & gcc 3.2.3
– Windows 2000,XP & VisualC++ 7.1

• Web address.
– http://cern.ch/proj-gaudi/welcome.html

Gaudi Product Sheet
Note that a number of experiment neutral packages are managed from an independent project area
(repository, web, etc,). These packages are shared between experiment (LHCb, ATLAS, HARP, etc.). The
experiment neutral Gaudi is located in http://cern.ch/proj-gaudi

Gaudi Tutorial: Introduction 1-14

1-14 Gaudi Framework Tutorial, April 2006

Documentation

• Gaudi User Guide
– A 220 pages document targeted to

end-users
• C++ Documentation

– Generated from code (Doxygen)
– Uses special comments in code, e.g. Tutorial solutions
– http://cern.ch/proj-

gaudi/releases/GAUDI/doc/html/index.html

• Tutorial
– These notes

Documentation
All this documentation is accessible from the main Gaudi web page. Not that the user guide has not been
updated for two years, it is planned to update it “soon”

The doxygen documentation above is limited to the Gaudi (experiment neutral) classes. LHCb specific
classes (e.g. the event model) are documented within the LHCb application projects, e.g.
http://cern.ch/LHCb-release-area/LHCB/doc/html/index.html

In addition to the mentioned documents, many books cover more standard aspects of the software
development (C++ language, O-O Design, etc,). A selection of such books are available in the small “LHCb
Computing Library” or can be purchased from in the CERN IT Bookshop.

