
Abstract—LHCb is an experiment being constructed at 
CERN’s LHC accelerator for the purpose of studying 
precisely the CP violation parameters in the B-B meson 
system. Triggering poses special problems since the interesting 
events containing B-mesons are immersed in a large 
background of inelastic p-p reactions. Therefore, a 4 level 
triggering scheme (Level-0 to Level-3) has been implemented. 
Full event building is performed between Level-1 and Level-2. 

Powerful embedded processors, used in modern intelligent 
Network Interface Cards, are attractive to use to handle the 
event building protocol in the high-speed data acquisition 
system. The implementation of an event building algorithm 
developed for a specific Gigabit Ethernet NIC is presented, 
and results from performance measurements are discussed. 

I. INTRODUCTION 
HCb is one of the four experiments being constructed 
at CERN’s LHC accelerator. It is a special purpose 

experiment designed to precisely study the CP violation 
parameters in B-meson decays by detecting many final 
states. The LHCb detector is a forward single dipole 
spectrometer, consisting of a micro-vertex detector, a 
tracking system, aerogel and gas RICH detectors, 
electromagnetic and hadron calorimeters, and a muon 
detector. The experiment is described in [1]. 

The expected b-quark production cross-section 
(500 µbarn, at a luminosity of  1.5× 1032 cm-2s-1) leads to a 
rate of about 75 kHz of B-meson events which is immersed 
in a total inelastic rate of some 15 MHz. Typical branching 
ratios for the interesting final states of B-meson events lie 
between 10-5 and 10-4 leading to a rate of interesting events 
of ~5 Hz. For rare decay modes the branching ratios are as 
low as 10-9. 

After the selection done by the Level-0 and Level-1 
triggers, implemented in hardware, the role of the Event 
Builder (EVB) system is to collect the data from the Front-
end electronics, and assemble complete events in a 
"commodity processor" for further data reduction by the 
Level-2 and Level-3 software triggers.  

The EVB system will be built around a switching 
network and will have to deal with a high rate (~40 kHz) of 
relatively small data packets (typically ~ 200-300 bytes). 
We are presently evaluating the use of Gigabit Ethernet as a 
possible technology for the implementation of this EVB 
system. 

We present here a new solution for the implementation 
of the event building protocol, which takes advantage of the 
recent emergence of a new generation of Network Interface 
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Controller (NIC) boards that include powerful 
programmable RISC processors. A simple event building 
protocol has been developed and implemented in the 
processor of a specific Gigabit Ethernet NIC card from 
Alteon [5]. The performance has been measured and a 
comparison with the more traditional implementation on a 
host computer is presented. 

II. TRIGGER AND DATA ACQUISITION SYSTEM OVERVIEW 
A four-level trigger scheme has been adopted. Level-0 

and Level-1 triggers are implemented in hardware and 
reduce the event rate from 40 MHz down to 40 kHz. 
Level-0 rejects events on the basis of calorimeter and muon 
detector information while Level-1 uses data from the 
tracker to find indications for B decay vertices. The data 
stored during the fixed latency of those triggers are then 
zero-suppressed and undergo a first aggregation in the front 
end electronics. At this stage, the data are delivered over 
some 500 links in the form of relatively small (typically 
200-300 bytes) data packets. 

The task of the Event Building system is to transfer, for 
each event,  the whole of data into a processor where 2 
levels of software trigger are executed: the Level-2 trigger 
algorithms, using the track vertex guidance from Level-1, 
are expected to reduce the rate to some 5 kHz by using part 
of the event data. The Level-3 algorithms, based on full 
event reconstruction and applying physics cuts appropriate 
to the CP violation channels will deliver some 100-200 Hz 
of events that will be stored permanently. 

More details on the LHCb data acquisition system can be 
found in [1]-[3]. 

III. ARCHITECTURE OF THE EVENT BUILDER 
The requirements imposed to the Event Building system 

are to collect, for each event, some 500 small (200-300 
bytes) data packets produced at a rate of 40 kHz, and to 
deliver a complete event (100-150 Kbytes) to one processor 
in a large farm of some 4000 processors of 1000 MIPS. The 
aggregate data throughput is ~6 GB/s. A large switching 
network is required to cope with those requirements.  

The Event Building system is composed of: (Fig. 1) 
• The Readout Units (RUs) that interface the Front-end 

links with the Readout Network (RN). Each RU 
aggregates the data from several front-end links (up to 
4) in order to adapt the data throughput to the capacity 
of a switching network port. Each event fragment built 
by the RU is shipped to the destination selected for 
each event (destination assignment function). 

• The Readout Network, which provides support for 
event building by routing all fragments belonging to an 
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event to a particular destination port. The size of the 
switching network is approximately 125 X 125. 

• The Sub-Farm Controllers (SFCs), which interface 
each output port of the RN with a local farm of 
processors that will run the higher-level triggers 
(Level-2 and Level-3). An SFC assembles the event 
fragments into complete events and delivers them to a 
selected processor, possibly controlling the load and 
activity of each processor in the sub-farm. It must 
handle the cases where event fragments are lost. 
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Fig. 1: Overall Architecture of the LHCb Event-Builder. 

 
The event building architecture has been fixed as follows: 

1. The full event data are transferred although Level-2 
algorithms are based on partial data. 

2. The readout protocol is a pure push-throughout 
protocol, where each RU pushes data through the 
Readout Network to a destination SFC, as soon as an 
event fragment is available. 

3. The destination assignment is static. The algorithm 
governing the destination selection must be based on 
the event number and must be identical in all RUs.  

This scheme has several nice features: 
• No central control to communicate with sources and 

destinations on an event-by-event basis is needed. This 
leads to perfect scalability. 

• The functionality of the RU is very simple in that it 
only has to multiplex the input links onto an output 
link using a FIFO to de-randomize the input traffic. 

• Simple functionality of the SFC: it assembles event 
fragments arriving from RUs and sends complete 
events to one of the trigger processors, taking care of 
balancing the load. 

The price to pay for the simplicity is: 
• An elevated sustained bandwidth across the readout 

network. 
• No direct feedback between sources and destinations 

of the RN. If anywhere in the system a buffer becomes 
too occupied, a general throttle signal is issued to the 
trigger to disable the flow of events. 

• Overall performance is determined by the lowest 
performing sub-farm, hence some balancing of the 
processing power is required. 

IV. IMPLEMENTATION OF THE EVENT BUILDING SYSTEM 
A Readout Unit (RU) must handle up to 4 front-end 

links, each one delivering data packets of some 200 to 300 
bytes at a rate of 40 kHz. The total rate of incoming packets 
can then reach 160 kHz. The RU aggregates those packets 
into an event fragment of up to typically 1200 bytes that is 
submitted to the switching network at a rate of 40 kHz. The 
resulting bandwidth is ~50 Mbytes/s or 400 Mbit/s. 

As of today, the implementation of the aggregation of 
front-end data packets in the RU is foreseen to be in 
hardware in order to cope with a high rate up to 160 kHz. 
At the output of the RU, a software implementation of the 
event fragment delivery to the network is foreseen. This is 
the upstream or source part of what we call the event 
building protocol that will be executed by a processor in 
the RU. 

The number of RU ports is 125 if we assume 500 front-
end links and an aggregation of 4 links in each RU. 

At the output of the switching network, the Sub-Farm 
Controllers receive event fragments at a rate, which 
depends on the relative numbers of SFCs and RUs. If the 
numbers are equal, the rate of event fragments arrival is 40 
kHz. It can be reduced if needed by increasing the number 
of SFC ports. The number of SFCs also determines the rate 
of complete events produced by each SFC. This rate is 
320 Hz for a "square" network (125 SFCs). 

The software controlling the assembly of event 
fragments in the SFCs, for several events concurrently, and 
taking into account possible fragment losses, constitutes the 
downstream or destination part of the event building 
protocol. 

As yet, no choice of technology has been made for the 
switching network. A likely candidate is Gigabit Ethernet. 
This paper presents a development carried out under the 
assumption that this technology is adopted. 

Assuming switching network ports with 1 Gbit/s link 
speed, 4 front-end links per RU, and a uniform distribution 
of data on the front-end links, then the load factor per 
switch port would be ~25%. In reality the distribution of 
data will not be uniform so we shall at least impose an 
upper limit to the maximum load (e.g. 50%). 

V. EVENT BUILDING PROTOCOLS 
The source protocol (implemented in the RU) performs 

only the fragment labelling and the destination assignment 
based, in its simplest form, on the event number.  

The destination protocol and algorithm must be capable 
of handling several events concurrently since the random 
latencies of the event fragments (in the RUs and across the 
network) are not correlated.  

Several event-building algorithms have been studied [4] 
implementing various strategies for fragment loss detection 
and recovery by the SFC. A simple detection of fragment 
loss can be implemented using a timeout based on the event 
number that can act as a clock. The arrival of a fragment 
belonging to an event not yet seen triggers an “ageing” of 
all events already in the process of being built. Normally, 
an event is complete as soon as the expected number of 
fragments has arrived. An event can run into “time-out” 
when its "age" exceeds some limit, in which case the 



algorithm considers the missing fragments as lost and ships 
the incomplete event, with a suitable warning to a 
processor. Late fragments are simply discarded. The upper 
limit for the maximum "age" is determined by the amount 
of buffer-space available. 

The event building protocol comes on top of other 
standard network protocols that may include a transport 
protocol such as TCP/IP (Transmission Control Protocol 
over Internet Protocol) or UDP/IP (User Datagram Protocol 
over IP). TCP/IP guarantees the delivery of data packets 
whereas UDP does not. However it is well known that 
those protocols have a cost in terms of processing overhead 
and, consequently, lead to lower bandwidth utilisation. For 
packets with a transfer time smaller than the overhead, the 
frequency is limited to the inverse of the overhead time. 

VI. IMPLEMENTATION OF THE EVENT BUILDING PROTOCOL 
High rates of small data packets is the most challenging 

problem in the implementation of the event building 
protocols as the overheads due to their execution, both in 
the RUs and in te SFCs, will determine the performance of 
the whole system.  

It has been mentioned that the transport protocol TCP/IP, 
while guaranteeing packet transmission, has a high cost in 
terms of overheads. It turns out that TCP/IP, and even 
UDP, in their current implementation, are not compatible 
with the requirements that we have to fulfil. Consequently 
we have decided to bypass those transport protocols, 
relying only on the "raw Ethernet" format. Considering the 
low load on the switching network and the fact that event 
building is the only (mostly 1-directional) traffic, we 
estimate that the probability to lose packets should be 
minimal. Investigations are currently under way to clarify 
this aspect of the problem. 

The advent of Gigabit technology to the desktop 
necessitates a different approach from the hitherto per 
packet interruption of the host by the Network Interface 
Controller (NIC). For packets of the order of 500 bytes, at 
full bandwidth utilisation, the host would need to be 
interrupted every 4 µs, which, in addition to protocol 
handling, can either be impossible or would consume an 
unacceptable amount of system resources. 

The industry has proposed a new concept of NICs to 
remedy this situation by providing strong support for those 
functionalities directly on the card: the interrupt rate in the 
host may be reduced by allowing packets on the receiving 
link (Rx) to be grouped when transferred to the host. This is 
referred to as interrupt coalescence. Multipurpose CPUs or 
ASICs are provided to calculate the layer 3/4 checksums 
(TCP or UDP and IP). Examples of those products can be 
found in [5] to [7].  

NICs implementing multipurpose CPUs offer the 
possibility to upload protocol functions, normally 
performed by the operating system, to the NIC with the aim 
to enhance the performance, security, etc. of the high 
throughput links [8]. In our application, only one process 
needs to communicate with the NIC. We then proposed to 
upload to the NIC most of the event building protocol as 
well.  

We present the results from a research aimed at testing 
this solution. We have chosen to implement the event 

building protocols in the CPU of a NIC, directly over the 
Ethernet protocol.  

The protocols were first tested on PCs in order to 
determine the software and standard protocol (UDP or 
TCP) overheads. Then the code was adapted and ported to 
run on the processor imbedded in the NIC card and the 
performance has been measured. We present the NIC and 
its embedded processors, as well as the modifications to the 
firmware that we have implemented and give the results 
from performance measurements. A comparison with an 
implementation on the host computers is made. 

The measurements were done over a point to point 
connection. No attempt has been made so far to 
interconnect the end nodes across a switch (which should 
not affect our present measurements) nor to measure the 
impact of parallel traffic in the switch. 
 

A. The NIC architecture 
We have selected a NIC based on the Alteon Tigon 2 

ASIC [5]. Block diagrams of the NIC and Tigon are shown 
in Fig. 2 

 
Fig. 2: Block Diagram of the Alteon Tigon 2 NIC 

 
The Tigon 2 implements two R4000 MIPS type CPUs 

running at 88 MHz and two DMA engines which support 
scatter/gather at any byte boundaries. In the standard 
version of the firmware, one processor is devoted to 
Ethernet traffic management, to and from the MAC, while 
the second processor takes care of DMA (both directions) 
between the host and the NIC. The external SRAM, is 
accessed via a 64 bit wide memory bus. The Tigon is 
connected to the host via a PCI interface which can operate 
at 66 MHz, 64 bit wide. The chip incorporates an Ethernet 
MAC (Media Access Control) interface that supports 2 
media attachment interfaces: MII (Media Independent 
Interface) for 10/100 Mbit/s and GMII (Gigabit Media 
Independent Interface) for 1000 Mbit/s. For more details on 
the physical interface, see [13]. 

The firmware provides an efficient API (Application 
Programmer Interface) for Ethernet. It supports auto-
negotiation of link-speed at 10, 100 and 1000 Mbit/s and 
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flow-control. It provides support for checksum calculations 
required for IP and TCP. It also manages a rather large 
buffer space, which can be used to collect several packets 
before interrupting the hosts, thus lowering the frequency 
of those interrupts.  

There is no interrupt mechanism to interrupt the 
processors. Communication with the hardware is by means 
of event flags. It is the responsibility of the firmware to 
respond to events in due time. Events can be disabled 
and/or ignored. 

The Tigon chip is implemented on the NICs produced by 
several manufacturers such as Netgear [9] and 3Com [10]. 
Intel's NIC [6] implements a different CPU. 

B. Test set-up and performance of the standard 
firmware 

A system has been set-up to test the performance of the 
NIC cards and to measure the performance of the event 
building code. It is shown in Fig. 3.  

 

Fig. 3: Test set-up for Alteon NIC measurements 
 
 

Two PCs, each one equipped with a Tigon 2 based NIC 
(labelled GbE in the figure), are inter-connected by optical 
links. The PCs run Linux and a dedicated device driver is 
used to download the cross-compiled firmware into the 
NIC. The driver also supports an interface to the GNU 
debugger (gdb) operated as a remote debugger. 

As a first test of the capabilities of the NIC processors 
and the firmware development environment, a 
measurement of the raw Ethernet throughput, as a function 
of the packet size, has been done. The Ethernet packets are 
generated in the NIC acting as sender and are discarded by 
the receiver NIC, so no traffic goes over the host-NIC 
interface. Ethernet packets with a size > 1500 bytes are 
managed by means of the non-standard "jumbo frames" 
technology.  

The results are presented in Fig 4. The minimum frame 
size is 64 bytes. A fit to the formula (1) for the effective 
throughput y was performed, where x is the packet size, b 
the nominal link bandwidth (125 MB/s) and a the overhead 
time during which no data can be transferred: 
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for raw Ethernet frames. Stars show the throughput using UDP . 
 

The fitted value for the overhead a is 0.2 µs. This overhead 
consists mostly of the preamble, the Start-of-Frame 
delimiter and the inter-frame gap, as described, for 
example, in [12]. The maximum achievable frequency of 
frame transfer is therefore approximately 1.4 MHz for the 
minimum size packets. For frames of 1000 bytes, 97% of 
the full bandwidth can be used.  

Throughput has also been measured from host to host, 
using the "light" UDP/IP transport protocol. The 
throughput for packets of 1000 bytes does not exceed 40% 
of the available bandwidth, due to the protocol overheads. 
However it should be noted that the UDP performance 
depends also on the operating system (in this case Linux 
2.2.12), on the PC hardware and its setting (most 
importantly the PCI bus, its setting and speed) and also on 
the various tuning parameters available (buffer size, IRQ 
coalescence etc.). No attempt was made to tune the UDP 
parameters for the throughput measurements presented 
here.  

C. Implementation of the Event Building Protocol in the 
NIC 

In the event-building application the “infrastructure” part 
of the firmware was only slightly modified, namely the 
initialisation, event dispatching, auto-negotiation and auto-
sensing of link changes. The reception and transmit 
handlers were replaced by the entry points for the traffic 
generator in the sending node, and the event-builder in the 
destination node.  

The tasks assigned to the 2 processors are the same as in 
the standard firmware, namely one taking care of the 
Ethernet frames to and from the MAC and the other one 
controlling the DMA with the host. It is recalled that in one 
NIC the traffic is unidirectional: from host to network in a 
RU's NIC and from network to host in a SFC's NIC. 

Instead of the standard way of transmitting consecutive 
Ethernet packets into pre-allocated buffers in the host we 
execute, for each event, a chained DMA transaction, which 
gathers the ordered sequence of event fragments in a 
contiguous memory in the host. This avoids time-
consuming copying around of data during event building. 

The process in the NIC is never interrupted, but it can 
interrupt the host when new data are being transferred. The 
input and output buffers are implemented as circular 
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buffers of descriptors and the relative position of consumer 
and producer pointers allow to locate new data. 

In order to optimise the performance of the event 
building protocol, the most time critical parts of the code 
and the administrative data structures have been moved into 
the internal “scratch-pad” memory of the Tigon (Fig. 2) 
which can be accessed at processor speed, without any wait 
cycles. 

D. Performance measurements in the NIC 
For the evaluation of the event building protocol 

embedded in the NIC cards, the test set-up described in 
Fig. 3 was used. Event building is emulated on a point-to-
point connection. The sending node (NIC) emulates 
multiple sources and the receiving node performs the event 
building of the fragments received. Apart from the protocol 
headers, the data contained in the packets is irrelevant. For 
this measurement, no data transfer to the NIC's host occurs, 
in particular, the complete events are discarded without 
being transferred to the host. The reason for this restriction 
is that we are interested in the measurement of the protocol 
overhead due to the NIC's processor only, while the 
transfer to (from) the host would distort the result.  

This measurement has shown that the average overhead 
time to handle one event fragment (independent of its size) 
is ~9 µs in the receiver node. Considering that the NIC 
processor can handle a fragment concurrently with the data 
input of the next fragment, in the receiver, this value of 
overhead means that fragments, up to ~ 1100 bytes, can be 
received at a rate of more than 100 kHz. The performance 
is well beyond the requirement of achieving 40 kHz for 
1000 bytes event fragments. 

 
Fig. 5: Measurement of the maximum number of events built per second 
in one destination, as a function of the number of sources. The fragment 
size is constant and equal to 1'500 bytes. 

 
Fig. 5 shows a measurement, on the point to point 

emulation of an N X N event builder, of the maximum rate 
at which full events could be delivered at a destination, for 
an event fragment size of ~1500 bytes, as a function of N. 
This rate decreases as 1/N, from ~ 42000/s for 2 sources to 
2600/s for 32 sources. 

E. Performance measurements for the event building 
protocol running on the host computers. 

The same event building code, as used for the test of 
embedded event building, has been run on the 2 host 
processors of the test bed (233 MHz, running Linux). One 
processor generates the event fragments, emulating a 
variable number of sources, the other performs the event 

building. The data transfer used TCP/IP sockets. In this 
configuration we measured the pure software overhead, for 
handling one fragment, to be 3.2 µs, (to be compared with 
9 µs on the 88 MHz processor of the NIC). However, the 
average total time to handle a minimal fragment (64 bytes), 
including overheads coming from the TCP/IP protocol and 
the operating system, is 9.3 µs, thus showing that the cost 
of the transport protocol and processor interrupt is 6.2 µs 
for the minimum size packets. It should be noted that the 
TCP/IP part of the overhead benefits from the support of 
the NIC, as mentioned earlier. For larger packets, the 
overhead, not counting the data transfer, is expected to 
increase proportionally to the packet size, due, in particular, 
to data copy between kernel and user space [11].  

VII. COMPARISON AND CONCLUSION 
We compared one implementation of the event building 

protocol in the host computers, using TCP/IP (supported by 
the firmware running in the NIC) with an implementation 
directly in the NIC relying only on the Ethernet protocol. 

The pure software overhead due to the execution of the 
event building protocol is larger in the NIC than on the 
host, due to the slower speed of the embedded processor. 
Nevertheless, the required performance is achieved and is 
even exceeded by a factor > 2 for packets of 1000 bytes.  

The most important benefit when embedding the event 
building protocol in the NIC is to protect the host computer 
from the heavy load of handling the fast traffic of small 
data packets in terms of system overhead. Thus the SFC 
processor can be devoted to management tasks of the sub-
farm of processors, remembering that this processor has to 
control some 30 processors. 

Future revisions of the requirements might lead to an 
increased rate of event triggers delivered by the Level-1 
trigger, probably by a factor ~ 2. In this case the NIC 
implementation would offer the additional advantage of a 
smaller overall overhead that permits to support a rate of 
more than 100 kHz of fragments of 1100 bytes. 

The good performance of the embedded event building 
relies, for a large part, on the assumption that no transport 
protocol is required. This hypothesis still needs to be 
confirmed by the study of the traffic in the switching 
network. 
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VIII. SUMMARY 
Embedded event building has been studied for a specific 

Gigabit Ethernet NIC that implements a general purpose 
CPU. The feasibility of event building at a rate of 100 kHz, 
for fragments of 1000 bytes, has been demonstrated. The 
average time for processing one fragment in the destination 
NIC is of the order of 9 µs. The implementation of the 
event building protocol in the NIC processor results in a 
considerable offload for the host processor, which is 
interrupted only at the rate of completed events (a few 
hundred Hz). Consequently host CPU power is saved that 
can be devoted to the management of the sub-farm 
processors and to the data distribution. 
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