
CERN - ECP Division - FEX Group - Cascade Section

CASCADE
User’s Guide

CERN ECP/FEX-CA 97-1
Revision 3_01

Mars 1997

ii

Copyright

CERN

European Organization for Nuclear Research

CH-1211 Geneva 23

Switzerland

iv

Abstract
CASCADE (CERN Architecture and System Components for an Adaptable Data-
acquisition Environment) is a software package developed at CERN by the data-
acquisition group of the ECP Division for the construction of distributed, real-time,
data-acquisition systems for high-energy physics experiments. Originally targeted
to the NOMAD experiment, CASCADE has been designed to adapt to a wide range
of system configurations and to provide physicists with a set of software building
blocks so that they can construct homogeneous data-acquisition systems.

CASCADE has been used in a number of applications at CERN. After several
improvement phases, it is now a stable product dedicated to the NOMAD and
LHCB experiments.

Intended Audience
This document is intended for the users of the Cascade data-acquisition system.

Product Version
This document refers to Cascade version 3_01.

Document Information

Comments, suggestions, queries and criticisms about the present document should
be sent to the editor: Yves Perrin (CERN ECP/FEX, phone: +41.22.7673194, E-
mail: Yves.PERRIN@cern.ch).

Document Access

This document, as well as other CASCADE related material can be retrieved:

• via WWW through URL http://cascade.cern.ch/Documentation

Contents v

Table of Contents

1 Overview 1
1.1 Basic Concepts 1
1.2 Building Elements 2
1.2.1 The Stage 2
1.2.2 The Inter-Stage Link 3
1.3 Event Producers 4
1.4 Event Building 4
1.5 Event Consumers 4
1.5.1 Event Recording 4
1.5.2 Event Monitoring 5
1.6 Run Control 5
1.7 Error Reporting 6
1.8 Infrastructure 6
1.8.1 Component Packages. 6
1.8.2 General Purpose Packages Used 7
1.9 Application-dependent Parts 7
1.10 Software Distribution 8
1.11 Status 8

2 Required Layered Products 9
2.1 Network services and daemons 9
2.2 System access permissions 10
2.3 Mandatory Layered Products 10
2.4 Optional Layered Products 11
2.5 The CERN ECP/FEX-CA I/O drivers and libraries 11

3 Getting the Software 13
3.1 Where to get the software from 13
3.2 Which software to download where 13
3.3 Setting up the directory infrastructure necessary to host CASCADE . . . 13
3.4 Downloading of the CASCADE software 14

4 Building a CASCADE System 19
4.1 The Cascade demo system 19
4.2 Building a Cascade system for a real application 20
4.3 Event Production and Event Building Function Development 22
4.4 Stage Generation 23
4.5 Monitoring programs Development 24
4.6 Execution of the demo monitoring programs. 24
4.7 Configuration and Run Control Files Preparation 25
4.8 Writing EMU message and route files 25
4.9 Preparing the script files to start the application 25

5 Booting a CASCADE System 27
5.1 Introduction 27

vi Contents

5.2 Stage ’start’ Scripts 27
5.2.1 The Stage Environment Variables 28
5.3 Recorder ’start’ Scripts 29
5.3.1 The Recorder Environment Variables 30

6 Run Control 31
6.1 Introduction 31
6.2 Environment Requirements 31
6.3 The CASCADE configuration database. 32
6.4 Starting CASCADE Run Control 32
6.5 The CASCADE user interface 33
6.5.1 The DAQ menu 35
6.5.2 The individual stage pop-up menus 39

7 Event Production 45
7.1 Introduction 45
7.2 Programming Considerations. 45
7.3 Event headers and event production templates 47
7.4 User Routines - First Group 47

ProdStageInit 49
ProdPortInit 50
ProdStageStartRun 51
ProdPortStartRun 52
ProdPortStopRun 53
ProdStageStopRun 54
ProdInput 55

7.4.1 CASCADE 'event' functions 56
STG_GetSpace 57
STG_ReleaseSpace 58
STG_DeclEvent 59
STG_SetEvAttr 60
STG_GetRunState 61
STG_GetPortPriority 62
STG_SetPortPriority 63
Remark about event sizes 64

7.5 User Routines - Second Group 64
7.6 ZEBRA FZ User Vector used in the distributed templates 64

USTG_StageInit 66
USTG_PortInit 67
USTG_StageStartRun 68
USTG_PortStartRun 69
USTG_StageStopRun 70
USTG_PortStopRun 71
USTG_GetVICNo 72
USTG_InputPortParam 73
USTG_InputEnbTrig 74
USTG_InputDsbTrig 75
USTG_EvTrgAna 76
USTG_MaxEventSize 77
USTG_InputEvent 78

Contents vii

USTG_FZuserVec 79

8 Event building 81
8.1 Introduction 81
8.2 userevb templates 81
8.3 Application-dependent event building functions 82

UEVB_Init 83
UEVB_GetMinInfo 84
UEVB_GetMoreInfo 85
UEVB_FillHdTr 86

9 Event Monitoring 87
9.1 Introduction 87
9.2 Monitoring program templates 87
9.2.1 Monitoring Program Structure 89
9.3 Error Testing In A Monitoring Program 90
9.4 Exception Handler In The Monitoring Program 90
9.5 Debugging Tools 91
9.6 Pipes 92
9.7 Sampling Routines 93

sh_mconnect 94
sh_declare_signal 96
sh_request_event 97
sh_wait 98
sh_get_data 99
sh_release_event 100
sh_disconnect 101
sh_message 102

9.7.1 FORTRAN Interface 103

10 Remote Monitoring Facility 105
10.1 Introduction 105
10.2 Remote monitoring functions. 107

RM_init 109
sh_wait_timeout 110
sh_mconnect 111
sh_request_event 112
sh_wait 113
sh_get_data 114
sh_release_event 115
sh_disconnect 116
sh_message 117

10.3 Clients and servers 118
10.4 Installation on OS-9 120
10.5 Installation on LYNXOS 120

11 Data Recording 123
11.1 Introduction 123
11.2 Event formatting and packing 124
11.3 Starting the Recorder 124

viii Contents

11.4 The dummy recorder 125
11.5 Tape Recorder for SUMMIT 125
11.5.1 Environment Variables for SUMMIT Tape Recording 126
11.5.2 Unlabelled Tapes 126
11.5.3 Labelled tapes 127
11.6 Tape recorder for DLT 130
11.7 Tape recorder for EXABYTE 130
11.7.1 Environment variables for EXABYTE tape recorder 130
11.7.2 Recording session 130
11.8 Remote disk recorder 131
11.8.1 Environment variables for remote disk recording 131
11.8.2 Setting up the disk server 132
11.9 Logging of tape information 132

12 Error and Message Handling and Reporting 135
12.1 Introduction 135
12.2 General Flow of Cascade Error and Message Handling 135
12.3 Error Message Utility EMU in CASCADE 137
12.3.1 Overview 137
12.3.2 The EMU kernel 137
12.3.3 The EMN network layer 137
12.4 Message streams and Severity in CASCADE error message handling . . . 137
12.4.1 Message Streams 137
12.4.2 Severity 138
12.4.3 Reserved names for CASCADE 138
12.4.4 Example 139
12.5 Message injection from CASCADE into EMU 139

EMH_UsrMsg and EMH_SysMsg 140
12.6 EMU Message Decoding 142
12.7 EMU Message Routing 142
12.8 Example 142
12.8.1 Installation 143
12.8.2 Example Configuration 143
12.8.3 EMN setup. 143
12.8.4 The EMU Message file 144
12.8.5 The EMU Router file. 145
12.8.6 Message injection 145
12.8.7 EmuDisplay and logfile 146

13 Configuration Files 147
13.1 Overall File Structure 147
13.2 Global System Parameters 147
13.3 Stage Entry 148
13.3.1 Global Stage Parameters Section 148
13.3.2 Stage Input Ports Section 149
13.3.3 Stage Output Ports Section 149
13.4 Inter-stage Links 150
13.4.1 VICbus links 150
13.4.2 Network Links 150
13.4.3 Stage to Recorder Shared Memory links 151

Contents ix

13.4.4 Detector to Front-end Stage links 151
13.5 Additional Stage Information Related to Event Building 151
13.5.1 The stage event type section 152
13.6 Configuration File Templates. 153

The demo scripts suite 155

References 157

x Contents

1 — Overview 1

1 Overview

CASCADE (CERN Architecture and System Components for an Adaptable Data-
acquisition Environment) is a software package developed at CERN by the data-
acquisition group of the ECP Division for the construction of distributed, real-time,
data-acquisition systems for high-energy physics experiments. Originally targeted to
the NOMAD experiment, CASCADE has been designed to adapt to a wide range of
system configurations and to provide a set of software building blocks so that data-
acquisition systems can be constructed in a homogeneous way.

1.1 Basic Concepts

Most data-acquisition systems in high-energy physics can be viewed as multiprocessor,
tree-structured architectures. Data flow through the architecture under the form of
events which group information related to a given trigger. All events progress in the
tree in the same direction. In their migration, events are manipulated for various
reasons such as filtering, formatting, merging, monitoring, routing, etc. These
operations are performed by processes running in a set of processors distributed in the
architecture. Depending on their role and on their physical environment in the
configuration, these processors may be of different types, may run different operating
systems, and may be linked by a variety of inter-processor links as shown in Figure 1.
To maximize the overall efficiency, data buffers and processing elements are distributed
in the architecture so that different levels of the chain can work concurrently on
different events.

Figure 1 Physical System Representation

To a large extent, CASCADE allows its users to concentrate more on the functional
aspects of the data-acquisition than on its physical implementation. This is achieved by
grouping the most common functions in two basic building elements called thestage
and theinter-stage link respectively. The stage has been implemented on a number of

CAMAC

VMEbus

VMEbus

VMEbus
VMEbus

FASTBUS

Workstation

Ethernet

VICbus

sub-detector #1

sub-detector #2

sub-detector #3

VMEbus

2 1 — Overview

hardware and software platforms widely used at CERN. Using these basic elements,
which can be replicated at all levels, it is possible to make a logical representation
(Figure 2) of the actual physical configuration and specify the mapping between the
two representations in aconfiguration file. In this way, the data-acquisition
architecture can be viewed and handled in a more homogeneous way.

Figure 2 Logical System Representation

1.2 Building Elements

1.2.1 The Stage

A stage has the basic functionality of a general single-processor, single-process, data-
acquisition kernel. It is structured and parameterised so that several stages can be
grouped together to form sub-systems such as event builders, farms, etc. As far as the
data-flow is concerned, a stage could be viewed as a pipeline with one or more inputs
and one or more outputs as shown in Figure 3.

Upon reception of a trigger the stage inputs an event, performs a number of possible
operations on this event, and finally passes the results to other stages and to monitoring
tasks which subscribed to this type of event. Inside the stage, events are handled and
buffered in the form of event descriptors. The event data are copied in the stage only if
strictly necessary. To minimize the dead time and to allow operations to take place
concurrently on different events so that the stage can deal with different input and
output rates, the stage is organized in several threads of execution. Each thread
corresponds to a given operation to be performed on an event or to a control action to
be done on the stage. Threads directly involved with the main data-flow are called
phases.

In a stage, event descriptors transit sequentially through:

• the input phase, which creates an event descriptor and, if necessary, copies the event
data;

sub-detector #1 sub-detector #2 sub-detector #3

stage 'LSC1' stage 'LSC2' stage 'LSC3'

stage 'EVB' stage 'TAPE'

stage
'ANALYSIS'

1 — Overview 3

• the construction phase, which, in the case of an event builder, gradually links
together the descriptors of the sub-events until a complete event is created.

From there, event descriptors are pushed to:

• the access phase where they are marked for monitoring;

• the dispatch phase which format, and output them to one or several other stages.

In case of monitoring programs connected to the stage, event descriptors transit
through the sampling handler phase which transfers the relevant pointers and sizes to
the monitoring process so that it can access the event.

A scheduler has been developed to control the execution of the threads. It reacts to
signals associated with each thread and issued either externally by other processes
(stages, monitoring programs, control programs) or internally by one of the other
threads. If necessary, a thread can suspend its execution until a global shared resource
(e.g. memory space) has been released. Thread scheduling is done on a priority basis
but a thread cannot be pre-empted to give control to any other thread before it
terminates its execution.

Figure 3 The stage and the inter-stage link

1.2.2 The Inter-Stage Link

Two consecutive stages in the data-flow topology can be linked physically in a number
of ways. A high-level interface and a handshake protocol have been specified, and
implementations have been done for a number of hardware and software platforms
widely used at CERN. This approach provides homogeneity in the overall system. It
makes the communication between stages transparent to the application-dependent
code. At present, implementations exist allowing stages to be linked via VICbus [1] or
via Ethernet (in that case using TCP/IP).

Communication between two stages is initiated by the dispatch phase of the upstream
stage which triggers the input phase of the downstream stage by sending it a signal.

in
pu

t

co
ns

tr
uc

tio
n

ac
ce

ss

sa
m

pl
in

g

di
sp

at
ch

lin
ka

ck

in
pu

t

co
ns

tr
uc

tio
n

ac
ce

ss

sa
m

pl
in

g

di
sp

at
ch

lin
ka

ck

Stage 1

Stage 2

to stage m
to recorder

to monitoring processes

to monitoring

to stage n to stage 2
input ports

output ports

input portsInter-stage link

events
events

 processes

4 1 — Overview

The protocol includes exchange of a message containing the event descriptor, possibly
followed by the transfer of the event data if the type of link makes it necessary or if the
user has explicitly specified it in the configuration file. An acknowledge message is
sent by the downstream stage once it is ready to work on the event.

1.3 Event Producers

Events are produced by stages which have input ports declared to be of type USER in
the application configuration file. These stages are generally (but they don't have to be)
'front-end' stages. They differ from the others only by the fact that some application-
dependentevent production functionshave to be linked with the stage modules when
the system is generated. At execution time, when the stage is triggered on one of its
input ports, the input phase calls the appropriate event production functions if the input
port is of type USER. These functions, for which templates are available, must read the
event data and declare the event to the stage. CASCADE and a number of I/O libraries,
listed later in this document, are available to read events from a variety of busses often
used in HEP experiments.

1.4 Event Building

In most cases stages have to supply their output ports and their monitoring programs
with the events they have collected from their input ports. If necessary, it is possible to
force stages to perform multi-level event-building operations on the (sub)events
collected from the input ports. This mode of operation has to be specified in the
application configuration files together with the event types and some dependency rules
involved in the building process. A number of application-dependentevent building
functions have to be written and linked with the stage modules at system generation.
These functions, for which templates are available, are automatically called by the
stage to get information on the subevents and, if necessary, re-format them before
performing the actual building operation.

1.5 Event Consumers

1.5.1 Event Recording

Recording is done by a special type of stage called arecorder which has the unique
task of storing events on an I/O device. Recorders must run in the same CPU as the
stage which feeds them. Recorders have only one input and have no output to other
stages. The interface and the protocol used to communicate with a recorder are the
same as for inter-stage communications but the inter-stage link is based on shared
memory. The feeder stage, in its dispatch phase, formats the event and sends it to the
recorder which, then, writes it in fixed-length records on the storage device. Splitting
the formatting and the actual recording over two processes permits concurrent
execution of these two operations. CASCADE supports the CERN ZEBRA FZ format.
At present, recording can be done on disk files (locally or via NFS) and, under OS-9
and LYNXOS, it can be done on the IBM3480-compatible STK4280 cartridge device,
on the EXABYTE or on a DLT [Digital Linear Tape] device. The recorder can also be
configured to use its own disk recorder server on a UNIX system accessed via the
network.

1 — Overview 5

1.5.2 Event Monitoring

Monitoring programs run as separate processes either locally in the same CPU as the
stage from which they retrieve events or remotely in an other CPU. A set of functions,
provided in the form of a library, can be called by the monitoring programs to connect
to a given stage and specify the event sampling criteria, to request an event, to release
an event, and to disconnect from a stage.

There are two modes of sampling. In therequest mode the monitoring program
receives an event as soon as there is one available but with no guarantee that a
minimum percentage of events will be seen. In thefixed mode the monitoring program
is guaranteed to receive at least the percentage of events that it has specified and more
if possible. In both modes the monitoring program is notified asynchronously as soon
as an event of the requested type becomes available.

An event is made available to the monitoring program by means of pointers and sizes.
The monitoring program does not know whether the event data is local to the stage or
remote in a previous stage. The space occupied by the event is automatically locked
and must be explicitly released as soon as the monitoring program has finished with it.

Remote monitoring is based on a client/server approach where a client monitoring
program, usually running in a workstation, relies on a server program, running in the
same processor as the stage, to 'transparently' handle all of its monitoring requests. The
client and the server communicate via Ethernet using TCP-IP.

The communication between the monitoring programs (or their servers in case of
remote monitoring) and the stage is based on pipes for the exchange of request and
reply messages, and on shared memory for access to events. In the stage a service
thread, called the sampling handler, serves the asynchronous requests issued by the
various monitoring programs. It also handles the event bookkeeping in conjunction
with the stage access phase.

1.6 Run Control

The run control facility provided as part of the CASCADE package involves a process
called XRC running on a Solaris or HPUX workstation.

XRC is a modular, general-purpose control program allowing complex data-
acquisition systems to be modeled in an object-oriented way. It is based on software
originally designed by the CERN OPAL experiment and adapted in collaboration with
NOMAD. Operator interaction with the data-acquisition system is achieved through a
X11/Motif layer which provides a run-time configurable graphical interface including
menus, dialog boxes and various types of display panels.

XRC is a process controlling data-acquisition (DAQ) units such as stages, recorders,
monitoring programs and user-specific processes. Its main purpose is to provide
synchronization between various DAQ units and to hold their respective states. Within
XRC, each element is described in a uniform way as a Finite State Machine (FSM), an
object having a predefined set of allowed states and allowed transitions between these
states. Since DAQ units are external to XRC, they are represented by internal FSM

6 1 — Overview

correspondents. A hierarchy of internal FSMs can be introduced to control subsets of
the entire DAQ system.

Communication between XRC and the DAQ units uses NIC, the CASCADE Network
component package based on the TCP/IP protocol. The XRC process is the network
server and the DAQ units are the clients, which can connect dynamically to the server.
XRC maintains the states of all the data-acquisition components as well as run-time
parameters and saves this information at the end of each session. A run control domain
is defined by an identifier used by XRC and the connected DAQ units. In a given
domain each object is identified by its unique ASCII name. More than one instance of
the run control facility may be running at a given time using different addressing
domains. For example a full production run can coexist with the test or calibration of a
particular sub-detector. A simple but powerful user library allows for easy preparation
of user specific DAQ unit software.

The DAQ units configuration is stored in the CASCADE run control configuration kept
in a mini SQL database [2]. Mini SQL (mSQL) is a lightweight database engine,
available in the public domain, designed to provide fast access to stored data with low
memory requirements. mSQL offers a subset of the ANSI SQL specification.

Run control and associated stage mechanisms allow to, dynamically detach/re-attach
stages for different DAQ runs of the same application. This facility permits to run with
subsets of the run control configuration with which the application has been initialised
without having to update the mSQL database and restart the application.

1.7 Error Reporting

Several facilities are available to handle error messages originating from both the
application specific modules and the CASCADE package itself. They allow message
preparation outside the application code, selective message routing at run time,
message transport across heterogeneous operating system platforms, support for a
variety of message destination types from log files to MOTIF windows.

These facilities have been implemented both on UNIX-like and OS-9 platforms using a
number of packages which are not specific to CASCADE such as EMU [20] [21], the
Error Message Utility, EMUNET [22], the transparent TCP/IP network connection of
distributed EMU systems and ED [23], a MOTIF-based EMU messages display
program.

1.8 Infrastructure

The CASCADE package relies itself on a number of other packages, each of them
providing a given category of required services. Some of the requirements have been
implemented by developing packages specifically for this project. These packages are
therefore 'components' of CASCADE. For other requirements, it was possible to use
already existing packages.

1.8.1 Component Packages

Most of these packages are written in C and some of them in C++. They essentially
handle the following services:

1 — Overview 7

• management of event descriptors, linked lists, space allocation, and shared memory
segments

• thread scheduling

• network communication

• inter-process pipe communication

• run control services

• monitoring services

• application configuration file interpretation

• event building

• recording facilities

• debugging facilities

1.8.2 General Purpose Packages Used

In addition to some packages already mentioned in the context of run control and of
error reporting, CASCADE relies also on various other packages which are not specific
to CASCADE. These mainly concern the I/O infrastructure required for physics
input/output, intercrate communication, and data recording.

The basic hardware and software platforms on which CASCADE is supported are as
follows. The stages should execute in VMEbus crates either on the MC68040-based
CES FIC8234 [4] running the OS-9 operating system or on PowerPC-based CES RIO2
8062 running LYNXOS or in workstations running Solaris or SunOS.

Front-end stages may read data from VME and CAMAC under OS-9 and LYNXOS,
and from FASTBUS under OS-9. Interfacing to CAMAC is provided via a VME-to-
CAMAC branch interface [7] or via a dedicated CAMAC controller connected to
VICbus [8] with software support in the form of standard NIM/ESONE/IEEE libraries.
A FASTBUS-to-VSB interface [9] provides the connection between a VME crate and
FASTBUS. A comprehensive multiuser implementation of the NIM FASTBUS library
is available for this module [10] under OS-9. Triggering is possible from CAMAC
(lams) and VMEbus (via a general-purpose VME trigger module called CORBO [11]).

To provide a fast channel for data transfers and for the exchange of messages, the VME
crates are interconnected via memory-mapped VICbus links [1]. Ethernet is used for
remote event monitoring, inter-stage links and less-time critical applications such as
run control and file access, via NFS.

The inter-stage communication across VICbus is based on a message exchange library
developed at CERN [12], while the communication across Ethernet uses the standard
NFS/TCP/IP package available on OS-9, LYNXOS and UNIX. Under OS-9 and
LYNXOS, data may be recorded via SCSI, to an IBM3480-compatible STK4280 tape
drive [13], to an Exabyte [14], to a DLT [Digital Linear Tape] device, or via Ethernet to
a remote disk.

1.9 Application-dependent Parts

In summary, the application-dependent parts in a CASCADE-based data-acquisition
system are:

8 1 — Overview

• the event production functions to be linked with the front-end stages;

• the event building functions to be linked with the event builder stages;

• the monitoring programs which may attach to stages;

• the data-flow configuration file which specifies the functional and physical
characteristics of every stage as well as the topology of the system;

• the run control mini SQL data-base / configuration file used to describe the run
control data structures.

• the ’start’ script files executed on request of the run control to boot the application
"DAQ units" (stages, recorders, mps) in their respective host processors.

• the error reporting decoder and router files

Templates are distributed for all the modules listed above together with template
makefiles and script files to load and start execution of the CASCADE related
processes in the various processors of the application.

1.10 Software Distribution

The CASCADE package is distributed as a set of libraries, executable programs and
template files of all sorts grouped into an installation kit. The software and the
installation procedure can be retrieved directly from the World Wide Web CERN
ECP/FEX-CAserver.

1.11 Status

CASCADE has been used at CERN by the NOMAD experiment and the Energy
Amplifier project since 1994, and by the NA44 experiment in 1995 and 1996. These
applications have quite different system configurations and event characteristics. After
a continuous program of consolidation and improvements as well as porting to new
platforms over the past few years, CASCADE is now a stable product dedicated to the
present applications and to the LHCB experiment testbeam activities.

2 — Required Layered Products 9

2 Required Layered Products

Cascade applications use one or more front-end systems for the data acquisition itself
and one or more workstation(s) for run control, remote monitoring. etc. In most cases
(and as assumed in this document) one of the workstations is also used as boot and
NFS server for the front-end systems. On both the front-end and back-end systems, the
use of Cascade requires the availability of a number of products and services.

Therefore, before attempting to install Cascade itself, users should request their system
managers to set up:

• the required bootp and NFS client/server as explained in Section 3.2 and Section 3.3

• several network services and associated daemons to be declared to the system

• a number of additional products on top of the operating system.

The following sections present the main required services and products as well as the
operating system environment in which they are needed.

2.1 Network services and daemons

• The network service file:

On back-end workstations and front-end LynxOS:/etc/services

On OS-9:/os9/system/etc/services

needs to be modified to include the following services:

casc-stg 7731/tcp #CASCADE Inter-Stage comm server

casc-drec 7733/tcp #CASCADE Disk recorder (REC) server

casc-rmp 7734/tcp #CASCADE Remote monitoring server

casc-rc 7741/tcp #CASCADE run control (RC) server

casc-emn 7757/tcp #CASCADE EMUnet server

msql 7780/tcp #miniSQL server

• On Unix systems, the following daemon entries need to be done in the file
/etc/inetd.conf :

On back-end workstations:
casc-drec stream tcp nowait cascade
/usr/local/online/bin/rec_server rec_server

On LynxOS:
casc-rmp stream tcp nowait cascade 1

/usr/local/online/bin/mp_server mp_server -f /tmp/rmp.log

• On back-end workstations, msqld, the mSQL daemon (see reference to mSQL
below), has to be started at system startup.

10 2 — Required Layered Products

• On OS-9 systems, the programtcp_daemon available in the directory
/os9/online/cmds on the CERN FEX-CA OS-9 cluster has to be launched at
system start-up by the following sequence of commands:

load -d /os9/online/cmds/mp_server

load -d /os9/online/cmds/tcp_daemon

tcp_daemon casc-rmp mp_server -f /dd/tmp/rmp.log <>>>/nil &

2.2 System access permissions

The names of the back-end workstations need to be entered in the appropriate files of
the front-end systems:

On LynxOS: .hosts in the user home directory

On OS-9: /system/etc/rhosts

2.3 Mandatory Layered Products

The following layered products are required in order to be able to build, run and control
any CASCADE application:

1. Warning :

Under Unix and therefore LYNXOS, a process can send signals only to processes with the same
ownership. Since the mp_server and the stage processes send signals to each other, it is mandatory under
LYNXOS that stages accessed by remote monitoring programs have the same owner as the one declared
for mp_server in the inetd.conf entry mentioned above.

a. The primary source of information related to miniSQL is the Hughes Technologies
Web Site located at :http://Hughes.com.au/

Layered Product Platform(s)

Motif UNIX workstation

miniSQL a version 1.xx [2] UNIX workstation

GNU C compiler OS-9 + LYNXOS + UNIX workstation

rsh - remote shell utility [15] OS-9 + LYNXOS + UNIX workstation

Bourne shell OS-9 + LYNXOS + UNIX workstation

2 — Required Layered Products 11

2.4 Optional Layered Products

The following layered products may be needed as a function of the application
hardware configuration and of the desired error reporting facilities:

2.5 The CERN ECP/FEX-CA I/O drivers and libraries

The use of CASCADE relies on the availability of specific commercially available
hardware for which special software has been developed at CERN when the associated
commercial software was inexistent/insufficient and did not match the requirements of
the real time data-acquisition environments used at CERN. the ECP/FEX-CA
(previously ECP/DS) group together with the ECP/ESS-OS group have developped a
number of drivers, libraries and test programs in the OS-9 and LYNXOS environments
for interfaces such as the CES VIC 8251F, RCB8047 CORBO, CBD8210 CAMAC
branch driver and devices such as Storagetek STK4280 and Exabyte.

No distribution scheme exists for this software and arrangements with ECP/FEX-CA
and/or ECP/ESS-OS need to be made to get it. At CERN, a service exists from the
ECP/ESS-OS group to purchase, install and test various hardware components and
sub-systems such as the ones used by CASCADE applications. The CERN ECP/FEX-
CA I/O drivers and libraries are installed into CASCADE systems as part of that
service.

It is highly recommended to use this service and to insure proper functionning of
all system components individually before attempting to run any CASCADE
application.

As a guideline, the following test programs available in the ’tests ’ subdirectory of:

Under OS-9: /os9/online/generic/<product>

Under LYNXOS: /generic/<product>

should be run succesfully as pre-requisites to any application using the related
<product> hardware/software. These test programs offer a much simpler and more
efficient debugging environment than Cascade.

For CAMAC: slottest + camint

For CORBO:vmetrig_test1

For VICbus (product = vmx): thetstevb & testlsc pair

For Summit (Storagetek 4280):ctexec

For Exabyte:xaexec

For DLT: exerciser

For NIC (Network communications):

Layered Product Platform(s)

CERN ECP/FEX-CA I/O drivers and libraries OS-9 + LYNXOS

CES FASTBUS library OS-9

OCPAW [17] [18] OS-9 + UNIX workstation

12 2 — Required Layered Products

On Lynx and workstations:/usr/local/online/bin/nictest_async

On OS-9: /os9/online/cmds/nictest_async

3 — Getting the Software 13

3 Getting the Software

3.1 Where to get the software from

The CASCADE package is distributed as a set of libraries, executable programs and
template files of all sorts grouped into an installation kit. The software and the
installation procedure can be retrieved directly from the World Wide Web via the URL:

http://cascade.cern.ch/Projects/CASCADE/CASCADEpublic

Note that to be able to access this area you should first register with Yves Perrin
(CERN ECP/FEX-CA, e-mail: Yves.Perrin@cern.ch) giving the name of the machine
used for the WWW access (not necessarily the machine where CASCADE will be
installed).

3.2 Which software to download where

Cascade applications use one or more front-end systems for the data acquisition itself
and one or more workstation(s) for run control, remote monitoring. etc. In most cases
(and as assumed in this document) one of the workstations is also used as boot and
NFS server for the front-end systems. Users should request their system managers to
set up the required bootp and NFS services before attempting to install Cascade.

This means that for any application, Cascade must be installed on two different
platforms: the back-end workstation and the front-end system. The front-end file base
being, generally, a NFS mount point in the back-end file base, it means that two save
sets have to be downloaded via WWW into the back-end system.

3.3 Setting up the directory infrastructure necessary to host CASCADE

Before downloading any save sets, it is necessary to set up various areas and directories
to host the CASCADE product according to the structure expected by the CASCADE
scripts and makefiles.

This is accomplished by:

1. On the back-end UNIX workstation, setup the NFS export file and mount point for
the NFS-OS-9 file system and/or NFS-LYNX (same owner for the NFS client and
the NFS server nodes.

2. Choose and create aCASCADE "online" area . The default values are:

/usr/local/online ... Ultrix, HP-UX, Solaris, SunOS.

/usr/local/online ... LynxOS (NFS-based file system).

/os9/online OS-9 (NFS-based file system).

 The online area is used to maintain the online version of CASCADE.

14 3 — Getting the Software

You can have several online areas (for several concurrent versions of CASCADE) as
long as they are on separate directory trees or on separate nodes. Be careful to choose
the proper "owner" for those directories. It is better NOT to choose root or daemon, as
there are some setuid utilities that might open security holes. Choose a non-priviledge
user belonging to an appropriate group (normally, group has full access to the online
areas). For NFS-based OS-9 and/or LynxOS file systems, the owner should exist and be
the same on OS-9 and/or LynxOS and the NFS server node (Ultrix, HP-UX, Solaris or
SunOS), or the installation procedure will fail for lack of privileges.

3. On one Unix host (ULTRIX, HP-UX, SOLARIS, SUNOS or LYNXOS) create a
CASCADE "repository" area . For LynxOS this area must be a directory NFS
mounted from one unix host (ULTRIX, HP-UX, SOLARIS, SUNOS).Make sure
it is not read-only. Here you will unpack the CASCADE distribution kits and
(optionally) keep your online reference copy of CASCADE (if you wish to have
them). You should have one and only one central common repository area. The
owner of this area should be the same as for the "online" tree.

The CASCADE repository area can be anywhere, as long as it is not the same choosen
for the "online" tree.

For OS-9 systems, you need a Unix host to unpack and distribute CASCADE. It is
possible to have either NFS-based or local-based file systems. In both cases, an
intermediate (permanent or temporary) area is required on a Unix host.

If you have several Unix architectures (LYNXOS, HP-UX, SOLARIS and SUNOS) we
suggest to export via NFS the repository area to all the nodes where you should install
CASCADE online. This way there will be one central repository Unix host and several
online Unix hosts where CASCADE should be available.

3.4 Downloading of the CASCADE software

After connecting to the Cascade Web site via your favourite WWW browser, go to the
CASCADE distribution page and follow the procedure described below.

Common installation procedure

For all platforms, the first thing to do is to transfer the CASCADE kit files and the
basic installation scriptinto your repository area:

1. Fetch the architecture-specific files you need. The available kits are:

CASCADE.release.ULTRIX.tar

CASCADE.release.SUNOS.tar

CASCADE.release.SOLARISOS.tar

CASCADE.release.LYNX.tar

CASCADE.release.HPOS.tar

CASCADE.release.OS9.tar

CASCADE.release.FULL.tar (only for CASCADE team internal use)

3 — Getting the Software 15

2. Fetch the installation script

CASCADE.release.Install

3. Execute the installation script on the repository Unix host:

$ cd cascadeRepositoryArea

$ chmod +x CASCADE.release.Install

$./CASCADE.release.Install

 This script unpacks the various products and performs some cleanup on the
repository area. You should execute this script once and only once, right after the
transfer of the source kits.

IF SOMETHING GOES WRONG during the last step (out of disk space, wrong
permissions, invalid directory tree) you should fix the problem and restart FROM
POINT 1. The procedure performs several cleanups during the installation itself and
recovery on error is not possible. It is NOT possible to run the procedure mentioned in
point three above several times.

Ultrix installation procedure

On all the ULTRIX "online" nodes run the ULTRIX installation script:

$ cd cascadeRepositoryArea

$./CASCADE.release.ULTRIX.Install UltrixOnlineArea

You can run this procedure several times, as you might want to:

• rebuild a corrupted CASCADE online tree

• have several concurrent versions of CASCADE on separate online trees and/or on
separate nodes

SunOS installation procedure

On all the Sun "online" nodes run the SUNOS installation script:

$ cd cascadeRepositoryArea

$./CASCADE.release.SUNOS.Install SunosOnlineArea

You can run this procedure several times, as you might want to:

• rebuild a corrupted CASCADE online tree

• have several concurrent versions of CASCADE on separate online trees and/or on
separate nodes

HP-UX installation procedure

On all the HP-UX "online" nodes run the HP-UX installation script:

$ cd cascadeRepositoryArea

16 3 — Getting the Software

$./CASCADE.release.HPOS.Install HposOnlineArea

You can run this procedure several times, as you might want to:

• rebuild a corrupted CASCADE online tree

• have several concurrent versions of CASCADE on separate online trees and/or on
separate nodes

Solaris installation procedure

On all the Solaris "online" nodes run the SOLARIS installation script:

$ cd cascadeRepositoryArea

$./CASCADE.release.SOLARISOS.Install SolarisOnlineArea

You can run this procedure several times, as you might want to:

• rebuild a corrupted CASCADE online tree

• have several concurrent versions of CASCADE on separate online trees and/or on
separate nodes

LynxOS installation procedure

On all the Lynx "online" nodes run the LYNXOS installation script:

$ cd cascadeRepositoryArea

$./CASCADE.release.LYNX.Install LynxOnlineArea

You can run this procedure several times, as you might want to:

• rebuild a corrupted CASCADE online tree

• have several concurrent versions of CASCADE on separate online trees and/or on
separate nodes

OS-9 installation procedure (NFS-based file system)

1. On Unix (NFS server host), run the NFS server installation procedure:

$ cd cascadeRepositoryArea

$./CASCADE.release.OS9.Install nfsMountPoint

where nfsMountPoint is the full path to the "online" NFS server export to OS-9.

You can run this procedure several times, as you might want to:

• rebuild a corrupted CASCADE online tree

• have several concurrent versions of CASCADE on separate online trees

You should run this procedure once per NFS mount point.

2. Login on any of the OS-9 NFS client(s) and do:

$ chd os9OnlineArea

3 — Getting the Software 17

$ OS9.Install

You should run this procedure once per NFS mount point.

You can repeat this procedure several times to restore a corrupted CASCADE OS-9
online tree. You should repeat the above procedure for all the OS-9 "online" trees you
want to export (NFS mount points).

Post-Installation cleanup

1. If you are not interested in online copies of CASCADE, you can delete all the files
within the repository area:

$ rm -rf repositoryArea/*

If you want to delete selected copies of CASCADE from the Unix repository area do
the following:

$ cd repositoryArea

$ ls CASCADE.*.descriptor

 << list of all releases of CASCADE stored in the
repository area >>

$./CASCADE.releaseToDelete.Cleanup

Repeat the last step for all the versions of CASCADE you want to delete.

Once a release has been removed, you will have to follow the complete installation
procedure to restore corrupted online directory trees. If you decide to keep the files
online, you will be able to re-execute at any time the system-specific (ULTRIX,
LYNXOS, HP-UX, SOLARIS, SUNOS or OS-9) procedure.

2. On the OS-9 system (NFS and local file systems) you can remove the "ytar" files
and the installation scripts from the "online" area.

$ chd os9OnlineArea

$ del -f *

Ignore all error messages returned by the last statement.

Once these files have been removed, you will have to follow the complete installation
procedure to restore a corrupted CASCADE OS-9 directory tree. If you decide to keep
these files online, you will be able to re-execute at any time the OS-9 installation
procedure.

TROUBLESHOOTING

1) On Unix (ULTRIX, LynxOS, HP-UX, Solaris or SunOS): if the system-specific
installation procedure fails with "can't create" or "permission denied" status, check the
protection of the main directories and the relative subdirectories. The protection mask
should be at least "u+rwx".

18 3 — Getting the Software

4 — Building a CASCADE System 19

4 Building a CASCADE System

Building a CASCADE-based data acquisition system for a given application requires
to go through a number of steps described below. However, to help new users to get
started and to provide a framework to automate the building and booting of their future
applications, a suite of demo script and make files are provided enabling the user to
build and run a simple CASCADE demonstration system by typing just a few
commands.

4.1 The Cascade demo system

The Cascade demonstration example includes a stage, a tape recorder and a disk
recorder client running in a front-end system (OS9 or LYNXOS) and the run control,
remote monitoring and the disk recorder server running on a back-end Unix
workstation.

The front-end stage gets its triggers from a CORBO module and generates random
length events filled with incremental data.

Tape recording requires the availability of a STK4280 device called /ct0 under OS-9 or
the availability of a DLT device called /dev/cexb5 under LYNXOS.

After having checked that:

• the back-end system has access to the front-end (if necessary edit the front-end
.rhosts file in the user home directory)

• the environment variable DISPLAY is defined and pointing to the appropriate
display

the demonstration can be built and run from the back-end workstation simply by
typing:

mkdir <demo_directory>

cd <demo_directory>

/usr/local/online/templates/copy_demo fe_os fe_system fe_dir

where:

<demo_directory> is the directory to host the demo on the back-end

fe_os is the type of operating system run on the front-end (OS9 or LYNX)

fe_system is the name of the front-end system (e.g. eposly11)

fe_dir is the full path of the directory to create for the demo on the front-end

Warning and/or error messages may be displayed during the execution of the demo
scripts. Messages such as:

rm: lstat /home2/ype/DEMO_LYNX/daqconf.upd: File or directory
doesn't exist

or

20 4 — Building a CASCADE System

Error unlinking named semaphore NIC_SEM_36_4: Protection
violation

result from commands attempting to remove processes or resources which are either
already absent or belonging to some other users. If they don’t result in the script to be
aborted they should be ignored. However, if the script exits prematurely (before the run
control panel pops up) fix the problem related to the last error message and then:

• if the problem was during the copying phase, type:
demoFromTempl fe_os fe_system fe_dir

• if the problem was during the building phase, type:
demoFromBuild fe_os fe_system fe_dir

• if the problem was in the run control execution phase, type:
demoFromRc

The EMU error reporting chain can be started automatically (after having given the
front-end system access to the back-end via the back-end .rhosts file in the user home
directory) by typing:

/usr/local/online/templates/ emuStart fe_os fe_system fe_UHomeDir

where:

fe_os is the type of operating system run on the front-end (OS9 or LYNX)

fe_system is the name of the front-end system (e.g. eposly11)

fe_UHomeDir is the full path of the user home directory on the front-end
system

Note:

By default, the demo stage and recorders are not reporting messages via EMU (instead
they print in their respective log files). To get messages via EMU, it is therefore
necessary to edit the start scripts in the front-end directory to specify:

setenv ERRORS_TO_EMU 1

4.2 Building a Cascade system for a real application

Building a Cascade based data-acquisition for a given application requires to go
through the sequence described below.

Once per stage:

• create a user work directory

• copy the distributed templates into the user work directory

• write the event production functions to be linked to the stage (one of the supplied
templates can be used for stages with no USER type input ports)

• write the event building functions to be linked to the stage (the supplied template
can also be used for stages which do not perform event building operations)

• write any application dependent run control related functions to be linked to the
stage (the supplied template can be used if nothing special is required)

• build the stage

4 — Building a CASCADE System 21

• write and build the monitoring programs which may attach to the stage

Once for the whole application:

• write the configuration file which specifies the functional and physical
characteristics of every stage as well as the topology of the system

• write the application run control configuration in a mSQL database/flat file

• write a message file and a route file if the user plans to report errors via EMU

• write the script files necessary to load and start the CASCADE related processes
in the appropriate processors.

A full description of the library functions to be used and all information necessary to
write these application dependent modules are provided in the corresponding chapters
of this document. In addition, templates are distributed for all these modules together
with template makefiles and script files to load and start execution of the CASCADE
related processes in the various processors of the application.

Since the Cascade demo suite provides the necessary templates to start from and the
make and script files which partially automate the building and the execution of the
application, users are strongly recommended to use the Cascade demo to get familiar
with Cascade and possibly even to build their real application (if it includes only one
stage and a recorder).

The demo suite scripts automatically:

• copy the necessary files in user work directories (on both the front-end and back-
end systems)

• adapt the scripts: start.stage, start.rectape, start.recdisk to the application
characteristics: machine names, stage names,

• generate the input file for the run control mSQL data base (democonfig)

• define the required environment variables

• generate the application configuration file (daqconf.upd)

• build the various processes (stage, monitoring programs)

• launch execution of the run control.

When starting from scratch the whole suite is initiated by thecopy_demo script
described above in the ’Cascade demo system’ paragragh..

Warning :

The user is warned that, after having adapted the templates in a directory, he/she should
not run the copy_demo script again in the same directory since that will re-copy the
templates and, therefore, overwrite all the modifications that had been done.

However various other scripts (shown in Appendix A) are available to help users in re-
executing certain steps of this procedure, starting the procedure from different points,
building and executing the application from the modified source files sitting in the
current directory.

For example during an application development phase, once the run control has been
started, the producer functions might have to be modified, the stage to be rebuilt and

22 4 — Building a CASCADE System

rexecuted. This can be achieved easily by killing all the stage and recorder processes
from the run control ’DAQ commands’ menu, modifying the userprod source and
simply run the demoBuildLynx or demoBuildOs9 script to recompile and
rebuild the stage. Selecting the ’Stop run’ item in the run control ’DAQ commands’
menu will reload the stage and recorders so that a run can be started with the modified
stage.

Syntax:

demoBuildLynx fe_system fe_dir

demoBuildOs9 fe_system fe_dir

It is possible to use different stage and recorder names by specyfing extra parameters to
the copy_demo or demoFrom Build scripts.

Example:

demoFromBuild fe_os fe_system fe_dir -s stageName -t tapeName -
ddiskName

where:

fe_os is the type of operating system run on the front-end (OS9 or LYNX)

fe_system is the name of the front-end system (e.g. eposly11)

fe_dir is the full path of the directory to create for the demo on the front-end

stageName is the name to be given to the stage

tapeName is the name to be given to the tape recorder

diskName is the name to be given to the disk recorder

4.3 Event Production and Event Building Function Development

To build a CASCADE stage usingSTG_makefile_demo the user has to provide
three modules in relocatable format.

The first is known generically asuserprod and contains the event producer code.
The ’copy_demo’ script copies three event producer templates with names of the type:
userprod_xxx_sglev.c where xxx qualifies the trigger source (signal, corbo,
camac). By default, the demo expects a Corbo module to be available in the front-end
system and therefore automatically generates auserprod.c module which is a copy
of userprod_corbo_sglev.c . Depending on the type of trigger source to be
used in the application the user should start from the most appropriate event producer
template and should copy it manually intouserprod.c .

The second module is calleduserevb and contains the user event building functions.

The third module is calleduserctl and contains dummy functions which, if
necessary, should be replaced by actual code to transfer application dependent control
and status information between the run control and the stage.

4 — Building a CASCADE System 23

The filesuserprod.c , userevb.c anduserctl.c are compiled in a separate
makefile, calledUSR_makefile_demo .

Please note that these examples are entirely based on the event header described in
Section 7.3.

As explained in Section 1.2.2, CASCADE supports a number of inter-stage link types
so that handling of the event flow between stages is transparent to the user. Therefore,
the application dependent event production functions really concern events originating
from stage input ports not connected to a stage (called USER type input ports).
However, since all stages are built on the same skeleton, they all need to be linked to
event productions functions even if those will not be called because none of the stage
input port is of type USER. For such stages, it is recommended to use the userprod
templates which do not call any ‘hardware specific’ libraries and which can, thus be
compiled and linked on all platforms.

For the same reason user event building functions must be linked to all stages even to
those not configured to perform event building. The distributed userevb template can
be used directly as it is to be compiled and linked to those stages.

USR_makefile_demo

This makefile is used to produce the object files for the three user modules needed in
the stage makefile:userprod , userevb and userctl . The files can be built,
individually or all together, by executingUSR_makefile_demo with the
appropriate target file. For example:

Under OS-9:

make -b -f=USR_makefile_demo userprod.r

or

make -b -f=USR_makefile_demo

Under LYNXOS:

gmake -f USR_makefile_demo userprod.o

or

gmake -f USR_makefile_demo

will result in the building of theuserprod object file and the three user module object
files, respectively.

4.4 Stage Generation

A template makefile calledSTG_makefile_demo is provided as an example of how
to generate a stage. It possibly needs to be adapted to:

• use the file directory organisation of the application system;

24 4 — Building a CASCADE System

• link to the appropriate I/O libraries (the ones called directly or indirectly by
userprod()).

Stages can then be built by running the make utility as follows:

Under OS-9: make -b -f=STG_makefile_demo stage

Under LYNXOS: gmake -f STG_makefile_demo stage

4.5 Monitoring programs Development

Users are advised to develop their monitoring programs starting from the template
source file and makefile distributed as part of the CASCADE package. These files
(mp_demo.c and SH_makefile_demo) are automatically copied into the user
work directory on both the front-end and back-end systems and the local (mp_demo)
and remote (rmp_demo) processes are built when executing the copy_demo script
described above. They can also be copied by executing the
copy_templates_demo script file.

Local (running in the front-end system) monitoring programs for the Cascade demo
can be built by doing:

Under OS-9: make -b -f=SH_makefile_demo mp_demo

Under LYNXOS: gmake -f SH_makefile_demo mp_demo

Remote (running in the back-end system) monitoring programs for the Cascade demo
can be built by doing:

Under Unix: gmake -f SH_makefile_demo rmp_demo

4.6 Execution of the demo monitoring programs

Themp_demo local monitoring program is executed by typing:

mp_demo stg_name 0 0 no_events nwords_dumped print_rate 0

where:

stg_name is the name of the stage to retrieve events from

no_events is the number of events to monitor before exiting the program

nwords_dumped is the number of event words to dump in case of error

print_rate is the rate (nb of events) at which a report message has to be
displayed

Note:

Events can be printed by runningmp_demo in interactive mode (start it with only the
first parameter)

Thermp_demo remote monitoring program is executed by typing:

rmp_demo stg_name stg_host 0 no_events nwords_dumped print_rate 0

where:

4 — Building a CASCADE System 25

stg_name is the name of the stage to retrieve events from

stg_host is the (front-end) name of the system where the stage is running

no_events is the number of events to monitor before exiting the program

nwords_dumped is the number of event words to dump in case of error

print_rate is the rate (nb of events) at which a report message has to be
displayed

Warning :

Since under Unix and therefore LYNXOS, a process can send signals only to processes
with the same ownership and since the mp_server and the stage processes send signals
to each other,it is mandatory under LYNXOS that stages accessed by remote
monitoring programs have the same owner as the one declared for mp_server in
the inetd.conf entry.

Note:

Events can be printed by running rmp_demo in interactive mode (start it with only the
first two parameters)

All details on the templates and on how to write and build a monitoring program can be
found in Chapter 9 and in Chapter 10.

4.7 Configuration and Run Control Files Preparation

The configuration file contains a detailed description of all the stages in a CASCADE
configuration including a definition of the parameters for the input and output ports and
the event building process. More details on the configuration file can be found in
Chapter 13.

The run control file contains a more global description of the CASCADE stage
configuration as required by the run control program to allow an orderly execution of
the CASCADE processes. More details on the control file can be found in Section 6.3.

Configuration file and control file templates are distributed as parts of the CASCADE
package. These files are automatically copied into the user work directory when
executing thecopy_templates_demo script file.

4.8 Writing EMU message and route files

If it is planned to report errors from the application dependent modules by using EMU,
both a message file and a route file have to be provided. All details on error reporting
and on how to write these files can be found in Chapter 12.

4.9 Preparing the script files to start the application

As explained in Chapter 5 booting the various data-acquisition processes involved in a
CASCADE application requires to prepare a ’start’ script for every such process.’Start’
script templates are distributed with CASCADE and are explained in that chapter.

26 4 — Building a CASCADE System

5 — Booting a CASCADE System 27

5 Booting a CASCADE System

5.1 Introduction

Booting the various data-acquisition elements involved in a CASCADE application is
an operation handled by the run control which, therefore, needs to be started first (see
Chapter 6). according to information retrieved from a data base and describing the
various "DAQ units" (stages, recorders, eventually monitoring programs, etc) involved
in the application and controlled by the CASCADE run control. Both the setting of the
necessary environment variables and the launching of the processes associated with the
DAQ units are done from the run control when it is requested to change the state of one
or more DAQ units from ABSENT to STOPPED.

These operations are done by retrieving commands from the run control data base /
configuration file to initiate the necessary transitions. In the case of booting the various
DAQ units processes, these commands start execution of a shell ’start’ script in the
DAQ unit target processor. This is achieved by using the remote shell utility (rsh)
generally available under UNIX and LYNXOS and which has been ported to OS-9
[15]. It is the user responsability to prepare a ’start’ script for every DAQ unit.’Start’
script templates are provided as part of the Cascade demo system in the Cascade
distribution kit. Script files to help in adapting these templates and to run a simple
Cascade application are described in Chapter 4.

5.2 Stage ’start’ Scripts

A Bourne shell script must be written for every stage used in the application. The
purpose of this script is to:

• kill any instance of the stage and associated monitoring programs left from a
previous session

• release the CASCADE related system resources (e.g shared segments) left from
a previous session

• declare the necessary stage environment variables (see below)

• start execution of the stage process

The start.stage template should be copied from the online/templates directory
into the application work directory (either manually or by executing the
copy_templates_demo script) and adapted to the application.

Stage ’start’ scripts are passed the following six parameters:

1. the name of the directory which contains the stage process and the application
configuration file (assumed to be in the same directory)

2. the name of the stage (not the stage process name) to be started

3. the run control host name

4. the run control domain

5. the full pathname of the configuration file

6. the run control status frequency

28 5 — Booting a CASCADE System

5.2.1 The Stage Environment Variables

Buffer space management

Once acquired, events are kept by the stage as long as all monitoring programs which
subscribed to events of that type have not seen them or until the event buffer space gets
full. When the buffer space becomes full a ’tidyup’ operation is automatically initiated
to scan the whole buffer and get rid of all events declared 'removable' (their deletion
will not put any of the mp's below its minimum sampling percentage). Deletion of an
event takes a significant but fixed amount of time but searching a removable event
includes scanning the stage access list and the search time is proportional to the
position of the event in the list. For this reason it is important to keep the access list
reasonably small and thus to force ’tidyup’ operations at convenient moments. Since
conveniency moments vary from one application to an other, two environment
variables calledTIDYUP_REF_INPUT andTIDYUP_DELAY are used to specify
when in the application cycle, a ’tidyup’ operation should be forced.

TIDYUP_REF_INPUT should specify the name of an input port

TIDYUP_DELAY should specify a delay in seconds.

Triggering the input port specified in TIDYUP_REF_INPUT activates a timer for the
number of seconds given in TIDYUP_DELAY. When the timer expires, the function
ED_TidyUp gets called. If TIDYUP_DELAY is not defined, null or negative, the
function ED_TidyUp is called immediatly after the input signal has occured. For this
mechanism to work properly, it is mandatory to label the input ports defined in the
DAQCONF file (e.g. INPUT2 = NU2) or at least the one used in
TIDYUP_REF_INPUT.

Note: For the NOMAD event builder stage, the environment variable TIDYUP_AT_SYNC can still be used. It will
have the same effect has setting TIDYUP_REF_INPUT to SYNC and TIDYUP_DELAY to 0.

Event recording format

The environment variableFZ_EV_PACKING is used both by the recorder and by its
feeder stage. The stage retrieves it from the environment and the recorder gets it from
the feeder stage shared segment. For a stage with output ports connected to recorders
(type ZEBRA), the events will be formatted according to the FZ specification. If
FZ_EV_PACKING is defined in the environment and is non-zero then, the events will
be packed into fixed length physical records which will be wriiten on recording device.
Otherwise, as before, every event will use an integer number of physical records (at
least one) on the recording device.

Error reporting

Reporting of errors is done using either printf or EMH_SysMsg calls as set by the
environment variableERRORS_TO_EMU :

5 — Booting a CASCADE System 29

0 - use printf (default)

1 - use EMU

NB: if EMU is chosen, be sure that emu is started (otherwise the stage process will be
stopped by a full pipe).

Use of DMA in inter-stage links data transfers (only under OS-9)

The environment variableUSE_DMA allows to control the use of the DMA facility in
VICbus inter-stage links data transfers. If USE_DMA is not defined (default) or is set
to 0 then the DMA will not be used.

Event data space address allocation

If the environment variableALIGNMENT_RESOLUTION is defined and is non-
zero then the event space is allocated in such a way that the event (in fact its header)
starts at an address which is a multiple of ALIGNMENT_RESOLUTION x 32 bit
words. This has been implemented to improve the block transfer speed for certain types
of inter-stage links. Therefore the value to be given to ALIGNMENT_RESOLUTION
depends on the type of link used.

Stage behaviour tracing (for experts)

When it is defined and set to a non-zero value, the environment variable
TIDYUP_TIMING activates time stamping during ED_TidyUp operations (requires
the presence of a VME CORBO module in the crate housing the CPU on which the
stage is running)

When it is defined and set to a non-zero value, the environment variable
PHASES_TIMING activates time stamping to trace the execution of the stages phases
(requires the presence of a VME CORBO module in the crate housing the CPU on
which the stage is running).

An ’history’ mechanism has been implemented in CASCADE. At present, it can only
be used to keep track of event building operations. Its use is controlled by two
environment variablesHRY_ENABLING andHRY_SEGMENTSIZE .

HRY_ENABLING has to be different from 0 to enable the history.

HRY_SEGMENTSIZE must be set to the size (in bytes) to be used for the history
shared segment.

5.3 Recorder ’start’ Scripts

One Bourne shell script must be written for every recorder used in the application. The
purpose of this script is to:

30 5 — Booting a CASCADE System

• kill any instance of recorders and associated monitoring programs left from a
previous session

• release all CASCADE related system resources (e.g shared segments) left from a
previous session

• declare the necessary recorder environment variables (see Chapter 11)

• start execution of the appropriate recorder process (see Chapter 11)

The start.rectape andstart.recdisk templates should be copied from the
online/templates directory into the application work directory (either manually or by
executing thecopy_templates_demo script) and adapted to the application.

Recorder ’start’ scripts are passed the following six parameters:

1. the name of the directory which contains the application configuration file

2. the name of the recorder (not the recorder process name) to be started

3. the run control host name

4. the run control domain

5. the full pathname of the configuration file

6. the run control status frequency

5.3.1 The Recorder Environment Variables

See Chapter 11 on Data Recording

6 — Run Control 31

6 Run Control

6.1 Introduction

The run control facility provided as part of the CASCADE package involves a process
called XRC running on a Solaris or HPUX workstation.

XRC is a modular, general-purpose control program allowing complex data-
acquisition systems to be modeled in an object- oriented way. It is based on software
originally designed by the OPAL experiment and adapted in collaboration with
NOMAD. Operator interaction with the data-acquisition system is achieved through a
X11/Motif layer which provides a run-time configurable graphical interface including
menus, dialog boxes and various types of display panels.

XRC is a process controlling data-acquisition (DAQ) units such as stages, recorders,
monitoring programs and user-specific processes. Its main purpose is to provide
synchronization between various DAQ units and to hold their respective states. Within
XRC, each element is described in a uniform way as a Finite State Machine (FSM), an
object having a predefined set of allowed states and allowed transitions between these
states. Since DAQ units are external to XRC, they are represented by internal FSM
correspondents. A hierarchy of internal FSMs can be introduced to control subsets of
the entire DAQ system.

Communication between XRC and the DAQ units uses NIC, the CASCADE Network
component package based on the TCP/IP protocol. The XRC process is the network
server and the DAQ units are the clients, which can connect dynamically to the server.
XRC maintains the states of all the data-acquisition components as well as run-time
parameters and saves this information at the end of each session. A run control domain
is defined by an identifier used by XRC and the connected DAQ units. In a given
domain each object is identified by its unique ASCII name. More than one instance of
the run control facility may be running at a given time using different addressing
domains. For example a full production run can coexist with the test or calibration of a
particular sub-detector. A simple but powerful user library allows for easy preparation
of user specific DAQ unit software.

6.2 Environment Requirements

To be able to exchange messages, XRC and the controlled DAQ units must use a
common address known by all cooperative processes. To enable this the following
environment variables must be set before starting any run control related process.

RC_HOST is the host name of the processor running XRC

RC_DOMAIN is an integer value ranging from 0 to 9 used to compute the
communication address

The TCP port number is determined by adding the port number associated to the IP
servicecasc-rc (usually in/etc/services) and the value of RC_DOMAIN. Two or more
instances of the run control program may be running concurrently provided they run on
different domains. The default value forRC_DOMAIN is 0. Stage names must be unique

32 6 — Run Control

within the same domain. Two stages with the same name can be controlled by two
instances of the run control program running on two different domains.

When the XRC program starts, information about the application DAQ is read from a
configuration database. This information is used to build the run control data structures
such as the FSM definitions, the default state of objects, the state transitions, the
elements of the graphical user interface. Run time parameter values are also maintained
by XRC.

6.3 The CASCADE configuration database

The CASCADE configuration is stored in a mSQL database. mSQL is a lightweight
database engine designed to provide fast access to stored data with low memory
requirements. mSQL offers a subset of the ANSI SQL specification.

• Creation of a mSQL data base

Assuming the mSQL daemon (msqld) is running, the creation of a new database can be
done by executing the following command as root:

msqladmin create DatabaseName

• Ceation of a mSQL configuration.

This is achieved by invoking the msql utility which accepts interactive SQL commands
or a set of SQL commands stored in a script file. This is achieved by typing the
following

msql DatabaseName < msql-script

or even better:

msql DatabaseName < msql-script | grep -i error

Template configuration files distributed with CASCADE can be used as a starting point
to build a user specific configuration.

6.4 Starting CASCADE Run Control

The CASCADE Run Control process (XRC) is started by entering the following
command:

xrc [-p <profile> -e <EMU | SCREEN>] &

When XRC starts a default command profile is read (named.profile.xrc in the current
directory). The command profile usually contains a list of commands to select a
database, load a particular configuration and setup specific operation modes and
display. An alternate profile can be specified on the command line using the -p option.
By default error messages are output to stderr (SCREEN). They can be redirected to
EMU by explicitely specifying the -e EMU option.

After some time (between 5 and 30 seconds depending on the complexity of the
configuration) the Run Control top level menu together with a status matrix is
displayed .

6 — Run Control 33

6.5 The CASCADE user interface

Operator interaction with the CASCADE Run Control is achieved through an
X11/Motif interface which converts a sequence of menu selections and other graphical
interactions into commands which can be interpreted and executed by XRC. All this
interaction is mouse-driven and the mouse buttons work as follows:

 Mouse-Button-1 (later referenced as MB1) or Left Button

 Used for all pulldown and acknowledgment menus. Double-clicking on a matrix cell
removes/add that cell to the list of cells to control.

 Mouse-Button-2 (later referenced as MB2) or Middle Button:

 Normally not used. This button may be used to drag/drop text.

 Mouse-Button-3 (later referenced as MB3) or Right Button):

 Used for selecting popup menus for control of individual DAQ units/cells. All item-
specific choices, e.g. tape special commands and status are in these menus.

The elements of the graphical interface are briefly described:

a. Menus and submenus.

Menus/Submenus are opened by clicking them using MB1. A menu will remain open
until an item is selected or MB1 is clicked outside of the menu. Menus may contain
submenus (indicated by a > symbol to the right of a menu item. One touch operation
(press and drag) is also possible for the selection of menu items.

b. Status matrices.

A status matrix is a graphical representation of the FSMs in a partition. A status matrix
is composed of cells representing the state of the DAQ items known to the Run Control.
The colors of the cells indicate their status as follows:

• black Item is ABSENT (dead or not started)

• coral Item is STOPPED.

• yellow Item is READY to start

• green Item is RUNNING and data is arriving.

• cyan Item is IDLE (running but there has been no data recently).

• tan Item has PAUSEd data-taking.

• white Item is DISABLED.An item can be re-enabled by double-clicking its cell

• red Item has returned serious ERROR status

• dark blue A state transition is pending for this item.

Normally you should wait for a transition to complete before attempting another state
change for this item. If, however, a state change seems not to proceed as usual you can
simply retry it by selecting the same menu option again because the Run Control
automatically aborts the current stage change before starting a new one.

c. Cell menus.

34 6 — Run Control

Select an item from the menu or a submenu in the same way as for menu bar menus
(see above) but use MB3 instead of MB1 while pointing to the status cell
corresponding to the desired menu.

d. Message boxes.

These boxes pop up on the display from time to time and contain informative
messages. Sometimes they contain anOK Seen it button in which case you must
remove it by clicking with MB1 while pointing to the button.

e. Dialog boxes.

These boxes are used for displaying and/or updating the main Run Control parameters.
The parameters are displayed in various ways such as:

• Numbers or Character Strings.

The input field can be modified using keyboard input. You need to get input focus by
pointing to the field and clicking with MB1.

• Toggle buttons.

Used to switch a flag on or off. The button appears depressed when the flag is on and its
background is coloured. Use MB1.

• Radio buttons.

So-called because selecting one button from a group causes any other selected buttons
to be unselected. Used to choose one from a list of mutually exclusive options. Select
options using MB1.

• Option menu.

An alternative to radio buttons. The currently selected option appears on the dialog
box. Clicking on it with MB1 pops up a menu containing the other available options.
Select an option with MB1.

• Slider scale.

An alternative way of entering numeric information. Change a value by pointing to the
slider with MB1 then press and drag to choose a new value. Confirm or cancel the
changes by clicking Update or Dismiss with MB1.

When started The CASCADE Run Control displays the following top-level menu
together with a status matrix showing the state of the DAQ items for the selected
configuration. Most likely all the DAQ items will be ABSENT.

6 — Run Control 35

6.5.1 The DAQ menu

This menu contains options for managing CASCADE run parameter information and
status in general. This menu is activated by clicking the DAQ item and its content is
described below.

36 6 — Run Control

a. Modify Run Parameters
This option when selected presents a dialog box consisting in text entry fields for the
following variables:

1. Run Type

This entry field contains a value which is experiment specific and may not be
present with all configurations.

2. Run Number

This entry field contains the number of the CURRENT run and is automatically
incremented at Start of Run.

3. Events in Run (Maximum number of)

Specifies the maximum number of events accepted before the run is
automatically stopped. In addition, a run can be stopped, at any time, before this
number is reached by selecting the STOP item in the RUN menu (as explained
later in this chapter). If the maximum number of events is set to 0, it means that
the user does not want the run to stop automatically after a certain number of
events have been collected. In that case, the run will only be stopped on operator
intervention (as explained above) or if data recording is done it will also be
automatically stopped when the end of tape is reached (see Chapter 11).

4. Data Recording

Valid options are presented in an option menu (One and only one is active at any
moment)

None Events are not stored on a storage medium

Tape Events are recorded on the current tape device only

Disk Events are recorded on disk only

6 — Run Control 37

Both Events are recorded both on tape and disk

When theUpdate button is selected the parameters visible on theRun Parameters
dialog box are sent to the stages which are currently enabled (The ones with a non
white cell).

b. Show Global Run Status
This option presents status information about the various DAQ stages and recorders.

c. .START Run
When theSTART Run option is selected, a start run message is sent to all the
stages that are currently ENABLED. This message carries the list of Run
Parameters and their values. If ALL stages replied with a good status, the status of
the corresponding cells will change to READY and then to RUNNING. If a stage
return a bad status on START Run command then its corresponding cell will
change to ERROR. The reason of the error will be displayed in the EMU display or
in the stage log file if EMU is not enabled.

d. STOP Run
When theSTOP Run option is selected, a stop run message is sent to all the stages
that are currently ENABLED. If ALL stages replied with a good status, the status of
OPPED. If a stage return a bad status on START Run command then its
corresponding cell will change to ERROR. The reason of the error will be displayed
in the EMU display or in the stage log file if EMU is not enabled.

 The end of run sequence in a multi-stage CASCADE application is somewhat
complex in the sense that stages switch to the 'stopped' state only when:

• the hardware triggers have been disabled for all the stage USER input ports

• all events of the current burst have been acquired

• all events buffered in upstream stages have been collected, dispatched and
acknowledged by all the stage output ports

38 6 — Run Control

• all the stage network based inter-stage link connections have been closed

• all the recorders attached to the stage have written a double file mark on the tape

This sequence is generally fast enough to give the impression that stages stop
immediately. However, in case of complex configurations with large buffering
capabilities, propagation of the stage state transitions can be noticed by seeing the
stage cells in dark blue for some time.

e. PAUSE Run
f. RESUME Run

These two option are dummy.

g. Soft Kill All Stages
When theSoft kill all Stages option is selected, an abort message is sent to all the
stage which are currently ENABLED. After having done a general cleanup all the
stages will stop and exit. As a consequence all the stage cells will change to
ABSENT. If for some reason one or more stages do not react to this command it
could be necessary to use the Hard kill All stages option described below.

h. Hard Kill All Stages
When the Kill all Stages option is selected, a QUIT signal is sent to all the stage
which are currently ENABLE using the remote shell utility. After having done a
general cleanup all the stages will stop and exit. As a consequence all the stage cells
will change to ABSENT. If for some reason one or more stages do not react to this
command it could be necessary to use the Hard kill All stages option described
below.

i. Set Script Params
This option when selected presents a list odRead-Only parameters used for the
current active configuration:

1. Run Control Domain

The value of the RC_DOMAIN environment variable.

2. Status Frequency Update

This integer value is the number of seconds between 2 status messages update.

3. Startup Logfiles

The full path of a file (one per DAQ unit) containing a log of the startup events.).

4. Target Directory

The full path of the application directory on the target system (Front-End).

5. Target System Used

The hostname of the target system (Front-End).

6. Daqconf File

The name of the CASCADE Configuration file common to all DAQ units.

6 — Run Control 39

6.5.2 The individual stage pop-up menus

To activate a stage/recoder individual pop-up menu, the corresponding cell must be
selected and MB3 should be clicked.

a. STAGE pop-up menu:

40 6 — Run Control

b. RECORDER pop-up menu:

c. Recorder Parameters panel

6 — Run Control 41

This option when selected presents a dialog box consisting in text entry fields for the
following variables:

Output Devives

This option contains a list of the names of potentially used recording devices.

Number of Output Devices

An integer value representing the number of potentially used recording devices.

Tape VSN (Volume Serial Number)

This entry field contains a 6 character string that should match the VSN written
in the prelabel of the loaded tape.

Tape Owner ID

This entry field contains a 10 character string which is the identification of the
owner of the tape. This information is just written in the label of the loaded tape
but is not processed.

Tape Dataset Name

This variable is not user editable and is updated by the recorder.

When theUpdate button is selected the parameters visible on the Tape recorder dialog
box will be sent to the stages currently ENABLED when the next START Run
command will be issued.

d. REWIND Tape

6 — Run Control 42

When the `Rewind' option is selected, a rewind message is sent to the list of stages
specified under the REWIND Option in the configuration file, in the order they appear.
If a stage returns a bad status on Rewind action...

e. UNLOAD Tape

When the `Unload' option is selected, an unload message is sent to the list of stages
specified under the UNLOAD Option in the configuration file, in order they appear. If
one or more stages is ABSENT the Start command is not sent.

6 — Run Control 43

6 — Run Control 44

7 — Event Production 45

7 Event Production

7.1 Introduction

This chapter describes the library functions and the template files which are distributed
with CASCADE in order to help the user with the development of the application
dependent event production software.

The functions for reading event data are divided into two groups. Routines in the first
group are called directly from the user independent part of the stage and havenames of
the form Prod...... Inversely, they call functions in the stage to reserve space for event
data, validating event data etc. These latter functionshave names starting with STG.

It is proposed that most of the experiment dependent code to handle event trigger and
data readout should be implemented in the form of another set of functions callable
from the routines in the first group. All the functions in the second group havenames
starting with USTG. The interface defined by theUSTG functions provides a
separation between code “close” to the stage and the application dependent readout
code.and allows to develop test programs independently of the stage, see figure below.
It is strongly recommended that the user code be tested independently before
integration in the complex environment of the stage where debugging is more
difficult .

7.2 Programming Considerations

To avoid certain problems in the user library, related to reentrancy, the user needs to
have some knowledge of the structure of the stage program. The stage is logically
divided into phases, implemented in the form of threads the execution of which is
controlled by a CASCADE scheduler. The threads are activated by signals and usually

Stage

Prod xxx

User test program

USTG xxx

46 7 — Event Production

execute sequentially. A thread may, however, suspend itself due to a lack of resources
e.g. of memory space in which case the scheduler performs a “context” switch and
activates another thread. Since the threads are part of the same process the context
switch does not include saving & restoring of global variables (under OS-9 variables
addressed relative to A6). It is, therefore, essential that each thread - or more precisely
each instance of a thread (petal) - does not share global variables with other parts
(threads) of the stage. It should be pointed out that each instance of an input thread is
identified by a port number as indicated by the presence of the port parameter in the
user routines.

As far as the input part of the stage is concerned it is important to realise that the user
library routines may be executed as parts of different threads or in other words that the
user code is “shared” between the threads corresponding to the different input ports.
When an input thread is suspended another instance of the input thread, corresponding
to another port, may be scheduled due to the occurrence of a signal (different from the
one which triggered the first thread) which implies that the user code is re-entered
possibly resulting in some interference for example at level of shared global variables.
This second thread may - or may not - be suspended depending on its space
requirements.

However, these reentrancy problems are alleviated by the fact that input threads can
only be suspended at two well-defined places: when callingSTG_GetSpace() to obtain
space for the event header, data and trailer and when callingSTG_DeclEvent() which
reserves space for an event descriptor. An input thread does not “loose” its global
variables from the moment the thread execution is started by the scheduler and until the
first call to STG_GetSpace(). Similarly, the execution is not interrupted between
STG_GetSpace() andSTG_DeclEvent() and from this point until the exit of the thread.
As a consequence, a thread may loose its global variables when “crossing” these
execution points but not “in between”. To avoid these problems, global variables
should be given the dimension of the number of ports such that the threads do not share
global variables.

However, for variables which are not defined explicitly by the user this may present a
problem. As an example, if the FASTBUS library is called this latter may contain
global data which the user is not aware of and cannot control. In that case calls to
external libraries may have to be grouped such that they do not cross the “critical”
points. In the case of NOMAD, data from FASTBUS are read into buffers declared in
the user library. These buffers should, therefore, be dimensioned as the number of input
ports or allocated dynamically and ALL FASTBUS calls performed before calling
STG_GetSpace(). The unpacking, decoding and construction of LSC events which
don't require access to FASTBUS could be done between the calls toSTG_GetSpace()
andSTG_DeclEvent().

To summarise:

• input threads may suspend themselves due to lack of space when calling
STG_GetSpace() andSTG_DeclEvent();

• the user library code may be re-entered, potentially resulting in a “loss” of global
variables by a thread (petal);

• to avoid this problem all user declared global variables should be dimensioned
according to the number of input ports;

7 — Event Production 47

• all functions to external libraries which may contain global data should be grouped
in noninterruptable sequences i.e either between or outside calls toSTG_GetSpace()
andSTG_DeclEvent();

• in some experiments it may be possible - depending on the read-out architecture and
the triggering system - to serialise the input triggers at the hardware level. The ORed
busy signal from the inputs may be employed to inhibit input signals until the
current input thread has finished execution. In this case the deadtime may increase
since the input threads cannot execute in parallel. In the case of NOMAD - for
example - reading event data into local buffers and splitting of burst data will be
serialised;

• if the physics input on different ports are not logically related it may be simpler to
use several stages.

7.3 Event headers and event production templates

In CASCADE, the format and contents of event headers and trailers are user defined.
The lengths are specified in the configuration file and the header and trailer data filled
in the event production functions.

All the templates mentioned in this document are based on a common event header
format. This is required for event building and also has the advantage of allowing
systematic and general checks on the event data to be performed on the events as they
flow through the stages. The event header format as defined in the template file
eventheader.h is the following:

Depending on the type of stage, certain fields may not be meaningful.

7.4 User Routines - First Group

In this section we describe the functions in the first group of routines (see Section 7.1)
which are called from the stage. These routines are part of a file with the generic name

Word # Contents Used by

1 total event size (header + data + trailer)

2 event type (general)

3 event number

4 event marker (e.g. LSC or EVB)

5 header size

6 burst type (e.g. NU1,MUON,NU2,CALI) event builder

7 event serial number within burst event builder

8 number of events in burst event builder

9 port number

10 error code

11 LSC crate number

12 CRC future CRC checks

48 7 — Event Production

userprod_xxx.c . This file is compiled in the makefile USR_makefile described in
Chapter 4. Examples of such routines are distributed with CASCADE in userprod
template files.

• userprod_signal_sglev.c is a simple example in which no external
hardware is required. The event signals are generated by software (for example
using the sch_send program) and the events are of random length with incremental
data (1,2,3....). The event length is defined by the environment variables
CASMINEVSIZE and CASMAXEVSIZE with default values 0 and 700 respectively. This
template can only handle one user input port.

• userprod_corbo_sglev.c is an example where triggers are provided via a
CORBO VME interrupt module with each trigger generating a single CASCADE
event. A maximum of four input ports, each corresponding to one CORBO channel
may be defined in the configuration file. The event data is incremental (1,2,3....)
with a random length defined by the environment variablesCASMINEVSIZE and
CASMAXEVSIZE with default values 0 and 700 respectively.Header words one to five
are filled with “standard” header information while header words 6-12 are filled
with mostly dummy data.

• userprod_camac_sglev.c is an example where triggers are provided via a
CAMAC Borer 1802 Dataway Display Module in the form of LAMs with each
trigger generating a single CASCADE event. Only one input port is defined since
the Borer 1802 can only generate a single LAM but the code is designed to handle
more ports. The event data is incremental (1,2,3....) with a random length defined by
the environment variablesCASMINEVSIZE andCASMAXEVSIZE with default values 0 and
700 respectively.Header words one to five are filled with “standard” header
information while eader words 6-12 are filled with mostly dummy data.

The functions in the first group which all have names starting with 'Prod' are called in
the following sequence by the stage:

Initialisation:

ProdStageInit

ProdPortInit(port) for each port

For each run:

ProdStageStartRun

ProdPortStartRun(port) for each port

.

.

.

ProdPortStopRun(port) for each port

ProdPortStopRun

For each event:

ProdInput

7 — Event Production 49

ProdStageInit

Synopsis
#include userprod_intf.h

int ProdStageInit()

Description

ProdStageInit() is called for global, port independent initialisation of the stage. It calls
the functionUSTG_StageInit(), described below.

Cross-references

USTG_StageInit()

50 7 — Event Production

ProdPortInit

Synopsis
#include userprod_intf.h

int ProdPortInit (int port, int signing)

Parameters

Description

This function is called once (per port) in the lifetime of the stage and should perform a
global initialization of the readout system for the stage input port defined by port. This
includes initialisation of the event triggers i.e. linking the occurrence of event triggers
to the generation of the signal defined by signum. The application dependent
initialisation is performed in the functionUSTG_PortInit(), described below.

Cross-references

USTG_PortInit()

port IN stage port number

signum IN number of the signal associated with event triggers

7 — Event Production 51

ProdStageStartRun

Synopsis
#include userprod_intf.h

int ProdStageStartRun (int run_number, int run_type)

Parameters

Description

ProdStageStartRun() is called once per run with the run number and run type as
parameters (as defined by the run control). It should return the valueEVENT if the
function has produced an event, otherwiseNO_EVENT. ProdStageStartRun() calls
USTG_StageStartRun(), described below.

Returns

Cross-references

USTG_StageStartRun()

run_number IN run number

run_type IN run type

[EVENT] an event was produced (STG_DeclEvent() called)

[NO_EVENT] no event has been produced

52 7 — Event Production

ProdPortStartRun

Synopsis
#include userprod_intf.h

int ProdPortStartRun (int port, int* trigStatus)

Parameters

Description

ProdPortStartRun() is called afterProdStageStartRun() each time a run is started and
should perform any initialisation of the readout or trigger system for the stage input
port defined by port. This function enables triggers and returns in trigStatus the value
TRIG_ENABLED if successful and TRIG_DISABLED otherwise.
ProdPortStartRun() callsUSTG_PortStartRun(), described below.

Returns

ProdPortStartRun() SHOULD NOT produce an event. It returns a dummy value

Cross-references

USTG_PortStartRun()

port IN stage port number

trigStatus OUT trigger status

7 — Event Production 53

ProdPortStopRun

Synopsis
#include userprod_intf.h

int ProdPortStopRun (int port, int* trigStatus)

Parameters

Description

ProdPortStopRun() is called each time a run is stopped and should perform any
operation required on the readout or trigger system on the stage input port defined by
port. It normally disables hardware triggers. If the last event in the run has been
processed it should return the valueTRIG_DISABLED to indicate that hardware as well as
software triggers are disabled. If more events may be produced, the value
TR_HW_DISABLED should be returned to indicate that more events will be produced. This
latter case may happen if a stop run command is received when a burst of events are
produced.ProdPortStopRun() should return the value[EVENT] if the function has
produced an event, otherwise [NO_EVENT]. ProdPortStopRun() calls
USTG_PortStopRun(), described below.

Returns

Cross-references

USTG_PortStopRun()

port IN stage port number

trigStatus OUT trigger status

[EVENT] an event was produced (STG_DeclEvent() called)

[NO_EVENT] no event has been produced

54 7 — Event Production

ProdStageStopRun

Synopsis
#include userprod_intf.h

int ProdStageStopRun ()

Description

This function is called afterProdPortStopRun() each time a run is stopped and should
perform any port independent operation required on the readout or trigger system. It
should return the value[EVENT] if the function has produced an event, otherwise
[NO_EVENT]. This function callsUSTG_StageStopRun(), described below.

Returns

Cross-references

USTG_StageStopRun()

[EVENT] an event was produced (STG_DeclEvent() called)

[NO_EVENT] no event has been produced

7 — Event Production 55

ProdInput

Synopsis
#include userprod_intf.h

int ProdInput (int port, int* trigStatus)

Parameters

Description

ProdInput() is called each time an event trigger occurs and is responsible for reading
the event data. It typically executes the following sequence of operations:

• disable trigger

• analyse trigger (in a general sense, seeUSTG_EvTrgAna())

• reserve space for event data in CASCADE buffer (STG_GetSpace())

• transfer data into this buffer

• ' declare' event i.e. notify CASCADE that the event is ready (STG_DeclEvent())

The variable trigStatus should return the trigger status as computed byProdInput(). If
triggers are still enabled, the valueTRIG_ENABLED should be returned. If hardware
triggers are disabled, but software triggered events may still be produced, the value
TR_HW_DISABLED should be returned. If hardware as well as software triggers are
disabled i.e. the last event has been produced, the value returned should be
TRIG_DISABLED. ProdInput() should return the value[EVENT] if the function has
produced an event, otherwise[NO_EVENT]. ProdInput() calls USTG_InputEvent(),
described below.

Returns

Cross-references

USTG_EvTrgAna(), STG_GetSpace(), USTG_InputEvent(), STG_DeclEvent()

port IN stage port number

trigStatus OUT trigger status

[EVENT] an event was produced (STG_DeclEvent() called)

[NO_EVENT] no event has been produced

56 7 — Event Production

7.4.1 CASCADE 'event' functions

These functions are called fromProdInput() to reserve space for events and to inject
events into CASCADE.

7 — Event Production 57

STG_GetSpace

Synopsis
#include usin.h

int STG_GetSpace (int maxSize, int **dataAddress, int **hdAddress,int
**trAddress)

Parameters

Description

Requests CASCADE to allocate space for event header, trailer and event data:

• allocate maxSize 32-bit words to store event data and return the address of the
allocated area in dataAddress.

• allocate hdSize 32-bit words to store event header and return the address of the
allocated area in hdAddress

• allocate trSize 32-bit words to store event trailer and return the address of the
allocated area in trAddress

Cross-references

maxSize IN total number of 32-bit words to allocate for this event

dataAddress OUT pointer to the event data buffer

hdAddress OUT pointer to the event header buffer

trAddress OUT pointer to the event trailer buffer

58 7 — Event Production

STG_ReleaseSpace

Synopsis
#include usin.h

int STG_ReleaseSpace (int maxSize, int *dataAddress, int
*hdAddress,int *trAddress)

Parameters

Description

Requests CASCADE to immediately release the space previously allocated with
STG_GetSpace.

Note that this function should be calledonly if STG_DeclEvent is not called after
space has been obtained by a call to STG_GetSpace (in other words if an event is not
created). In the ’normal’ case where an event is declared, the allocated space is released
automatically when the event is no longer used in the stage.

Cross-references

STG_GetSpace()

maxSize IN total number of 32-bit words requested when calling
STG_GetSpace

dataAddress OUT pointer to the event data buffer

hdAddress OUT pointer to the event header buffer

trAddress OUT pointer to the event trailer buffer

7 — Event Production 59

STG_DeclEvent

Synopsis
#include usin.h

int STG_DeclEvent(int type, int port, int actualSize, int
requestedSize, int *dataAddress,int *hdAddress, int *trAddress)

Parameters

Description

This function declares the event to CASCADE which:

• creates and initialises an event descriptor

• fills the event header with the event actualSize, type and source

• fills the event trailer with the event actualSize

• updates the stage event number

• fills the event descriptor

• adds the event descriptor to the stage input list

Cross-references

STG_GetSpace()

type IN event type

port IN port number

actualSize IN actual event size

requestedSize IN max event size as requested bySTG_GetSpace()

dataAddress IN pointer to the event data buffer

hdAddress IN pointer to the event header buffer

trAddress IN pointer to the event trailer buffer

60 7 — Event Production

STG_SetEvAttr

Synopsis
#include usin.h

int STG_SetEvAttr (void *evp, int outinhibit, int otherattr)

Parameters

Description

If outinhibit is equal to zero the event is sent to all the output ports (ie. not inhibited).

If outinhibit is different from zero, the event is sent to the ports defined by the
parameter otherattr in the form of a bit mask. If bit #n in otherattr is equal to zero,
output of the event is inhibited for port #n. If bit #n is equal to one, the event is output
to port #n (ie. the output inhibit is overridden). In other words, if otherattr is equal to
zero, the event is not sent to any output port.The event is identified by evp as returned
by a previous call toSTG_DeclEvent().

Warning

The ports are numbered from zero. Port #n corresponds to output port #(n-1) in
daqconf where ports are numbered starting from one.

Comment

• This function is usually called immediately afterSTG_DeclEvent().

Cross-references

STG_DeclEvent()

evp IN pointer to event (as returned bySTG_DeclEvent())

outinhibit IN output inhibit flag

otherattr IN output inhibit mask

7 — Event Production 61

STG_GetRunState

Synopsis
#include usin.h

int STG_GetRunState (int *runstate)

Parameters

Description

The current state of the run is returned in runstate

Cross-references

runstate OUT current run state

62 7 — Event Production

STG_GetPortPriority

Synopsis
#include usin.h

int STG_GetPortPriority (int port, int * priority)

Parameters

Description

The current value of the priority of the input thread defined by port is returned in
priority.

Cross-references

port IN stage port number

priority OUT priority of thread associated with input port

7 — Event Production 63

STG_SetPortPriority

Synopsis
#include usin.h

int STG_SetPortPriority (int port, int priority)

Parameters

Description

This function allows the user to change the priority of a thread associated with an input
port. It is normally used in case of potential overlapping of trigger bursts at two
different input ports. In such a case, changing the relative priority of the threads
associated with the ports guarantees that a burst is completely handled at the highest
priority port before considering triggers at the other port, thus preventing event
interleaving.

When the value of the priority is increased, the thread gets a lower priority. At present,
all the input threads have a priority of 106. Since the input threads should always have
less priority than the other threads of the stage, the user should never assign a priority
value lower than 106 to any of the input ports.

Comments

Check with a CASCADE expert before using this function!

Cross-references

STG_GetPortPriority()

port IN stage port number

priority IN priority of input thread

64 7 — Event Production

Remark about event sizes

The idea is that the user will read the event data into a buffer allocated by the stage.
This allocation is done by the functionSTG_GetSpace() which should be called by the
user before reading the event. In some cases, the actual size of the event is unknown
before the event is read and therefore the space allocation must be done for an upper
limit that the event could not reach. The purpose of the function
USTG_MaxEventSize() is to return this upper limit so that it can be passed to the
functionSTG_GetSpace().

Once the event has been read and its actual size is known, the actual size must be
passed to the functionSTG_DeclEvent() so that it can be stored in the event descriptor
to enable event consumers to handle the right amount of data words and forget about
the remaining invalid words.

7.5 User Routines - Second Group

This section describes the routines which contain the major part of the user specific
code to handle event triggers and event data. As previously pointed out, the names and
parameters of these routines may be changed as a function of the application.

In addition, this second group of user routines contains one routine called
USTG_FZuserVec() which, as opposed to the others, is not called from the stage input
thread but from the dispatch thread and only if the stage is linked to a recorder. This
routine, which is also application dependent, has been grouped with the others for
reasons of convenience.USTG_FZuserVec() must fill the user vector part of the
ZEBRA FZ header associated with every event. The format of the FZ user vector used
in the examples distributed with CASCADE is described below. The name and the
parameters of this routine should not be changed.

Examples of user routines are distributed with CASCADE in userprod template files.
They are written in C and compiled in makefile,USR_makefile described in
Chapter 4. They are descibed in more detail in section 7.4.

7.6 ZEBRA FZ User Vector used in the distributed templates

The ZEBRA FZ header includes an application dependent “user vector”. Specification
and filling of this vector has to be done in the functionUSTG_FZuserVec(). All the
event production templates distributed with CASCADE are based on the following user
vector format:

Word # Contents

1 run number

2 event number

3 date

4 time

5 5

7 — Event Production 65

Full details on the ZEBRA FZ header itself can be found in RRR.

6 6

7 event type

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

Word # Contents

66 7 — Event Production

USTG_StageInit

Synopsis

int USTG_StageInit()

Description

USTG_StageInit() is called by ProdStageInit() and should perform global stage
initialisation.

Cross-references

ProdStageInit()

7 — Event Production 67

USTG_PortInit

Synopsis

int USTG_PortInit (int port, int signum)

Parameters

Description

This function is called fromProdPortInit() and should initialise the event readout,
including triggers for the specified port.

Cross-references

ProdPortInit()

port IN stage port number

signum IN signal number associated with event triggers

68 7 — Event Production

USTG_StageStartRun

Synopsis

int USTG_StageStartRun (int run_number, int run_type)

Parameters

Description

USTG_StageStartRun() is called fromProdStageStartRun() and should perform the
appropriate port independent initialisation for each run.

Cross-references

ProdStageStartRun()

run_number IN run_number

run_type IN run_type

7 — Event Production 69

USTG_PortStartRun

Synopsis

int USTG_PortStartRun (int port)

Parameters

Description

This function is called fromProdPortStartRun() and should perform port dependent
initialisation on the port defined by port.

Cross-references

ProdPortStartRun()

port IN stage port number

70 7 — Event Production

USTG_StageStopRun

Synopsis

int USTG_StageStopRun ()

Description

This function is called fromProdStageStopRun() and should perform port independent
operations on the readout or trigger system required when the run is stopped.

Cross-references

ProdStageStopRun()

7 — Event Production 71

USTG_PortStopRun

Synopsis

int USTG_PortStopRun (int port)

Parameters

Description

This function is called fromProdPortStopRun() and should perform port dependent
actions required when a run is stopped.

Cross-references

ProdPortStopRun()

port IN stage port number

72 7 — Event Production

USTG_GetVICNo

Synopsis

USTG_GetVICNo (int* VicCrateNo)

Parameters

Description

USTG_GetVICNo() returns the VIC crate number if a VIC interface (VIC8251 [1]) is
present in the VME crate.The use of this function allows to develop 'generic' stages i.e.
stages which may run on several LSCs or event builders. The LSC may be identified at
run time and LSC specific code executed accordingly.

Cross-references

VicCrateNo OUT VIC crate number

7 — Event Production 73

USTG_InputPortParam

Synopsis

int USTG_InputPortParam (int port, int trigdevice, int trigchannel)

Parameters

Description

USTG_InputPortParam() is called byProdPortInit() with parameters specifying the
trigger device and channel as defined in the CASCADE configuration file. It is
typically used to initialise variables describing the trigger configuration.

Cross-references

ProdPortInit()

port IN stage input port number

trigdevice IN trigger device:= 0 for CORBO VME trigger module

trigchannel IN trigger channel: 0 to 3 for CORBO

74 7 — Event Production

USTG_InputEnbTrig

Synopsis

int USTG_InputEnbTrig (int port)

Parameters

Description

This function enables the event triggers for the specified port.

Cross-references

USTG_InputDsbTrig()

port IN stage port number

7 — Event Production 75

USTG_InputDsbTrig

Synopsis

int USTG_InputDsbTrig (int port)

Parameters

Description

This function disables the event triggers for the specified port.

Cross-references

USTG_InputEnbTrig()

port IN stage port number

76 7 — Event Production

USTG_EvTrgAna

Synopsis

int USTG_EvTrgAna (int port)

Parameters

Description

This function is called before space for event data is reserved and should analyse the
event trigger. This “analysis” is strongly application dependent. It may consist in
finding out if the trigger is “valid” i.e whether event data should be transferred for
example based on reading trigger patterns or subsets of the event data. The function
value returned could be a trigger “descriptor” code.

Cross-references

port IN stage port number

7 — Event Production 77

USTG_MaxEventSize

Synopsis
#include usin.h

int USTG_MaxEventSize (int port)

Parameters

Description

This function returns the maximum expected event size. This number is used to reserve
space for the event data. In some cases it may be a theoretical upper limit. In other case
it may be the actual event size as obtained for example by reading word count registers
in the read-out system.

Cross-references

port IN stage port number

78 7 — Event Production

USTG_InputEvent

Synopsis

Parameters

Description

This function performs the actual reading of the event data into the buffer defined by
dataAddress, at most maxSize bytes. It returns the event type.

Cross-references

int USTG_InputEvent (int port, int *dataAddress, int maxSize,
int *type)

port IN stage port number

dataAddress IN pointer to the CASCADE event data buffer

maxSize IN maximum event size as obtained by calling
USTG_MaxEventSize()

type OUT event type

7 — Event Production 79

USTG_FZuserVec

Synopsis

Parameters

Description

This function must fill the user vector part of the ZEBRA FZ header of the event. The
addresses of the event header, event data and event trailer are provided so that the event
characteristics can be extracted and, if necessary, plugged into the user vector.

Cross-references

int USTG_FZuserVec(int *userVecAddr, int *hdAddress,
int *dataAddress, int *trAddress,
int *userVecLen)

userVecAddr IN pointer to the user vector part of the ZEBRA FZ header

hdAddress IN pointer to the event header

dataAddress IN pointer to the event data

trAddress IN pointer to the event trailer

userVecLen OUT user vector length

80 7 — Event Production

8 — Event building 81

8 Event building

8.1 Introduction

Event building is generally understood as the operation which consists in merging
(sub)events originating from several (sub)detectors but corresponding to the same
physics event. This simple concept has been somewhat extended before being
implemented in the stage so that CASCADE can be used for a wider spectrum of
applications. Facilities have also been implemented so that the event integrity can be
checked and so that the building operation might be aborted after a time-out signal has
been received. Event building in CASCADE has the following main features:

• The event type “components” necessary to build an event of that type may include
dataless “condition” components such as the occurrence of control signals,
timeouts, etc.

• One event type component may itself be an event type, built from its own other
components, thus providing the possibility of having one or several hierarchies of
event types (e.g. “bursts” made of “events” themselves made of “subevents”).

• Although building of “super” events, such as complete bursts, may be necessary
before deciding on (and possibly marking in the event header) the validity of the
individual events, one may or may not wish to deliver entire bursts to monitoring
programs and/or to downstream stages.

• It may be desirable to reformat the subevents header and trailer before merging the
subevents into the resulting “built” event.

• The event building operation may not be the same for (or may not even apply to) all
the event types seen by the stage.

It is possible to force stages to perform a building operation on the (sub)events
collected from the input ports. This operation is done automatically by the stage on the
basis of:

1. application-specific construction requirements which have to be set via appropriate
parameters in the corresponding stage entry of the configuration file (a complete
description of these parameters can be found in Chapter 13 of this document)

2. a number of application-dependent event building functions which have to be
written and linked with the stage modules at system generation (these functions are
automatically called by the stage to get information on the subevents and, if
necessary, reformat them before performing the actual building operation)

Examples of configuration files and event building functions are distributed with
CASCADE as template files (see Chapter 13 for the configuration file templates and
see below for the event building functions).

8.2 userevb templates

An example of such application-dependent event building routines is distributed with
CASCADE in the following template file. This file is compiled in makefile
USR_makefile described in Chapter 4.

82 8 — Event building

• userevb_burst.c is presently the only example provided. The UEVB_GetInfo
routines extract the number of events in the burst and the event serial number within
the burst from the LSC event header and return this information to the event builder.
TheUEVB_FillHdTr() function reduces the size of the LSC event headers from 12
to 10 and adjusts the header size and event size accordingly. Finally a “standard”
global event header with mostly dummy data is constructed. Please note that this
example is entirely based on the event header described in Section 7.3.

8.3 Application-dependent event building functions

These functions are written in C and compiled in makefile, USR_makefile described in
Chapter 4. The functions are described below.

8 — Event building 83

UEVB_Init

Synopsis
#include evb.h

int UEVB_Init(void)

Description

This function is called automatically during the initialisation phase of stages which
have to perform event building (according to their entry in the configuration file). It
allows the user to perform any application specific initialisation related to event
building.

Cross-references

84 8 — Event building

UEVB_GetMinInfo

Synopsis
#include evb.h

Parameters

Description

This function extracts from the header of the specified (sub)event, the minimum
information required by the event builder to decide whether this event needs an event
building operation or not. This decision is based on the type of the event which is
returned as a string of characters (of which only the first four characters will be used).
If type is equal to a type specified in the event builder part of DAQCONF event
building operation will be performed. The two last parameters are only relevant in that
case.

Comments

If the “standard” header is used, the parameters type, evsn and nbevb are found in
words 6,7,8 of the header.

Cross-references

void UEVB_GetMinInfo(BLC_EventDescr *ed, char *type, int *evsn,
int *nbevb)

ed IN subevent descriptor

type OUT subevent type

evsn OUT serial number of event within burst

nbevb OUT number of events in burst

8 — Event building 85

UEVB_GetMoreInfo

Synopsis
#include evb.h

Parameters

Description

This function is called by the event builder once per burst, for the first subevent of the
first event (but afterUEVB_GetMinInfo). If RdScalerFlag is TRUE, the function read
the scaler associated with this type of burst and compares it with the total number of
events found in the (sub)event header. If the numbers are equal, the function returns a
value of 0, else a value of -1. The parameter nbevb is the total number of events; in case
that the comparison mentioned before fails, the largest of the two numbers should be
returned.

Returns

Comments

This function is somewhat specific to NOMAD.

Cross-references

int UEVB_GetMoreInfo(BLC_EventDescr *ed, int RdScalerFlag,
int *evsn, *nbevb)

ed IN subevent descriptor

RdScalerFlag IN read scaler flag

evsn OUT serial number of event within burst (dummy)

nbevb OUT number of events in burst

dummy if RdScalerFlag is FALSE

0 if RdScalerFlag is TRUE and the scaler value associated with this type of
burst is equal to the total number of events found in the (sub)event header

-1 if RdScalerFlag is TRUE and the scaler value associated with this type of
burst is NOT equal to the total number of events found in the (sub)event
header

86 8 — Event building

UEVB_FillHdTr

Synopsis
#include evb.h

Parameters

Description

This function is called at the end of a burst for EACH event in the burst at a point in the
event building phase where event descriptors are created but the final events NOT YET
assembled. It allows to adjust the header and trailer of the subevents, to build the
(global) event headers and to mark events with a status (GOOD/BAD_SPILL...). The
parameter ed is an event descriptor which contains a pointer to a linked list of
subevents thus allowing the routine to access the headers and trailers of the subevents.
The parameter burst_status is the global status of the burst as defined by the event
builder based on certain consistency criteria. It is the user's responsibility to insert this
status at the appropriate place in the event header.

Cross-references

void UEVB_FillHdTr(BLC_EventDescr *ed, int burst_status)

ed IN event descriptor

burst_status IN status of burst

9 — Event Monitoring 87

9 Event Monitoring

9.1 Introduction

In CASCADE two schemes for event monitoring are provided,local and remote. A
local monitoring program runs in the same processor as the stage and retrieves events
via shared memory. Aremote monitoring program runs on another processor and
retrieves events via a network connection from a ‘front- end’ processor where a stage is
executing. Local monitoring programs are running under OS-9 or LYNXOS on VME
processors while remote monitoring programs normally will run on UNIX
workstations. In this chapter we describe local monitoring, however, since remote
monitoring is built on top of local monitoring, this chapter is also relevant to remote
monitoring.

With local monitoring, the synchronisation and message exchanges between the
monitoring programs and the stage are performed by means of signals and named pipes
(see below) while access to event data is via shared memory. An event is made
available to the monitoring program by means of its header, data and trailer addresses.
The sampling mechanism does not automatically copy the event into a user buffer.
Each event delivered to an monitoring program is held in the stage data buffer until it is
explicitly released. This data buffer area is locked as long as the monitoring program
holds the event. As a consequence, when the processing of an event is relatively long
(e.g. in the case of an event display program), it may be better to copy the event in a
local array of the monitoring program and to release it immediately.

There are two modes of sampling: “on request” and “fixed” sampling. When using “on
request” sampling, the stage sends to the monitoring program as many events as
possible, without blocking the data taking for lack of space in the data buffer. In “fixed”
sampling, the monitoring program specifies a percentage of events that it wants to
receive and it is then guaranteed to be given at least the specified amount of events. The
monitoring program will receive more events if possible (i.e. provided this does not
block the data taking by filling up the data buffer). For both modes of sampling, the
monitoring program may specify one or more event type(s) that it wants to receive. The
sampling mechanism will discard events whose event types don’t match the one(s)
requested. All the events with event type greater thanMAX_NORMAL_EVENT_TYPE1 are
always reserved and unconditionally given to the monitoring programs.

NB

The “fixed” sampling mode is not fully debugged (and will never be) and not reliable
and, therefore, should not be used.

9.2 Monitoring program templates

An example of a monitoring program and the corresponding makefile is distributed
with CASCADE and can be found in the online/templates directory with the names
mp_valid .c andSH_makefile_demo respectively. They are automatically copied

1. This symbol is defined in the BLC package and set to 1000 in the current version.

88 9 — Event Monitoring

(be careful since many other files are copied at the same time) into the current directory
(as mp_demo.c and SH_makefile_demo) by invoking the script
copy_templates_demo.

The mp_demo.c program is the MP program which is used to “validate” CASCADE. It
is distributed with the intention of serving as a starting point and example for the
development of user application MP programs. The program can run in both local and
remote mode (see section on remote monitoring) and is very useful as a general
purpose MP for printing events flowing through the stage. The local version is built as
follows :

Under OS-9:make -b -f=SH_makefile_demo mp_demo

Under LYNXOS: gmake -f SH_makefile_demo mp_demo

The program may run in interactive or automatic mode. The interactive mode allows to
analyse (print) the events one after the other as decided by the user while the automatic
mode is intended for continuous analysis at the highest possible speed. The program
has the following parameters :

mp_demo <stage name> [dummy percent no_events no_words_dmp print_rate
event_type1 event_type2 event_typeN]

where

stage name name of the stage

dummy this parameter is dummy in local mode

percent percentage of events which should be seen by the MP -must be 0 !
no_events number of events to be analysed by the MP

no_words_dmp number of event words to be dumped in case of error

print_rate every <print_rate> events a line is printed on the terminal

event_type1 defines one or more event types to be seen by the MP (0 means all)

event_typeN

If all the parameters are given on the command line the program works in automatic
mode. If the program is started with only the first parameters :

mp_demo <stage name> in local mode

then the parameters are defined interactively :

Interactive mode : a positive answer makes the program asking for next event after
each event processed, while a negative answer makes the program continuously
sampling until the number of events to sample is reached.

Dump all events : if the answer is yes, then one has to input the number of
words to print for each event

Next event type to sample : this question is repeated until a -1 is entered. A zero
value means that all event types are requested. A non zero value specifies the event type
requested.

9 — Event Monitoring 89

Enter percent of events to sample : a zero value means that the mode of
sampling is “on request”.At present only this mode works reliably.

Number of events to sample : specifies the number of events that the monitoring
program wants to receive before exiting.

9.2.1 Monitoring Program Structure

The structure of the monitoring program is slightly different depending on whether it
copies the data to a local user buffer or not. The distributed templates don’t copy; as a
consequence they don’t explicitly release the event by callingsh_release_event(), since
the last event processed is automatically released when requesting the next one. Their
structure is thus the following (this is pseudo-code only):

call sh_mconnect

while (not_enough_events_seen) {

call sh_request_event

call sh_wait

call sh_get_data

process event

}

call sh_disconnect

exit

If the user chooses to make a copy of the event in a local buffer, the sequence changes
in the following way (this is pseudo-code only):

call sh_mconnect

while (not_enough_events_seen) {

call sh_request_event

call sh_wait

call sh_get_data

copy the event in the local buffer

call sh_release_event

process the event

}

90 9 — Event Monitoring

call sh_disconnect

exit

The monitoring program does not have to do continuous polling to discover whether
there is an event available for it in the data buffer of a stage. Instead it receives the
notification via an asynchronous signal, whose value is returned via thesh_wait
routine.

9.3 Error Testing In A Monitoring Program

The errors returned by the sampling routines are defined in the header file
sh_errors.h .

Their numeric value are the following:

In the distributed templates, the routinesh_message() is called in case of errors from
the sampling routines and the string describing the error returned by this routine is then
printed (see below).

9.4 Exception Handler In The Monitoring Program

An exception handler has been implemented in such a way that the monitoring
program always calls thesh_disconnect() routine before exiting. This is needed to
make the necessary cleanup inside the stage code.

The trapped errors in the OS9 systems are defined in the filetrapdefs.d :

SUCCESS 0

SERVICE_NOT_FOUND 1

ALLOCATE_FAILED 2

SIGACTION_FAILED 3

BAD_ARGUMENT 4

SEND_FAILED 5

RECEIVE_FAILED 6

RUN_STOPPED 7

PATH_FAILED 8

OPEN_FAILED 9

CLOSE_FAILED 10

STAGE_ABSENT 11

PIPE_NOT_CREATED 12

BUSERR 102 bus error

ADRERR 103 address error

ILLINS 104 illegal instruction

ZERERR 105 zero divide

9 — Event Monitoring 91

The trapped errors in the UNIX systems are:

The value of the trapped error is printed before exiting the monitoring program. The
two special signals SIGINT (Control-c) and SIGQUIT (Quit special character typed)
are trapped on both systems.

If the stage crashes, the signal SIGPIPE (broken pipe) is sent from the stage (really
from the exit handler of the phase dealing with sampling) to all the monitoring
programs connected to that stage. In this case the user routineush_trap() is called
within each monitoring program.

9.5 Debugging Tools

A debugging programst_dump is available as a separate process to display on the
screen the contents of each sampling table entry in the sampling list. This gives the
status of all active monitoring programs at the moment at which the program is run.
This program is for specialists and a knowledge of the internals of the MP package is
required to understand the output of this program.

To run it, type:

st_dump <stage_name>

Make sure the display auto-wrap option of the window in which the process is run is
ON if you don’t want to have the lines of the dump truncated.

CHKERR 106 CHK instruction

TRAPV 107 TRAPV instruction

PRIVERR 108 privilege violation

SIGFPE Arithmetic exception

SIGILL Illegal instruction

SIGSEGV Invalid memory reference

SIGTRAP trace trap

92 9 — Event Monitoring

9.6 Pipes

The MPs and the stage exchange messages via named pipes. Requests from the MPs
are divided into two groups,connectrequests and other requests.

There is one common ’well-known’ connect pipe with name of the type :

Under OS-9:fifoCSH<stage_name>$0

Under LYNXOS: /tmp/fifoCSH<stage_name>$0

When the sh_mconnect function is called a connect message is sent via this pipe.

Similarly, there is one common ’well-known’ pipe with a name of the type :

Under OS-9:fifoOSH<stage_name>$0

Under LYNXOS: /tmp/fifoOSH<stage_name>$0

All other requests from the monitoring programs are sent via this pipe

The stage replies to an MP by writing to one of thereply pipes. There is one reply pipe
per MP with a conventional name of the type

Under OS-9:fifoOSH<stage_name>$<pid>

Under LYNXOS: /tmp/fifoOSH<stage_name>$<pid>

MP1

Connect requests

Other requests

Reply pipe 1

Reply pipe 2

Reply pipe 3

Stage

MP3

MP2

9 — Event Monitoring 93

where <pid> is the pid of the MP. The reply pipe is created by the MP at connect time
and opened (only) in the connect code of the sh_request thread.

The status of these pipes can be checked with the following command :

Under OS-9:dir -e /pipe

Under LYNXOS: ls -l /tmp/fifo*

9.7 Sampling Routines

From version 3_00 the local sampling routines, described below, are available for both
OS9 and LYNXOS. To run monitoring programs under UNIX on the back-end
workstations, see the section on remote monitoring.

94 9 — Event Monitoring

sh_mconnect

Synopsis
#include “mp.h”

Parameters

Description

The monitoring program makes itself known to the stage and declares its sampling
criteria.

The stage_name argument is the command line argument specifying the stage name
passed to the monitoring program when it is invoked.

Theno_event_types argument specifies the number of event types requested.

Them_event_types is a pointer to an array of no_event_types integers: each element of
the array specifies a requested event type. If the first element of the array is zero, any
type of event will be given to the monitoring program.

The percent argument specifies that the monitoring program wants to receive a
percentage of events of the specified event type(s). If non zero, the sampling will be
“fixed” and the monitoring program will receive the requested amount of events. If
percent is zero, the sampling will be “on request”.

NB. In version 2.06 this parameter must be equal to zero.

Theevent_signal argument returns the signal used by the stage to notify the monitoring
program that an event is available for it, so that the monitoring program can test after
the call tosh_wait() if it is waiting for more than one signal.

int sh_mconnect(char* stage_name,
int no_event_types,
int* m_event_types,
int percent,
int* event_signal)

char* stage_name name of the stage

int no_event_types number of entries in array pointed to by
m_event_types

int* m_event_types events types

int percent percentage of events to be seen

int* event_signal signal to be raised when an event is ready

9 — Event Monitoring 95

Returns

Upon successful completion, the function shall return a value of zero. Otherwise, one
of the following values will be returned:

Related Functions

Seesh_disconnect().

[ALLOCATE_FAILED] Dynamic allocation of theevent_signal to be used
afterwards by the stage to notify the monitoring program
that an event is available for it failed.

[SERVICE_NOT_FOUND] The stage name given as parameter to the monitoring
program is not found in the CASCADE dictionary created
by the stage on the machine where the monitoring program
runs. Most probably, a wrong stage name has been typed
when the monitoring program was invoked.

[SIGACTION_FAILED] The call to block the occurrence of the signal number
indicated byevent_signal failed.

[SEND_FAILED] Sending the connect message to the stage through the
request pipe failed.

[RECEIVE_FAILED] Receiving the acknowledge to the connect message from
the stage through the reply pipe failed.

[BAD_ARGUMENT] Them_event_types argument is bad: a zero event type
(which means all event types) has been specified among
other non zero event types or an event type larger than
MAX_NORMAL_EVENT_TYPE has been requested.

[OPEN_FAILED] Opening one of the request pipes failed. The corresponding
IPC package error is printed.

[PATH_FAILED] Building the name of one of the request pipes failed. The
corresponding IPC package error is printed.

96 9 — Event Monitoring

sh_declare_signal

Synopsis
#include “mp.h”

Description

The monitoring program declares signals (other than the event signal returned by
sh_mconnect()) for which it wants to wait.The routine may be called many times (one
for each signal that the user wants to declare).

The user_signal argument specifies the signal number that the user wants to wait for.
After the call tosh_wait(), the monitoring program can check which signal is raised.

Returns

Upon successful completion, the function shall return a value of zero. Otherwise, one
of the following values will be returned:

int sh_declare_signal (int user_signal)

[BAD_ARGUMENT] The given argument is bad: the signal has already been declared
in a previous call or it is the same signal asevent_signal
returned bysh_mconnect().

9 — Event Monitoring 97

sh_request_event

Synopsis
#include “mp.h”

Description

The monitoring program makes a request for a new event and implicitly releases the
last event processed, if needed (i.e. if there is one event still being processed by the
monitoring program and if a call tosh_release_event() has not been explicitly made
before).

Returns

Upon successful completion, the function shall return a value of zero. Otherwise, the
following value will be returned:

int sh_request_event()

[SEND_FAILED] Sending the request message to the stage through the request pipe
failed...

98 9 — Event Monitoring

sh_wait

Synopsis
#include “mp.h”

Description

The monitoring program waits for an asynchronous signal. The routine suspends the
caller until a signal is delivered to inform the process of the occurrence of an event.

The signal parameter returns the signal number which woke-up the monitoring
program. Two cases need to be distinguished:

• whensignal is event_signal (as returned bysh_mconnect()) the monitoring program
can find in the reply pipe the address of an event descriptor for an event of the type it
requested; the monitoring program should thus callsh_get_data() to actually get
this event;

• when signal is one of the user signals declared insh_declare_signal()the
monitoring program should act accordingly.

Returns

Upon successful completion, the function shall return a value of zero.

int sh_wait(int* signal)

9 — Event Monitoring 99

sh_get_data

Synopsis
#include “mp.h”

Description

The monitoring program gets an event from the event descriptor address found in the
reply pipe.

The size, hsizeand tsize arguments respectively return the event data size, the event
header size and the event trailer size.

Thetype argument returns the event type.

Theev, hev andtevarguments respectively return pointers to the event data, the event
header and the event trailer.

Returns

Upon successful completion, the function shall return a value of zero. Otherwise, the
following value will be returned:

int sh_get_data (int *size,
int *hsize,
int *tsize,
int *type,
int **ev,
int **hev,
int **tev)

[RECEIVE_FAILED] Receiving the event descriptor from the stage through the
reply pipe failed.

[RUN_STOPPED] Notification of run stopping/stopped received when trying
to get the next event.

100 9 — Event Monitoring

sh_release_event

Synopsis
#include “mp.h”

Description

The monitoring program releases the last event received (after finishing processing it or
after having copied it in a local buffer). After this call, the stage can remove this event
from its buffer if space is required.

Returns

Upon successful completion, the function shall return a value of zero. Otherwise, the
following value will be returned:

int sh_release_event()

[SEND_FAILED] Sending the release message to the stage through the
request pipe failed.

9 — Event Monitoring 101

sh_disconnect

Synopsis
#include “mp.h”

int sh_disconnect()

Description

The monitoring program leaves the sampling.

The call to this routine is mandatory before exiting the monitoring program. It allows
to delete the corresponding entry in the stage sampling table list, so that the stage
knows that it does not any more have to reserve events for this monitoring program.

Returns

Upon successful completion, the function shall return a value of zero. Otherwise, the
following value will be returned:

[SEND_FAILED] Sending the disconnect message to the stage through the
request pipe failed.

[CLOSE_FAILED] Closing one of the request pipes failed. The corresponding
IPC package error is printed.

[PATH_FAILED] Building the name of one of the request pipes failed. The
corresponding IPC package error is printed.

102 9 — Event Monitoring

sh_message

Synopsis
#include “mp.h”

Description

It is recommended to test the status returned from all the sampling routines. In case of
failure (status different from zero), one can call this routine to get a meaningful text
error message from the returned integer status.

It is up to the monitoring program to decide what to do with the message (simply print
it or call Emu or insert it in a log file, etc).

Thestatus parameter specifies the status returned by one of the sampling routines.

Theerror_message string returns the text message corresponding to given status.

Returns

Upon successful completion, the function shall return a value of zero.

The message “Unknown error” is returned if a status value is given that does not
correspond to any known error.

int sh_message (int status, char *error_message)

9 — Event Monitoring 103

9.7.1 FORTRAN Interface

As explained in the introduction, with version 2.06 of CASCADE local monitoring is
only available under OS-9. As a consequence, a FORTRAN interface is not available.
For remote monitoring, a set of FORTRAN interface functions have been implemented
as explained in the section on remote monitoring.

104 9 — Event Monitoring

10 — Remote Monitoring Facility 105

10 Remote Monitoring Facility

10.1 Introduction

Typical CASCADE data-acquisition configurations consist of multi-crate VME
systems running OS-9 or LYNXOS linked to a number of UNIX workstations. An
important task of the UNIX workstations is to monitor and analyse the data collected
by the VME systems. A basic requirement is, therefore, that the VME systems (LSCs
and EVBs) should be able to provide a high rate of events to the workstations.

In this chapter we describe a scheme calledremote monitoring which addresses this
problem. We use the termremote to distinguish the scheme from the 'usual' method of
local monitoring in CASCADE. Bylocal we understand that the monitoring programs
are running on the same processor as a CASCADE stage and extract events from the
stage via a protocol based on pipes and shared memory, as seen in figure 4 and
described in Chapter 9.

Figure 4 Monitoring in local mode

The remote monitoring is based on a client/server approach as illustrated in figure 5. A
monitoring client program (RMP) on a UNIX workstation connects to a monitoring
program server (RM server) on a processor where a stage is running, usually an OS-9
or LYNXOS system. The RMP requests events from the server which - using the 'local'
monitoring functions - extracts events from the stage and returns event data and status
to the client where the event is then available for analysis. It is seen that in this scheme
the RMP connects to a remote RM server instead of a local stage to acquire events.

MP

STAGE

STAGE

 UNIX workstation DAQ (OS-9/LYNXOS)

o

i

o

i
TCP/IP

MP

106 10 — Remote Monitoring Facility

Figure 5 Monitoring in remote mode

In figure 6 is shown a generalised version of figure 5 where a number of monitoring
programs on UNIX workstations get events from remote OS-9/LYNXOS systems. The
RM servers are created dynamically when a client opens a link and will disappear
when the client disconnects (or crashes).Monitoring programs may be started on
any workstation with an IP connection to the target system.

The scheme proposed here is very similar to the one already used for remote PAW
under OS-9. The basic difference is that remote monitoring transportsevents to the
remote workstation instead ofhistograms.

Remote monitoring is essentially a system which maps client monitoring onto
equivalent server functions across the network via TCP/IP. It is based on existing
software elements: the local monitoring functions (Chapter 9), the NIC library [19] and
the TCP daemon mechanism under OS-9 [16] and LYNXOS. The qualitatively new
element is the mapping of the functions across the network.

The remote monitoring scheme has the following features:

• monitoring programs are loosely coupled to CASCADE:

1. the RMPs may run on any UNIX station independently of whether a stage is
present

2. monitoring does not interfere -via a local stage- with the data flow. Monitoring
programs can misbehave (crash, exit) without affecting the stages under OS-9 or
LYNXOS.

3. the remote monitoring software package is independent of the CASCADE
“internal” structures. It is written in C and is available independently of
CASCADE releases.

• monitoring programs can run in remote and local mode almost without changes. By
loading different libraries the user switches between the two modes. However,
certain functions have different meanings in the two modes.

• the total number of stages in a remote monitoring configuration is smaller than in
the equivalent local monitoring configuration (in figure 6 three stages are replaced
by six RM servers). Run control is therefore simplified.

 UNIX workstation DAQ (OS-9/LYNXOS)

STAGE

i

o

RMS

RMP
TCP/IP

10 — Remote Monitoring Facility 107

• A correct ending of the monitoring connection to the stage is guaranteed even if the
RMP crashes or exits without disconnecting previously. The RM server will take
care of closing the connection properly.

Figure 6 Example of remote monitoring configuration

10.2 Remote monitoring functions

The remote monitoring library (libRM.a) available to the implementer of remote
monitoring programs consists of a set of functions with the same names and syntax as
those described in Chapter 9, providing a high degree of portability between the two
modes. These functions typically transmit the parameters to the RM server, request

 UNIX workstation

STAGE

RMS

RMP

RMP

 UNIX workstation

RMP

RMP

 UNIX workstation

RMP

RMP

RMS

LSC (OS-9/LYNX)

STAGE

RMS

RMS

LSC (OS-9/LYNX)

STAGE

RMS

RMS

EVB (OS-9/LYNX)

 REC
RMP = remote monitoring program
RMS = remote monitoring server
REC = recorder

108 10 — Remote Monitoring Facility

some action and retrieve data and status via the network. Some functions need some
reinterpretation;sh_wait(), for example, does not make sense remotely but is included
in the library to provide compatibility.

Below is given a short description of the remote monitoring function. The synopsis and
parameters of thesh routines are the same as those described in Chapter 9 to which we
refer for details.

10 — Remote Monitoring Facility 109

RM_init

Synopsis
#include rmp.h

int RM_init (char* hostname)

Parameters

Description

A link request is sent to the TCP daemon (inetd) on the system identified byhostname.
The daemon forks an RM server which will then listen for requests on the socket
inherited from the daemon

Returns

Comment

This function is specific to the remote monitoring and it should be called before any
other in order to establish the TCP connection between the RMP and the RM server. In
case of error this function prints an error message and exits.

hostname IN IP name of the remote host where a stage is running

[RM_OK] The TCP connection has been established

110 10 — Remote Monitoring Facility

sh_wait_timeout

Synopsis
#include rmp.h

int sh_wait_timeout (int timeout)

Parameters

Description

This function is equivalent tosh_wait() but including a timeout mechanism that allows
the RMP to wait for a stage reply for a specified timeout instead of forever. A timeout
value less or equal than zero is interpreted as infinite timeout i.e. wait forever.

Returns

Comment

In case ofSH_TIMEOUT is returned, it’s up to the RMP either to retry (with the same or a
different timeout value) or to give up. This function is not implemented yet in local
monitoring,sh_wait() is used instead.

timeout IN timeout in milliseconds

[RM_OK] a stage reply arrived

[SH_TIMEOUT] the timeout expired without reply

[SELECT_ERROR] error when calling the select system call

10 — Remote Monitoring Facility 111

sh_mconnect

Description

This function establishes a link with the remote stage. A connection request message is
sent to the RM server created by a previous call to RM_init. The RM server executes
thesh_mconnect() function with the parameters retrieved from the request message and
returns the status of the operation to the RMP.

Returns

This function returns exactly the same value as the local one but a few new error codes
related to the network have been added:

[RM_OK] connection established with the remote stage

[CONN_CLOSED] network connection closed by peer

[SEND_ERROR] error when sending request

[RECEIVE_ERROR] error when receiving the reply

[WRONG_REPLY] unexpected reply (protocol failed)

112 10 — Remote Monitoring Facility

sh_request_event

Description

This function sends an event request to the RM server which attempts to get an event
from the stage by callingsh_request_event(), sh_wait()andsh_get_data(). The server
may block insh_wait() if no events are available. The event data (header + data +
trailer) is copied into a local buffer in the RM server and transmitted back to the RMP
with status information.

Returns

This function returns one of these values:

Comment

This function is mapped onto three consecutivesh calls in the RM server in order to get
an event from the remote stage. The result of these local calls, either an event or status
is passed to the RMP whensh_get_data() is called.

[RM_OK] request sent successfully

[CONN_CLOSED] network connection closed by peer

[SEND_ERROR] error when receiving the reply

10 — Remote Monitoring Facility 113

sh_wait

Description

This function is dummy and provided for compatibility with local monitoring (see the
local version ofsh_wait()).

114 10 — Remote Monitoring Facility

sh_get_data

Description

The function retrieves an event from the remote stage. The event data (header + data +
trailer) is read into a local buffer in the RM library.

Returns

This function returns eitherRM_OK or an error happened during the sequence of
getting an event from the stage: three local calls (sh_request_event(), sh_wait()and
sh_get_data())plus the event transmission:

Comment

Both the server and the client libraries have a buffer of 10Kbytes to store an event. If
the event size is greater then dynamic memory allocation is required (calloc() is used).
This memory handling is completely transparent.

[RM_OK] event available

[CONN_CLOSED] network connection closed by peer

[RECEIVE_ERROR] error when receiving the reply

[WRONG_REPLY] unexpected reply (protocol failed)

[WRONG_SIGNAL] unexpected signal received by the RM server

[WRONG_SIZE] event header, data or trailer size <= 0

[WRONG_POINTER] event header, data or trailer pointer is NULL

[CALLOC_SERVER] Not enough memory for the event in the RM server

[CALLOC_CLIENT] Not enough memory for the event in the RMP

10 — Remote Monitoring Facility 115

sh_release_event

Description

A release event request is sent to the RM server which executes a local
sh_release_event() and returns the status of the operation.

Returns

This function returns exactly the same value as the local one but a few new error codes
related to the network have been added:

[RM_OK] event released

[CONN_CLOSED] network connection closed by peer

[SEND_ERROR] error when sending request

[RECEIVE_ERROR] error when receiving the reply

[WRONG_REPLY] unexpected reply (protocol failed)

116 10 — Remote Monitoring Facility

sh_disconnect

Description

A disconnect request is sent to the RM server which executes a localsh_disconnect()
and returns the status of the operation.

Returns

This function returns exactly the same value as the local one but a few new error codes
related to the network have been added:

[RM_OK] disconnection done

[CONN_CLOSED] network connection closed by peer

[SEND_ERROR] error when sending request

[RECEIVE_ERROR] error when receiving the reply

[WRONG_REPLY] unexpected reply (protocol failed)

10 — Remote Monitoring Facility 117

sh_message

Description

This function sends an error request to the RM server which executes a local
sh_message() and returns the error message to the RMP.

Returns

This function returns exactly the same value as the local one but a few new error codes
related to the network have been added:

[RM_OK] error message available

[CONN_CLOSED] network connection closed by peer

[SEND_ERROR] error when sending request

[RECEIVE_ERROR] error when receiving the reply

118 10 — Remote Monitoring Facility

10.3 Clients and servers

The RM servers in OS-9 and LYNXOS are created dynamically using a technique
which is already employed for the PAW servers and rsh servers under OS-9. For
LYNXOS, it is based on theinetd daemon. For OS-9 it is based on a program
tcp_daemon [16] similar to the inetd daemon of UNIX. The tcp daemon is
associated with an IP service called casc-rmp for remote monitoring defined in the
services file.

The tcp daemon listens to requests on the port defined by thecasc-rmp service. When
a RMP requests a link to a RM server, the tcp daemon creates a socket defining a
connection to the client and then forks a RM server which inherits the socket and
therefore the connection to the RMP, see figure 7. A client/server pair is now
established and the next request from the client will be directed to the forked RM
server.

10 — Remote Monitoring Facility 119

Figure 7 Tcp daemon and remote monitoring servers

The RMPs are very similar to normal CASCADE monitoring programs but have a
distinct part to establish a connection with a remote RM server. The client checks
whether a servicecasc-rmp is defined in the IP services file and retrieves the
corresponding port number. If the service is not defined a 'hardwired' port number is
used. A connect request is then sent to the server with the request data specifying the
name of the remote stage and the sampling parameters. The server tries to connect to
the stage and returns the status of the operation to the client. If there are no errors the
client will now proceed with sending requests for events. The server, in turn, requests
events from the stage and waits if no events are available. When this is the case the
event (header + data + trailer) is copied into a local buffer and is then transmitted with
the status of the operation.

 UNIX workstation DAQ (OS-9/LYNX)

STAGE
RMP

TCPD

a) RMP sends a tcp connection request

TCP/IP

 UNIX workstation DAQ (OS-9/LYNX)

STAGE

RMS

RMP
TCP/IP

TCPD

b) TCPD forks a RMS who inherits the connection TCPD = tcp daemon
RMP = remote monitoring program
RMS = remote monitoring server

120 10 — Remote Monitoring Facility

10.4 Installation on OS-9

To set up the remote monitoring facility an IP service has to be added to the services
file and a few system programs have to be installed:

• remote monitoring IP service

The network service file: /os9/system/etc/services

needs to be modified to include the following service (see Network services and
daemons in Chapter 2):

casc-rmp7734/tcp #CASCADE Remote monitoring server

• mp_server

This program is found in/os9/online/cmds on the ECP/FEX OS-9 cluster and it
must be conveniently loaded1 into memory before using remote monitoring.

• tcp_daemon

This program is described in [16] and can be found in/os9/online/cmds on the
ECP/FEX OS-9 cluster. It should be started as follows

tcp_daemon casc-rmp mp_server -f /dd/tmp/rmp.log <>>>/nil &

tcp_daemon uses the IP servicecasc-rmp and will fork program mp_server when a
request is received. The mp_server program will write log messages in file
/dd/tmp/rmp.log_pid where pid is the pid of mp_server. The logfile is optional.
All standard and error I/O is redirected to/nil and tcp_daemon executes in
background

To summarise, a startup file for the remote monitoring may look like:

load -d /os9/online/cmds/tcp_daemon

tcp_daemon casc-rmp mp_server -f /dd/tmp/rmp.log <>>>/nil &

10.5 Installation on LYNXOS

• The network service:

casc-rmp7734/tcp #CASCADE Remote monitoring server

needs to be declared in the /etc/services network service file

• The following daemon entry needs to be done in the file ’/etc/inetd.conf’:

casc-rmp stream tcp nowait cascade
/usr/local/online/bin/mp_server mp_server -f
/tmp/rmp.log

1. This step is automatically done by the CASCADE starting script files.

10 — Remote Monitoring Facility 121

Warning :

Since under Unix and therefore LYNXOS, a process can send signals only to processes
with the same ownership and since the mp_server and the stage processes send signals
to each other, it is mandatory under LYNXOS that stages have the same owner has the
one declared for mp_server in the inetd.conf entry mentioned above.

122 10 — Remote Monitoring Facility

11 — Data Recording 123

11 Data Recording

11.1 Introduction

Recording is done by a special type of stage called a recorder which has for unique task
the storage of events on a physical device. Recorders must run in the same CPU as the
stage which feeds them. Recorders have only one input and have no output to other
stages. The interface and the protocol used to communicate with a recorder are the
same as for inter-stage communications but the inter-stage link is based on shared
memory.

During the run, the stage prepares events and signals the recorder every time an event is
available in the shared memory. When signaled, the recorder retrieves the event, splits
it into fixed blocks (records) and stores them on the medium.

Figure 8 Data recording logical flow

At present, recording can be done on a dummy device (for test purposes), on disk files
(locally or via NFS) and, under OS-9, it can be done either on the IBM3480-
compatible STK4280 cartridge device[13], on the EXABYTE [14] and on the DLT,
Digital Linear Tape device. Remote disk recording using a client-server approach is
also available to record data on a Unix machine accessed via the network.

Three recorder processes called respectively recorder, xarecorder and dltrecorder exist.
All three support the four types of recording (respectively called dummy, disk, tape
recording and remote disk). An environment variable is used to define the desired
recording type.the dummy, tape, local disk and remote disk recording. They only differ
by the tape device each of them supports.

recorder must be used to record on the STK4280 cartridge device.

EVB RECORDER

Shared Memory

Data Flow

124 11 — Data Recording

xarecorder must be used to record on the Exabyte device.

dltrecorder must be used to record on the DLT device.

11.2 Event formatting and packing

In CASCADE, event recording is always done according to the ZEBRA FZ format
specification. For efficiency reasons, the formatting operation is split between the
recorder and itsfeeder stage. As foreseen by the ZEBRA FZ specification, events can
(but do not need to) be packed into the recording device fixed length physical records.

By default, CASCADE does not pack events, but packing can be activated by setting
the environment variableFZ_EV_PACKING to any non-zero valuein the feeder
stage environment. The stage retrieves this variable from the environment and the
recorder gets it from the feeder stage shared segment.

In the non-packing mode, every event uses the smallest integer number of physical
records (at least one) which can accomodate the event including its FZ envelope.
Padding words are appended to the 'enveloped' event so that the whole lot fits exactly in
an integer number of physical records. In the packing mode, every event is appended to
the tail of the previous one in the current physical record and no padding words are
inserted. This mode is of course much less greedy in space on the recording device.

11.3 Starting the Recorder

The command line for the recorder(s) is

[xa/dlt]recorder <rec_name> [<configuration_file>]

The optional second parameter is a full path name for the configuration file. If it is not
specified, the default name "./daqconf" is used.

The recorder is configurable via a number of environment variables. All these
environment variables should be set via the stage booting script files (see Chapter 5)
and not directly using setenv commands.

 The following variables apply to the four types of recording:

• RECORDERTYPE

The type of the recorder to be used must be set using the environment variable
RECORDERTYPE with one of the following keywords:

dummy for test purposes

disk for local or NFS file

tape for SUMMIT, EXABYTE or DLT

network for remote disk

It is NOT case sensitive. Any other string will generate a error message: “Unknown
type of recorder”.

11 — Data Recording 125

• ERRORS_TO_EMU

Reporting of errors is done using either printf or EMH_SysMsg calls as set by the
environment variable ERRORS_TO_EMU:

0 - use printf (default)

1 - use EMU

NB: if EMU is chosen, be sure that emu is started (otherwise the recorder process
will be stopped by a full pipe).

• MAX_BLOCKS_PER_FILE

Maximum number of blocks (records) per file (or tape). When this number is
reached either on a file or on tape, the end-of-run sequence is triggered.

• REC_DISABLE_DEBUG

If set, this variable will prevent the recorder to write debug messages to its logfile.
The default isREC_DISABLE_DEBUG=0 (ie debug messages are enabled)

• REC_STOP_ON_ERROR

In case of write error during a run, the recorder tries to close the tape/file and goes to
the error state. By default, it will send an End Of Run request to the run control, and
all the system will be stopped. IfREC_STOP_ON_ERRORis set to a non zero value, the
recorder will remain in theNRC_ERROR state and will not stop the whole system.

There are other environment variables depending on the type of recording that has been
selected.

11.4 The dummy recorder

The recorder can be configured as dummy for test purposes. In this case, it just prints a
few lines every time an event is retreived from the shared memory (the first 40 and last
16 bytes of each record), which is convenient to check that some records are produced
and that they have the expected format.

If used during a test with a real data flow, this "chattering" recorder will quickly fill a
logfile and create some problems, except if you use the following :

• REC_MUTE

If set to non-zero, the dummy recorder will not print anything in the logfile. It just
consumes the events and counts them. The events are not printed nor written
anywhere.

11.5 Tape Recorder for SUMMIT

It has not been possible to produce a unique recorder executable module handling
EXABYTE, SUMMIT and DLT recording because of uncompatible SCSI libraries.
Therefore there is a different executable for every device. Tape recording on SUMMIT
is handled by the OS9 modulerecorder.

126 11 — Data Recording

The tape recorder saves the records taken from the shared memory on a tape. The run
control is used to set the tape parameters, eventually the label parameters and allows
the user to pilot the tape (rewind, unload it). The principle is that every parameter is set
before trying to start a run. The run is actually correctly started after a check of the
recording parameters.

The recorder allows to write either labelled or unlabelled tapes depending on the
selection done by environment variables. It also provides tape information which can
be saved into a data base for tape administration.

11.5.1 Environment Variables for SUMMIT Tape Recording

Before running the recorder process in tape mode, the following environment variables
have to be defined:

• REC_LABEL

Setting this variable to non zero enables the tape labelling.

• UNLOAD_AT_EOR

Used to produce tapes containing only one file. If this variable is set to non-zero, a
stop run sequence (either because of end of tape, some error or user stop command)
implies an automatic unload.

11.5.2 Unlabelled Tapes

If the environment variable REC_LABEL is set to zero (or unset), the recorder will
produces unlabelled tapes.

1. Organisation for unlabelled tapes:

Only single volume are allowed (i.e. a file cannot extend on more than one tape). It
is possible to produce either single data set or multiple data set tapes. As shown in
Figure 9, each data set is followed by a tape mark, and the last data set is followed
by two tape marks.

11 — Data Recording 127

Figure 9 Unlabelled tapes

2. Starting a run:

At start of run, the tape has to be positioned either at beginning of tape (BOT) if this
is a new tape or if it has been rewound, or after two tape marks if this is not the first
run to be recorded on this tape.

a. If the tape is at beginning: -BOT-
Nothing is to be done, the tape is correctly positioned to perform recording.

b. If the tape already contains data, it is positioned after two tape marks:
-[DATA]-TM-TM-
The run will be recorded after the first TM, overwriting the second TM.

c. In every other case, the tape is in an abnormal position and the run can not start
correctly.

3. Ending a run
At end of run, two filemarks are written to signify end of data (EOD)

a. In case of a single run, the tape will now look like this: -BOT-[DATA]-TM-TM-

b. In case of multiple runs, we get the following:
-BOT-[DATA1]-TM-[DATA2]-TM-....-[DATAn]-TM-TM-

11.5.3 Labelled tapes

The recorder uses a CERN written portable labelling package [25] to handle tape
labels. This option is activated by means of the environment variable REC_LABEL.
When this variable is set to a non zero value, the recorder produces IBM standard
labelled tapes.

1. Organisation for labelled tapes:

As for unlabelled tapes, only single volume tapes are allowed (i.e. a file cannot
extend on more than one tape). Moreover, it is possible to produce only single data

Data
Set

Data
Set A

Data
Set B

TM

TM
TM TM

TM

Single Volume
Single Data Set

Single Volume
Multiple Data Sets

128 11 — Data Recording

sets for labelled tapes. The data set is preceded by header labels and followed by
trailer labels.

Figure 10 Labelled tapes

2. Starting a run

At start of run, the tape must be positioned at beginning and empty (i.e. containing
only prelabels). If the volume serial number matches what has been transmitted by
the run-control, the run is started, else an error is returned. The prelabels are then
overwritten by real labels and the data can be written to the tape (note: compilation
flags can modify this philosophy).

3. Ending a run

At end of run, the data set is closed and the trailers and two tape marks are written.
The next operation should be unload tape, to mount the next tape. If the environment
variable REC_UNLOAD_AT_EOR is set to a non zero value, the unload operation is
automatically performed when the run stops (either by a user manual stop
command, or because the tape is full or if an error occured) and the Volume Serial
Number is incremented (with Old Run Control).

4. Labels Description

The labels are 80-character long records in EBCDIC of one of the following types:

Label Id Label Description:

VOL1 Volume label

HDR1 and HDR2 Data set header labels

EOV1 and EOV2 Data set trailer labels (end of volume)

EOF1 and EOF2 Data set trailer labels (end of data set)

Data

Set

TM

TM

EOF2

EOF1

VOL1

HDR1

HDR2

TM

Single Volume
Single Data Set

TM

HDR1

VOL1

Empty tape

TM

TM

HDR1

VOL1

Empty tape

HDR2

11 — Data Recording 129

As only single volume data set are to be handled, and no user labels are foreseen, we
only need VOL1, HDR1, HDR2, EOF1, EOF2. The format of the label is:

5. Detection of End Of Tape

The recorder should never reach the physical end of tape. In fact, it sends a request
to stop the run as soon as MAX_BLOCKS_PER_FILE records are written (see 11.2
Configuring the recorder). This request takes some time to be seen by all the DAQ
system components, and then the buffers are flushed, which means that more than
MAX_BLOCKS_PER_FILE records will be actually written. There is no guaranty

UHLn User header labels (unlimited number permitted)

UTLn User trailer labels (unlimited number permitted)

Field Name Position - Length Example

VOL1:

Label Id 0-3 VOL

Label Number 3-1 1

Volume Serial Number 4-6 TD3000

Accessibility 10-1 <space> = not protected

Owner Id 41-10 NOMAD

HDR1/EOV1/EOF1:

Label Id 0-3 HDR (or EOV or EOF)

Label Number 3-1 1

File Id 4-17 run# or PRELABEL

Set Id 21-6 TD3000 (same as VSN)

File Section Number 27-4 0001 (single volume)

File Sequence Number 31-4 0001 (single data set)

Creation Date 41-6 byyddd

Expiration Date 47-6 byyddd

Accessibility 53-1 <space> = not protected

Block Count 54-6 (for the current set)

HDR2/EOV2/EOF2:

Label Id 0-3 HDR (or EOV or EOF)

Label Number 3-1 2

Record Format 4-1 U = Undefined

Block Length 5-5 3600

Record Length 10-5 0 (should be 3600?)

Buffer Offset 50-2 00

Label Id Label Description:

130 11 — Data Recording

that it will not reach the logical end of tape if the value of this environment variable
is not set properly (if it is too high). If this happened, the recording would be
stopped and the records left would be lost.

After the last records are written on tape, the data set is properly closed (trailer
labels and two tape marks), the tape is automatically unloaded and the next one is
mounted (the label vsn is automatically incremented by the recorder and sent to the
Old Run Control, ; the New Run Control computes the run parameters itself).

11.6 Tape recorder for DLT

It has not been possible to produce a unique recorder executable module handling
DLT, EXABYTE and SUMMIT recording because of uncompatible SCSI libraries.
Therefore there is a different executable for every device. Tape recording on DLT is
handled by the OS9 moduledltrecorder.

The DLT recorder works in the same way as the SUMMIT recorder and it uses the
same environment variables.

11.7 Tape recorder for EXABYTE

It has not been possible to produce a unique recorder executable module handling
EXABYTE, SUMMIT and DLT recording because of uncompatible SCSI libraries.
Therefore there is a different executable for every device. Tape recording on
EXABYTE is handled by the OS9 modulexarecorder.

The EXABYTE recorder works globally in the same way as the SUMMIT recorder
except for the following :

11.7.1 Environment variables for EXABYTE tape recorder

The EXABYTE uses the sameREC_LABEL and REC_UNLOAD_AT_EORvariables as the
SUMMIT and added variables to determine the type of EXABYTE recorder and the
density.

• REC_EXA_TYPE : 8200 or 8500 (def : 8500)

defines the type of EXABYTE to be used.

note : 8200 may no longer be supported.

• REC_EXA_DENS : 8200 or 8500 (def : 8500)

if a 8500 EXABYTE is used, it can be configured to write either in its normal
density (8500) or emulating the 8200 density. This variable is irrelevant for others
than 8500 EXABYTE.

11.7.2 Recording session

Everything works as when using a SUMMIT except for the 8200 EXABYTE. This
(old) device does not provide the facility which allows to know the current position on
the tape. Thus theMAX_BLOCKS_PER_FILE limit to a tape cannot be handled.

11 — Data Recording 131

With a 8200 EXABYTE, a run is roughly stopped when the logical end of tape is
reached.

11.8 Remote disk recorder

Remote recording can be handled by the process recorder or dltrecorder or xarecorder.
Any of these modules can be configured as a remote disk recorder by setting
RECORDERTYPE=network. It allows to write CASCADE event data to a remote
disk, typically from a front-end VME system to a disk on a UNIX workstation.This
functionality is also provided, in principle, by recording via NFS, but measurements
have shown that this is unacceptably slow (about 10 kbytes/sec). The remote disk
recording described below bypasses the NFS file protocol.

Remote disk recording is using a TCP/IP client-server approach. The client is a
recorder attached to a stage and the server responds to requests from the client to write
records to disk.

When a run is started - and disk recording is selected - a remote disk server process is
started (forked by an inet daemon). A start-of-run message is sent to the server which
opens a file in a directory to be defined directly via the human interface. A positive
acknowledge is returned if no errors conditions are found.

The client then proceeds to send records to the server which writes them onto disk. At
end-of-run the file is closed as well as the connection to the client and the server exits.
The end-of-run condition may be triggered by a user command or by the client when a
maximum number of records is reached or possibly by the server if errors occur eg.
lack of disk space.Before exiting, the server starts, in background, the execution of a
user script the name of which has to be declared via the human interface. This informs
the user that the data file is ready for further processing.
The format for this call is :
<USER_SCRIPT_NAME> <DATA_FILE_NAME> > /tmp/eor_script.log 2>&1 &

The file are written into a directory (defined via the run control human interface) with
fixed names :

 RUN_(no).fz

where no is the CASCADE run number.

11.8.1 Environment variables for remote disk recording

The execution of the recorder in remote disk mode is controlled via a set of
environment variables which are most conveniently defined in the recorder start script
file. The start.recdisk_valid file in the /templates directory provides an example.

• DISK_MIN_FREE

Minimum disk free space in Mbytes. The server checks regularly how much space is
left on the disk. If there is less than the number of Mbytes specified by
DSIK_MIN_FREE, the end-of-run sequence is triggered.

132 11 — Data Recording

• DISK_HOST

The IP name of the host.

Note : The TCP port number to be used for the connection is extracted from the
/etc/services file that must define the service casc-drec (ex : casc-drec 7733/tcp).
The inet daemon listens on this port number for requests to fork a server.

11.8.2 Setting up the disk server

The disk server is distributed with CASCADE in the online/bin directory. It has to be
defined in two UNIX network configuration files (as on the client side):

• '/etc/services' for example :

casc-drec 7733/tcp

The port number should be the same as the one defined in the recorder environment
on the client side.

• '/etc/inetd.conf' for example (under SunOS) :
casc-drec stream tcp nowait cascade /usr/local/online/bin/rec_server rec_server

This allows multiple instances of rec_server running with the uid of user cascade
and invoked with no parameters.

11.9 Logging of tape information

This feature makes sense for labelled tapes only. An EMU message is generated using
EMH_SysMsg() for each Start/Stop operation. This trace message is to be routed to a
logfile that will be decoded and injected into a database so that the tapes could be easily
read back.

The database message is made of:

• the operation name: START or STOP

• the tape volume serial number: label_vsn

• the run number

• the volume number: (always 1 because the recorder produces only single volume
tapes)

• the date and time of the operation,

• the number of records written to tape for the current data set (0 if the operation is
START),

• the file nb (always 1 if single data set tapes are produced, or the sequence number of
the data set on the tape)

• the status of the system (always OK!).

All these different fields are separated by the separator ^. The message begins and ends
with two separators ^.

Example:

11 — Data Recording 133

if the run #17 has been started with the tape TD3005 and stopped after recording a
few records (2274) two messages will be generated:

^̂ START l̂abel_vsn=TD3005 r̂un_number=17 v̂olume_number=1^date=94-03-29
11:22:52^nb_records=0 f̂ile_nb=1 ŝtatus=OK^̂

and then
^̂ STOP l̂abel_vsn=TD3005 r̂un_number=17 v̂olume_number=1^date=94-03-29
11:23:17^nb_records=2274 f̂ile_nb=1 ŝtatus=OK^̂

134 11 — Data Recording

12 — Error and Message Handling and Reporting 135

12 Error and Message Handling and Reporting

12.1 Introduction

In the context of CASCADE, a number of facilities are available to handle messages
originating from both the application specific modules and the CASCADE package
itself. Whether the message’s contents refer to an error, a warning or anything else does
not make any difference in the message facilities provided in CASCADE. These
facilities include:

• message preparation outside the application code

• message injection from OS-9, LYNXOS and UNIX systems

• selective message routing at run time

• message transport across heterogeneous operating system platforms

• support for a variety of message destination types.

These facilities have been implemented using a number of packages which are
mentioned below. This chapter provides most of the information required to use the
system, while making references to other packages documentation whenever
necessary.

• The central unit - the error message transfer utility to be used - is EMU. EMU,
written in ADA, has originally been designed for the MODEL data acquisition
system running under VAX/VMS and has been in use on that platform for a few
years [20]. It has since been rewritten in C in order to run on UNIX, LYNXOS and
on OS-9 [21]1. EMU allows for message preparation outside the application code
and for a selective message routing at run time.

• EMN [22], the TCP/IP network connection for EMU, makes the use of EMU
transparent in a distributed system. Two or more UNIX, LYNXOS or OS-9 systems
running EMU can be connected via EMN client and server processes.

• In order to allow CASCADE system messages as well as CASCADE user messages
to be handled by EMU and EMN without interference some guidelines have been
specified. Additional functions have been provided to facilitate the correct
implementation of these guidelines.

• The ED package provides facilities to display EMU error messages in Motif
windows or to print them on the standard output device.

• The various steps on setting up the EMU, EMN and ED packages are listed.

12.2 General Flow of Cascade Error and Message Handling

The phases which appear in the error and message handling in CASCADE are shown
in Figure 11 and Figure 12. They are:

a. An error may be detected in a CASCADE process, originating in one of the
CASCADE packages, in a CASCADE independent library (i.e. HW, system) or in

1. The Posix version, written in C, is named EMUX in the referenced documentation

136 12 — Error and Message Handling and Reporting

the user code. This error may be identified by a number or by a text string. An error
message follows from here on the same path as any information message to be sent.

b. The functionEMH_UsrMsg() transforms the text and the parameters into an EMU
message, adds CASCADE specific information and calls the necessary EMU
injection routines.

c. The message enters the EMU system. The message text is, if available there,
retrieved from the EMU decoder message file. In a distributed configuration it is
routed according to the local and remote routing setup for EMU and the EMU
network configuration EMN.

d. The EMU message is retrieved by one or more final destination(s), for example a
log file or a user written process. EmuDisplay [23], a program using Motif windows,
is available to assist in grouping and displaying messages on the screen.

Figure 11 Example of CASCADE Error and Message Handling

Figure 12 Error and Message reporting in CASCADE - an overview

 EMN
EMU EMU

EMH_Usr
-Msg

LYNXOS or OS-9 SUN or HP

fe_stage:
userprod
userevb

be_stage:
userprod
userevb

monitoring

EMU
Display

Frontend: Backend:

EMH_Usr
-Msg

stage_fe
monitoring_a

monitoring_b
stage_be

user_hw_test

EMU

Status Display
CASCADE system
log file

Monitoring
Statistics

HW-test
results

bell

Example for a distributed system

+EMN

12 — Error and Message Handling and Reporting 137

12.3 Error Message Utility EMU in CASCADE

12.3.1 Overview

EMU [ps] is a general purpose error messaging utility which runs on all parts of the
CASCADE data acquisition system. EMU can be conveniently separated into two main
parts: the EMU kernel for local message decoding and routing and the networking
layer EMN for transport of EMU messages between machines.

12.3.2 The EMU kernel

This consists of an EMU router process (emurout) and EMU decoder process
(emudeco) and a library of user-callable EMU initialisation and message injection
functions. User programs always inject messages into the emu2deco FIFO on the local
machine via the library functions. emudeco reads messages from the emu2deco FIFO,
decodes them according to a set of rules contained in a map file (deco.map) and injects
the decoded messages into the emu2rout FIFO. emurout reads decoded messages from
the emu2rout pipe and distributes them to a set of destinations according to a set of
rules contained in a map file (rout.map). Destinations may be other FIFOs, logfiles, or
consoles.

12.3.3 The EMN network layer

The EMN networking scheme used in CASCADE uses a client/server approach. The
network setup for each EMN client system is described in the file emunet.info. A client
process emunet_clnt connects to the emunet_serv service on a remote machine. It
sends all messages which it receives in a private FIFO - declared in the local rout.map
file - via a TCP/IP socket to the remote service which transfers them to the remote
EMU system. In this way a subset of all messages seen by the local emurout can be
sent to the remote system.

12.4 Message streams and Severity in CASCADE error message handling

12.4.1 Message Streams

In the EMU system used in the context of CASCADE we distinguish between

• CASCADE system messages sent by CASCADE system implementers,

• CASCADE user messages sent by user code integrated into CASCADE (i.e.
userprod, userevb, monitoring) and

• CASCADE independent messages

This separation provides a first division into message streams. To allow for the
corresponding definition for the routing of Messages in the EMU system setup the
following EMU properties must be used.

• CASCADE system messages: CASCADE_SYS

138 12 — Error and Message Handling and Reporting

• CASCADE user messages:CASCADE_USR
• CASCADE independent messages: use any property name butNOT CASCADE*,

in particularNOT CASCADE_SYS and not CASCADE_USR

Users of the EMU system not connected in any way to CASCADE form the third EMU
client group within the CASCADE EMU system. He/she must not use an identifier
starting with ‘CASCADE’.

The user has the option to use messages having been specified by him/her in the EMU
decoder message file or to send their EMU message and its associated property directly
to EMU without specifying them in the EMU decoder message file. During the
development phase it may be practical to use the method of direct EMU message
injection, whereby the entire text of the message is passed via the injection routines to
EMU. If the messages are defined in the decoder message file an ‘EMU system
manager’ must coordinate the setup and update of this file. For a library package of
more general use it is recommended to define the EMU messages in the decoder file
under the package identifier. Those messages have to be defined only once to the
message decoder file but can be used by a number of programs. The package identifier
has to be added to the call when injecting a message.

12.4.2 Severity

PROPERTIES are used primarily for the routing or filtering of EMU messages but also
for message identification by the receiver. This can be considered as another level of
message stream separation. A set of pre-defined properties has been setup primarily to
be used for CASCADE system and CASCADE user messages. One of the following
PROPERTIES shall be associated to a message:

FATAL - ERROR - WARNING - INFO - SUCCESS

Additional properties may be added to the EMU message.

The severity of an error or a message may depend on the context of its occurrence.
Therefore the severity is added at runtime to the message.

Note: The implementation of EMU for UNIX, LYNXOS and OS-9 is case sensitive.

12.4.3 Reserved names for CASCADE

The properties mentioned in Section 12.4.1 and Section 12.4.2 are reserved names
within the CASCADE EMU setup. This list of reserved properties is not exhaustive;
others may be added at a later time. Properties with the name CASCADE* must not be
defined by a CASCADE user or CASCADE independent user. Once they have been
defined by the CASCADE group it is up to this group to give permission to the user for
using it, depending on the actual purpose of the property.

Capitals shall be used for the definition of EMU keywords defined by the CASCADE
group.

12 — Error and Message Handling and Reporting 139

12.4.4 Example

Figure 13 illustrates the use of CASCADE message streams and severities for the
example shown in Figure 11.

Figure 13 Using CASCADE error streams and severities for CASCADE error and message handling

12.5 Message injection from CASCADE into EMU

A function is provided to serve as an interface between the message sender and EMU.
This avoids having to call a number of EMU injection routines per message and adds
automatically the CASCADE error stream property CASCADE_USR for CASCADE
user message andCASCADE_SYSfor CASCADE system messages. The CASCADE
independent user must not use any of these routines.

stage_fe

monitoring

monitoring_b

stage_be

user_hw_test

EMU

Status Display

CASCADE system
log file

Monitoring
Statistics

HWtest
resultsbell

CASCADE_SYS or CASCADE_SYS or
CASCADE_USR

CASCADE_USR FE_HW

CASCADE_USR

CASCADE_SYS

CASCADE_SYS
or CASCADE_USR

FATAL FE_HW

,

CASCADE_USR

statistics

and
mon_statistics

CASCADE_USR
and
mon_statistics

and NOT INFO

ERROR: HW fault
WARNING:...

EXAMPLE for a distributed system

+ EMN

140 12 — Error and Message Handling and Reporting

EMH_UsrMsg and EMH_SysMsg

Synopsis
#include emh.h
void EMH_SysMsg(int sw, int sev, char *msgid, char *fmt,...)

Parameters

Description

EMH_...Msg transforms the passed parameters into a sequence of EMU calls if the
switch is set to EMU or otherwise into a printf statement.

sw is a switch to indicate to EMH_...Msg whether it should use EMU or another output
mechanism. Allowed options are:

EMH_EMU: transform into calls to EMU injection routines (report via EMU)

EMH_STDOUT : report using printf (stdout)

EMH_STDERR : report using fprintf (stderr)

EMH_NULL : do not report the information

A combination of these symbols can be used by oring the options with the exception of
EMH_NULL .

sev

defines an EMU message property corresponding to a severity via an enumerated type.
One of the following severities must be used:

 FATAL, ERROR, WARNING, INFO, SUCCESS

msgid is a name to identify a message. If this message id is defined in the EMU
message file then the message text is retrieved from there. Otherwise the message text
must be passed as part of the parameters in the call to EMH_...Msg.

fmt is a printf like format string which defines the number and the type of the
arguments to follow. Allowed are a subset of the printf formats and a number of EMU
specific formats. Text string can be present in the fmt parameter within double quotes.
Currently allowed formats are:

%d: decimal integer (int sw, int sev, char msgid[], char fmt[],p1,p2 p3,......)

Type Name Description

int sw output direction switch

enum sev CASCADE EMU message severity

char msgid[] message name id

char fmt[] message parameter formats

p1,p2 p3,... optional message parameters

12 — Error and Message Handling and Reporting 141

%f: floating point number

%s: string

%x: unsigned hexadecimal integer

%r: EMU property

%k: EMU package identifier

other types may be added. Text can be present in the fmt parameter.

p1, p2, p3...are a variable number of arguments of possible different types including
EMU specific types as described infmt.The number of arguments must be equal to the
number of formats included in fmt.

Examples

1. The message identifier “Mess1” is not present in the message file (direct emu call):

EMH_SysMsg(EMH_EMU,FATAL,”Mess1”,“and without additional prop: voila %d”,1234);

generates this EMU message:
MESS‘Mess1‘PROG‘demo‘MACH‘sunom4‘INST‘7830‘DATE‘1994/02/03‘TIME‘15:35:27‘PROP‘CASCADE
_SYS‘PROP‘FATAL‘TEXT‘and without additional prop: voila 1234‘EOR ‘‘

2. The message identifier “Mess2” is not present in the message file:

EMH_SysMsg(EMH_EMU,ERROR,”Mess2”,“Hello: %d, with the prop:%p“,123,”PROPI”);

generates this EMUmessage:
MESS‘Mess2‘PROG‘demo‘MACH‘sunom4‘INST‘7830‘DATE‘1994/02/03‘TIME‘15:35:27‘PROP‘CASCADE
_SYS‘PROP‘ERROR‘PROP‘PROPI‘TEXT‘Hello : 123, with the prop: ‘EOR ‘‘

Text can be present in the format string. It is concatenated with the next
EMH_xxxMsg parameter to become ONE emu parameter.

3. With the following message file installed:

-- begin message file

PROG demo

MESS colours

TEXT“who’s afraid of”

TEXT“, “

TEXT“ and “

-- end message file

• a call like:

EMH_SysMsg(EMH_EMU,ERROR,”colors”,“%s%s%s”,”red”,”blue”,”yellow”)

will send to emu the string “who’s afraid of red, blue and yellow”

• while a call like:

EMH_SysMsg(EMH_EMU,ERROR,”colors”,“light%sdark %s%s”,”red”,”blue”, yellow”)

parameters sent to EMU by EMH_xxxMsg:

142 12 — Error and Message Handling and Reporting

1st parameter: light red - 2nd parameter:dark blue - 3rd parameter: yellow

will send to EMU the string “who’s afraid of light red, dark blue and yellow”

12.6 EMU Message Decoding

The CASCADE system specific file cascade_emu.deco is being provided by
CASCADE. This file must not be modified by the user. It must be concatenated with
the experiment specific decoder message file in order to produce a single input file for
the EMU message decoder ecdeco. The decoder output file deco.map is then used as
the input file when starting emudeco.

12.7 EMU Message Routing

The file emu.rout must be built and compiled by ecrout, which produces the output file
rout.map. This file is used as the input file when starting emurout. This procedure must
be followed for each system involved.

It is recommended to rout all messages of type CASCADE_SYS and CASCADE_USR
message stream to a central log file and to a central display.

In order to do so the rout file for afront end system has to include:

remote_system: FIFO:=’/tmp/remote_system’;

and

remote_system =>

(PROP = CASCADE_SYSOR PROP=CASCADE_USR);

In order to do so the rout file for thecentral system has to include:

-- declare destinations

cascade_pipe:= FIFO:=’/tmp/cascade_error_message’;

cascade_error_log:= LOGFILE:=’/tmp/cascade_error_log’;

-- define synonyms

CASCADE:= (PROP = CASCADE_SYSOR PROP = CASCADE_USR);

-- routing selection

cascade_pipe => CASCADE;

cascade_error_log => CASCADE;

12.8 Example

An example is explained in detail. The necessary EMU and EMN setup is described as
well as the different steps from the message injection up to the message destination.

12 — Error and Message Handling and Reporting 143

12.8.1 Installation

The EMU related products are included in the CASCADE system. They normally are
started at system startup and therefore available for general use.

In the normal case the compilers ecdeco and ecrout are installed. The processes
emudeco and emurout must be active on the connected systems. The process
emunet_clnt must be active on the client system and the process emunet_serv on the
server system.

The files deco.map, rout.map and emunet.info must be available under the
corresponding directories. If the decoder description file or the router description file
changes than it must be recompiled with ecdeco or ecrout respectively. Then emudeco
and emurout must be stopped and started with the new map files. If the file emunet.info
is modified then the emunet_clnt must be stopped and started with the new version.The
script emuStart can also be used to start up the corresponding processes. It is
described in the chapter on building a CASCADE system.

There is also a guide available to help in installing all the EMU related products and
files [24].

12.8.2 Example Configuration

An example similar to the one shown in Figure 11 is used:

LYNXOS - TCP/IP machine name: essosly03

SUN - UNIX - TCP/IP machine name: suds01

In this example messages with their message stream property may be sent from

• userprod and/or userevb from the fe-stage: CASCADE_USR

• the CASCADE system code from the fe-stage: CASCADE_SYS

• userprod and/or userevb from the be-stage on the SUN: CASCADE_USR

• the CASCADE system code from the be-stage on the SUN: CASCADE_SYS

• a monitoring program on the SUN: CASCADE_USR

As message destination we define the EventDisplay, a log file and a process triggering
a bell.

12.8.3 EMN setup

As further explained in the installation guide [24] the EMN client emunet_clnt must in
this case be installed on the LYNXOS system - the sending system - and the EMN
server emunet_serv must be installed on the destination system, the UNIX system. The
file emunet.info must be available on the client side. The first line lists a pipe name.
This pipe name is the EMU destination pipe on the local system, here LYNXOS, as
defined in the local rout.map file. The second line contains the TCP/IP machine name
of the network destination:

144 12 — Error and Message Handling and Reporting

/tmp/remote_sun

suds01

This information is used by the emunet_clnt on the LYNXOS system to send the
messages which appear in the pipe /tmp/remote_sun over TCP/IP to the emunet_clnt
on the remote system suds01 There they are automatically injected into the EMU
system on suds01 in order to be processes in the standard EMU way.

12.8.4 The EMU Message file

• The message file would be:

-- CASCADE EMU message file -- example1 D.B. 01.03.94

PROGRAM fe_stage

MESSAGE open_file

PROPERTY DATABASE

TEXT “received error”

TEXT “when opening file”

MESSAGE start_run

PROPERTY CONTROL

TEXT “Run”

TEXT “started on My_OS9 ”

MESSAGE stop_run

PROPERTY CONTROL

TEXT “Run”

TEXT “stopped on My_OS9”

MESSAGE no_trigg

PROPERTY HW

TEXT “ No trigger since 10 sec.”

PROGRAM be_stage

MESSAGE open_file

PROPERTY DATABASE

TEXT “received error”

TEXT “when opening file”

MESSAGE start_run

PROPERTY CONTROL

TEXT “Run”

TEXT “started on My_SUN ”

MESSAGE stop_run

PROPERTY CONTROL

TEXT “Run”

TEXT “stopped on My_SUN”

PROGRAM monitoring_be

MESSAGE good_events

PROPERTY MONIT

TEXT “Fantastic event received”

• This message file can be used for both the LYNXOS and for the SUN system.
However only the messages belonging to the program stage_fe are necessary for the
LYNXOS system and the messages for the programs stage_be and monitoring_be
are necessary for the SUN.

12 — Error and Message Handling and Reporting 145

• CASCADE_SYS or CASCADE_USR is set by the interface routines to the EMU
injection EMH_SysMsg or EMH_UsrMsg respectively.

• If the same message is to be used by different programs for the same purpose then
one can specify it under the name of a package instead the program name. In this
case the package name must be added to the EMU injection routines or to
EMH_...Msg.

12.8.5 The EMU Router file

Note: In this example more properties than actually used for the routing have been
assigned to some messages for demonstration purposes.

• Router file for the LYNXOS system:

-- declare destinations

remote_sun: FIFO:=’/tmp/remote_sun’;

local_log :=LOGFILE:=’/dd/tmp/hw_local_error_log’;

-- define synonyms

CASCADE:= (PROP = CASCADE_SYS OR PROP = CASCADE_USR) ;

-- routing selection

remote_sun => CASCADE;

local_log => (PROP = HW);

• Router file for the SUN system

-- declare destinations:

alarm_pipe: FIFO :=’/tmp/alarm_message’;

cascade_pipe :FIFO:=’/tmp/cascade_error_message’;

monitoring_pipe :FIFO:=’/tmp/monitoring_message’;

message_log_file :LOGFILE:=’/tmp/cascade_error_log’;

bell :=EXTERNAL:= ’/tmp/emu_bell’ ;

-- define synonyms

CASCADE:= (PROP = CASCADE_SYS OR PROP = CASCADE_USR);

-- routing selection

alarm_pipe => (PROP = ALARM);

cascade_pipe => CASCADE;

monitoring_pipe => (PROP = MONIT);

message_log_file => (PROP = ‘ALL”);

bell => (PROP = FATAL);

12.8.6 Message injection

Making use of the defined message in the decoder files the message injection to EMU
via the EMH_UsrMsg and EMH_SysMsg routines can look as follows:

• for the user part of the fe_stage:

EMH_UsrMsg(EMH_EMU,INFO,”start_run”,”%d”,run_num)

146 12 — Error and Message Handling and Reporting

EMH_UsrMsg(EMH_EMU,INFO,”stop_run”,”%d”,run_num)

EMH_UsrMsg(EMH_EMU,FATAL,”no_trigg”)

• for the system part of the fe_stage:

EMH_SysMsg(EMH_EMU,
ERROR,”open_file”,”%r%x%s”,”MY_FE”,my_error,

”database.txt”) /* can add property MY_FE */

• for the user part of the be_stage::

EMH_UsrMsg(EMH_EMU,INFO,”start_run”,”%d”,run_num)

EMH_UsrMsg(EMH_EMU,INFO,”stop_run”,”%d”,run_num)

• for the system part of the be-stage:

EMH_SysMsg (EMH_EMU,
ERROR,”open_file”,”%r%x%s”,”MY_BE”,my_error,

”database.txt”) /* can add property MY_BE */

• for the monitoring program:

EMH_UsrMsg(EMH_EMU,SUCCESS,”good_events”)

12.8.7 EmuDisplay and logfile

• EmuDisplay must be connected to ‘/tmp/cascade_error_message’. Then all
messages flagged with CASCADE_SYS or CASCADE_USR are received and can
be displayed in groups according to other criteria, for example the various severities,
machine of origin, package or others [23].

• In the rout file it has been defined that all messages from all programs must be added
to the log file /tmp/cascade_error_log. Whenever necessary this file can be
examined manually or by a dedicated tool.

In this example the log file may contain raw message like:

MESS‘open_file‘PROG‘fe_stage‘MACH‘sunom4‘INST‘5360‘DATE‘1994/02/10‘
TIME‘11:22:45‘PROP‘CASCADE_SYS‘PROP‘ERROR’PROP’DATABASE‘TEX
T‘received error 24 when opening file database.txt‘EOR ‘‘

MESS‘start_run‘PROG‘fe_stage‘MACH‘sunom4‘INST‘5360‘DATE‘1994/02/

10‘TIME‘10:12:32‘PROP‘CASCADE_USR‘PROP‘INFO’PROP’DATABASE‘PR
OP’MY_FE’TEXT‘received error 24 when opening file database.txt‘EOR ‘‘

13 — Configuration Files 147

13 Configuration Files
The purpose of the configuration file is to specify the topology of the application data
acquisition system in terms of CASCADE elements (stage and inter-stage links) as
well as the characteristics of each of these elements (mapping the logical
representation to the physical implementation). The configuration file can have any
name (default isdaqconf). When they start, all stages read it and initialise their
internal structures accordingly.

13.1 Overall File Structure

The configuration file is an ASCII file. It contains system global parameters and as
many stage entries as there are stages in the configuration. The inter-stage links are not
declared via dedicated entries but they are specified via the input and output port
entries of the stages they are connecting together.

< system global parameters section >

< first stage entry>

 .

 .

< last stage entry>

Comments can be added anywhere in a configuration file. A comment starts with an
exclamation mark (!) and terminates at the end of the same line.

13.2 Global System Parameters

A user event header and a user event trailer are created (respectively at the front and at
the end of the event) whenever an event is created in a stage. The sizes of these two
areas are application specific but are the same for all stages of the configuration.
Application specific event production functions supply the user with the addresses of
these areas so that they can be filled. Events resulting from an event building operation
contain contiguous (sub)events, each of them with its own header and trailer, which are
themselves encapsulated with a user header and a user trailer for the newly built event.
An application specific event building function permits to reduce, if desired, the
subevents header and trailer prior to the assembly of the full event.

HEADER_SIZE = hd_size

TRAILER_SIZE = tr_size

where:

hd_size is the number of 32 bit words to allocate for the user header

tr_size is the number of 32 bit words to allocate for the user trailer

148 13 — Configuration Files

13.3 Stage Entry

A stage entry contains two mandatory sections: the stage global parameters section and
the stage input ports section. Depending on the location and on the function of a stage
in the system, its stage entry may include one or two additional sections which are the
stage output port section and the stage event type section. A stage entry has the
following format:

STAGE_NAME = name

< stage global parameters section >

< stage input ports section >

[stage output port section]

[stage event type section]

END_STAGE

where:

name is the name of the stage

13.3.1 Global Stage Parameters Section

This section contains the main characteristics of the stage and it has the following
format:

CONSTRUCTION_TYPE = ctype

STAGE_SEGMENT_SIZE = seg_size

NB_INPUTS = nb_in

NB_OUTPUTS = nb_out

where:

ctype should be set to EVB is the stage has to perform event building and to
DUMMY otherwise

seg_size is the amount of space (in bytes) to be reserved for the stage shared
segment. This shared segment is used for the stage internal structures and also for
event buffering and event building (if ctype has been set to EVB). Therefore the
shared segment should have a minimum size of 100000 bytes plus three times the
size of the largest event type to build. It is strongly recommended to give stages a
reasonably large buffer space as a function of the expected event rate and event
sizes. By default the stage shared segment will be located in the system (CPU)
memory. However, if the stage has one of its outputs connected to an other stage
via a VICbus connection, the shared segment will be located in the VIC RFM
memory.

nb_in is the number of input ports of the stage

nb_out is the number of output ports of the stage

13 — Configuration Files 149

13.3.2 Stage Input Ports Section

This section contains the characteristics of all the input ports of the stage. Every input
port should be described by one input entry which has the following format:

INPUTi [= name]

CONNECTED_STAGE = csname

CONNECTED_STAGE_PORT = port - 1

< inter-stage link characteristics >

END_INPUT

where:

i is the stage input port number (starting from 0)

name is an optional input port identifier name

csname is the name of the stage connected to this input port

port is the output port number used for this link in the connected stage (Note
that, at present, it is the valueport-1 which has to be assigned to
CONNECTED_STAGE_PORT)

The inter-stage link characteristics depend on the type of link connected to this input
port (inter-stage link or detector/stage link). Full details of the inter-stage
characteristics to be specified are given below for all the types of links supported at
present.

13.3.3 Stage Output Ports Section

This section contains the characteristics of all the output ports of the stage. Every
output port should be described by one output entry which has the following format

OUTPUTj

CONNECTED_STAGE = csname

TRANSFER_MODE = mode

< inter-stage link characteristics >

END_OUTPUT

where:

j is the stage output port number (starting from 0)

csname is the name of the stage connected to this output port

The TRANSFER_MODE characteristic is optional.mode can be set to either
ALL or IF_FREE. Ports with a transfer mode set to ALL (default mode) get, by
definition, all events but with the inconvenience that an event is not considered
for output as long as the previous event has not been output and acknowledged by
all the output ports with a transfer mode set to ALL.

Ports set to the IF_FREE mode get events if, by the time they are considered for
output, they are not busy to output a previous event. This mode of operation has
the advantage that slow ports which don't need to see all events (e.g output to a
backend stage with no output and 0% monitoring) do not slow down the overall

150 13 — Configuration Files

acquisition. The overall system throughput in such a case is limited by the speed
of the slowest output port set to transfer ALL events.

The inter-stage link characteristics depend on the type of link connected to this output
port (inter-stage link or detector/stage link). Full details of the inter-stage
characteristics to be specified are given below for all the types of links supported at
present.

13.4 Inter-stage Links

The inter-stage links are specified via the input and output port entries of the stages
they are connecting together. Since the specification parameters vary significantly from
one type of link to an other, the inter-stage link characteristics to be specified in the
input and output port entries of the connected stages are described below as a function
of the inter-stage link type.

13.4.1 VICbus links

The following characteristics have to be specified in the output port of the upstream
stage:

FORMAT = MEM_LINK

VIC_NAME = device_name

VIC_CRATE = crate

where:

device_name is the name of the local device to use to access VICbus

crate is the VIC crate number of the partner stage (0 if the partner is the event
builder)

The following characteristics have to be specified in the input port of the downstream
stage:

TYPE = MEM_LINK

VIC_NAME = device_name

VIC_CRATE = crate

where:

device_name is the name of the local device to use to access VICbus

crate is the VIC crate number of the partner stage

13.4.2 Network Links

The following characteristics have to be specified in the output port of the upstream
stage:

13 — Configuration Files 151

FORMAT = NET_LINK

CONNECTED_STAGE_ADDR = partner_ip

where:

partner_ip is the ip number of the partner stage system

The following characteristics have to be specified in the input port of the downstream
stage:

TYPE = NET_LINK

CONNECTED_STAGE_ADDR = partner_ip

TCP_PORT = 6001

where:

partner_ip is the ip number of the partner stage system

13.4.3 Stage to Recorder Shared Memory links

The shared memory link is at present reserved to stage to recorder links.

The following characteristics have to be specified in the output port entry of the stage:

FORMAT = ZEBRA

REC_SIZE = size

where:

size is the physical record size in 32 bit words

The following characteristic has to be specified in the input port of the recorder:

TYPE = STAGE

13.4.4 Detector to Front-end Stage links

Entries corresponding to stage input ports directly connected to electronics have to be
modified as follows:

CONNECTED_STAGE = NONE

TYPE = USER

to indicate that the input has to be handled by application specific event production
functions

13.5 Additional Stage Information Related to Event Building

The stage entry of an event builder stage differs from other stage entries essentially by
the contents of its stage global parameters section and by the fact that it includes an
additional section called the stage event type section.

152 13 — Configuration Files

The stage global parameters section of an event builder stage should have the
CONSTRUCTION_TYPE parameter set to EVB. It should also include an additional
parameter called NB_EVTYPES which should be set to the number of event types for
which an event building operation is necessary.

13.5.1 The stage event type section

Every type of events resulting from an event building operation needs an EVTYPE
entry where the parameters associated with the building operation are specified.

EVTYPEk = etname

NB_COMPONENTS = nc

PACKING = pk

< first component entry >

< last component entry >

END_EVTYPE

where:

k is the event type number (starting from 1)

etname is the event type name

nc is the number of component types involved in the building operation. In this
context a component type means either the type of subevent originating from an
input port or a type previously declared by an EVTYPE entry.

pk specifies how events of this type have to be delivered to the rest of the stage
(ENABLE indicates that components should be concatenated into a single event
whereas DISABLE means that components should be passed as a series of
individual events)

A component entry has the following format:

COMPONENTx = name presence

[FACTOR_COMPONENTx = fc]

where:

x is the component number (starting from 1)

name is the name of the component origin (input port or other event type)

presence has to be set to PRESENT or ABSENT depending whether the building
operation requires this component to be PRESENT or ABSENT.

FACTOR_COMPONENT is an optional characteristic which is only necessary in case
the building operation of this event type requires several instances of component x. In
that case,fc is:

either the required number of instances

or the keyword USER to indicate that the required number of instances will be
obtained at run time from a user function.

or the keyword CONTROL to indicate that this component is used only as an
event building condition and will not result into any (sub)event data.

13 — Configuration Files 153

13.6 Configuration File Templates

The configuration file templates are examples of configuration files which may serve as
starting points for developments of user applications. Two simple as well as a more
complex examples are provided. The main purpose of the validation configuration file
is to allow the CASCADE developers to perform a test or “validation” of a CASCADE
release.

The templates provided as part of the distribution kit are available in the Cascade
’online/templates’ directory under the namescamac.daqconf_demo ,
corbo.daqconf_demo andvalid.daqconf .

When copied automatically in a user directory by thecopy_templates_demo
script , the two demo configuration files are renamed to:camac.daqconf and
corbo.daqconf

• camac.daqconf

A configuration with a stage triggered by a CAMAC module and output to tape and
disk, in Zebra format, via a tape recorder and a disk recorder stage.

• corbo.daqconf

A configuration with a stage triggered by a single CORBO channel and output to
tape and disk, in Zebra format, via a tape recorder and a disk recorder stage.

• valid.daqconf

This is the configuration file for the validation of a CASCADE release. It is a special
and complex example describing a subset of the CASCADE configuration of the
NOMAD data acquisition system. In a certain sense, it is not a template since it is
not supposed to be developed further by the user. It can however be used as an
example for large applications using event building.

154 13 — Configuration Files

 — 155

A The demo scripts suite

A suite of scripts files is distributed to automate the process of building and executing
the Cascade demo and to help users to develop their own application.

The copy_demo script does the whole set of operations starting from scratch and
getting the demo running at the end. It calls in sequence a number of other scripts. The
following diagram shows this sequence and which intermediate entry points exits if
only part of the procedure needs to be redone.

copy_templates_demo

USR_makefile_demo
STG_makefile_demo
SH_makefile_demo

Host side Target side

demoFromRc

demoEditDaqconf<Os9/Lynx>
demoEditRcFile

demoFromDaqconf

demoFromBuild

demoBuild<Os9/Lynx>
demoFromDaqconf

demoCopyRmMonit
demoCopy<Os9/Lynx>

demoFromTempl

demoFromBuild

demoFromTempl

copy_demo

demoFromRc

156 —

The demo scripts automatically:

• copy the necessary files in user work directories (on both the front-end and back-
end systems)

• build the various processes (stage, monitoring programs)

• adapt the scripts: start.stage, start.rectape, start.recdisk to the application
characteristics: machine names, stage names,

• generate the application configuration file (daqconf.upd)

• generate the input file for the run control mSQL data base (democonfig)

• launch execution of the run control.

References 157

References
The following documents provide additional information.

[1] Creative Electronic Systems SA,VIC 8251F User's Manual, version 0.1,
Geneva, Switzerland.

[2] Hughes Technologies Pty Ltd,Mini SQL A lightweight database Engine ,
Release 1.0.11, Jan 1996.

[3] Vande Vyvre, P.,Buffer and List Handling Classes, CERN ECP/DS, 1992.

[4] Creative Electronic Systems SA,FIC8234 User's Manual, version 0.5, Geneva,
Switzerland.

[5] J.O. Petersen,CORBO user routines, ECP/DS 93-11.

[6] J.O. Petersen,A simple, general purpose interrupt handler for OS-9, ECP/DS
93-12.

[7] Creative Electronic Systems SA,CBD8210 CAMAC branch driver User's
Manual, Geneva, Switzerland.

[8] Creative Electronic Systems SA,VCC 2117/A CAMAC Crate Controller
User's Manual, version 1.1, Geneva, Switzerland.

[9] Creative Electronic Systems SA,FVSBI 9210 FASTBUS-to-VSB Interface
User's Manual, Geneva, Switzerland.

[10] Creative Electronic Systems SA,FVSBI FASTBUS Library , Geneva, Switzer-
land.

[11] Creative Electronic Systems SA,RCB8047 CORBO VME Read-Out Control
Board User's Manual, Geneva, Switzerland.

[12] Meijers, F., Petersen, J.,A VME intercrate message system based on VICbus
and OS-9, CERN ECP/DS, 1992.

[13] Petersen, J.,A 'High-Level' Driver for the STORAGETEK STK4280 (SUM-
MIT) , CERN ECP/DS OS9SCSI2, August 1991.

[14] Petersen, J.,A 'High-Level' Driver for the Exabyte , CERN ECP/DS
OS9SCSI5, August 1991.

[15] Saravia, A.,Standard Remote Shell for OS9, OPAL Note 15/ONLINE-0474.

[16] Segal, B.,TCP/IP package for remote-PAW, February 1990.

[17] Scharff-Hansen, P.,Use of TCPAW on OS9, February 1990.

[18] Segal, B.,Installation and use of the TCPAW package, Octobre 1990.

[19] Saravia, A.,The Network Inter-Stage Communication package, ECP/DS 93/
25

[20] Burkimsher, P. C.,EMU, the MODEL Error Message Utility , version 2.1
December 1990

[21] Meijers, F.,EMUX: Error Message Utility for OS-9 and POSIX, [html] [ps]
version 2.0 January 1992

[22] Burckhart, D.,A TCP/IP network connection for EMU: Emunet, [frame] [ps]
CERN ECP/DS 93-27 V01.0, July 1993.

[23] Werner, P.,Emu Display facilities, [frame] [ps] CERN ECP/DS 93-30

158 References

[24] Burckhart, D., P. Werner, Installation guide for the Error Message Utility
products EMU, Emunet and EmuDisplay on UNIX and OS9, [frame] [ps]
CERN ECP/DS 93-28 V01.0

[25] Gallot, Y., A Portable Labelling Package, CERN DD/OC OS9SCSI3, June
1990.

UserGuideREF.doc (Reference: [1] Creative Electronic Systems SA, VIC 8251F User's Manual, ver-
sion 0.1,) 3
UserGuideREF.doc (Reference: [2] Hughes Technologies Pty Ltd, Mini SQL A lightweight database
Engine ,) 6
UserGuideREF.doc (Reference: [17] P.C. Burkimsher, EMU, the MODEL Error Message Utility,
version 2.1) 6
UserGuideREF.doc (Reference: [18] F. Meijers, EMUX: Error Message Utility for OS-9 and POSIX,
version 2.0) 6
UserGuideREF.doc (Reference: [19] D. Burckhart, A TCP/IP network connection for EMU: Emunet,
CERN ECP/) 6
UserGuideREF.doc (Reference: [20] P. Werner, Emu Display facilities, CERN ECP/DS 93-30) 6
UserGuideREF.doc (Reference: [4] Creative Electronic Systems SA, FIC8234 User's Manual, ver-
sion 0.5, Geneva,) 7
UserGuideREF.doc (Reference: [7] Creative Electronic Systems SA, CBD8210 CAMAC branch
driver User's) 7
UserGuideREF.doc (Reference: [8] Creative Electronic Systems SA, VCC 2117/A CAMAC Crate
Controller) 7
UserGuideREF.doc (Reference: [9] Creative Electronic Systems SA, FVSBI 9210 FASTBUS-to-
VSB Interface) 7
UserGuideREF.doc (Reference: [10] Creative Electronic Systems SA, FVSBI FASTBUS Library,
Geneva, Switzer) 7
UserGuideREF.doc (Reference: [11] Creative Electronic Systems SA, RCB8047 CORBO VME
Read-Out Control) 7
UserGuideREF.doc (Reference: [1] Creative Electronic Systems SA, VIC 8251F User's Manual, ver-
sion 0.1,) 7
UserGuideREF.doc (Reference: [12] Meijers, F., Petersen, J., A VME intercrate message system
based on VICbus) 7
UserGuideREF.doc (Reference: [13] Petersen, J., A 'High-Level' Driver for the STORAGETEK
STK4280 (SUM) 7
UserGuideREF.doc (Reference: [14] Petersen, J., A 'High-Level' Driver for the Exabyte, CERN ECP/
DS) 7
getsoft.frame (Head_1: 2.2 Which software to download where) 9
getsoft.frame (Head_1: 2.3 Setting up the directory infrastructure necessary to host CASCADE) 9
UserGuideREF.doc (Reference: [2] Hughes Technologies Pty Ltd, Mini SQL A lightweight database
Engine ,) 10
UserGuideREF.doc (Reference: [15] A. Saravia, Standard Remote Shell for OS9, OPAL Note 15/
ONLINE-0474.) 10
UserGuideREF.doc (Reference: [19] P. Scharff-Hansen, Use of TCPAW on OS9, February 1990.) 11
UserGuideREF.doc (Reference: [20] B. Segal, Installation and use of the TCPAW package, Octobre
1990.) 11
demoappendix.frame (Chapter: 3 Required Layered Products) 21
producer.frame (Head_1: 7.3 Event headers and event production templates) 23
overview.frame (Head_2: 1.2.2 The Inter-Stage Link) 23
lmonitor.frame (Chapter: 9 Event monitoring) 25
rmonitor.frame (Chapter: 10 Remote monitoring facility) 25

References 159

daqconf.frame (Chapter: 14 Configuration File) 25
runcontrol.frame (Head_1: 12.3 The CASCADE control file) 25
errhand.frame (Chapter: 13 Error and Message Handling and Reporting) 25
startappl.frame (Chapter: 5 Loading and Starting a CASCADE System) 25
runcontrol.frame (Chapter: 12 Run control) 27
UserGuideREF.doc (Reference: [15] A. Saravia, Standard Remote Shell for OS9, OPAL Note 15/ON-
LINE-0474.) 27
buildappl.frame (Chapter: 4 Building a CASCADE System) 27
recorder.frame (Chapter: 11 Data Recording) 30
recorder.frame (Chapter: 11 Data Recording) 30
recorder.frame (Chapter: 11 Data Recording) 30
recorder.frame (Chapter: 11 Data Recording) 36
buildappl.frame (Chapter: 4 Building a CASCADE System) 48
buildappl.frame (Chapter: 4 Building a CASCADE System) 64
UserGuideREF.doc (Reference: [1] Creative Electronic Systems SA, VIC 8251F User's Manual, version
0.1,) 72
daqconf.frame (Chapter: 14 Configuration File) 81
daqconf.frame (Chapter: 14 Configuration File) 81
buildappl.frame (Chapter: 4 Building a CASCADE System) 81
producer.frame (Head_1: 7.3 Event headers and event production templates) 82
buildappl.frame (Chapter: 4 Building a CASCADE System) 82
lmonitor.frame (Chapter: 9 Event monitoring) 105
lmonitor.frame (Chapter: 9 Event monitoring) 106
UserGuideREF.doc (Reference: [18] A.Saravia, The Network Inter-Stage Communication package,
ECP/DS 93/25) 106
UserGuideREF.doc (Reference: [17] Ben Segal, TCP/IP package for remote-PAW, February 1990.) 106
lmonitor.frame (Chapter: 9 Event monitoring) 107
lmonitor.frame (Chapter: 9 Event monitoring) 108
lmonitor.frame (Function: sh_wait) 110
lmonitor.frame (Function: sh_wait) 110
lmonitor.frame (Function: sh_mconnect) 111
lmonitor.frame (Function: sh_request_event) 112
lmonitor.frame (Function: sh_wait) 112
lmonitor.frame (Function: sh_get_data) 112
lmonitor.frame (Function: sh_wait) 112
lmonitor.frame (Function: sh_get_data) 112
lmonitor.frame (Function: sh_wait) 113
lmonitor.frame (Function: sh_request_event) 114
lmonitor.frame (Function: sh_wait) 114
lmonitor.frame (Function: sh_get_data) 114
lmonitor.frame (Function: sh_release_event) 115
lmonitor.frame (Function: sh_disconnect) 116
lmonitor.frame (Function: sh_message) 117
UserGuideREF.doc (Reference: [17] Ben Segal, TCP/IP package for remote-PAW, February 1990.) 118
infrastructure.frame (Chapter: 3 Required Layered Products) 120
UserGuideREF.doc (Reference: [17] Ben Segal, TCP/IP package for remote-PAW, February 1990.) 120
UserGuideREF.doc (Reference: [13] Petersen, J., A 'High-Level' Driver for the STORAGETEK
STK4280 (SUM) 123
UserGuideREF.doc (Reference: [14] Petersen, J., A 'High-Level' Driver for the Exabyte, CERN ECP/
DS) 123

160 References

startappl.frame (Chapter: 5 Loading and Starting a CASCADE System) 124
UserGuideREF.doc (Reference: [24] Gallot, Y., A Portable Labelling Package, CERN DD/OC
OS9SCSI3, June) 127
UserGuideREF.doc (Reference: [17] P.C. Burkimsher, EMU, the MODEL Error Message Utility,
version 2.1) 135
UserGuideREF.doc (Reference: [18] F. Meijers, EMUX: Error Message Utility for OS-9 and POSIX,
version 2.0) 135
UserGuideREF.doc (Reference: [19] D. Burckhart, A TCP/IP network connection for EMU: Emunet,
CERN ECP/) 135
UserGuideREF.doc (Reference: [20] P. Werner, Emu Display facilities, CERN ECP/DS 93-30) 136
UserGuideREF.doc (Reference: [26] D. Burckhart, P. Werner, Installation guide for the Error Mes-
sage Utility) 143
UserGuideREF.doc (Reference: [26] D. Burckhart, P. Werner, Installation guide for the Error Mes-
sage Utility) 143
UserGuideREF.doc (Reference: [20] P. Werner, Emu Display facilities, CERN ECP/DS 93-30) 146

