
Use of a Software Configuration Management Tool in LHCb

J.Harvey1 P.Mato1 F.Ranjard1

European Laboratory for Particle Physics (CERN), Genève, Switzerland

Abstract

LHCb Software is made up of a variety of software packages, including legacy code writ-
ten in Fortran, a new software framework written in C++, as well as many externally devel-
oped packages. It is typical that each package is developed and maintained by a different
person and therefore evolves independently of the other packages. A set of working and pro-
duction areas has been set up to ensure that developers can release their packages at any time
without disturbing the main development line. The software librarian maintains the packages
in a CVS code repository, and a release procedure has been established that makes use of
a special tool for building the LHCb data processing applications on the various supported
platforms. Here we describe in detail the configuration management requirements that led to
the adoption of CMT as our software release tool and our experience using this tool over a 1
year period.

Keywords: CMT, configuration management, tool

1 Introduction

The LHCb [1] experiment is supported by 50 institutes with more than 500 physicists from 15
countries. The current software is made of some legacy code, a set of packages written in Fortran,
a new software framework [2] written in C++, as well as many packages not maintained by us.
The software is developed on both UNIX and NT in the various institutes, is stored in a CVS [3]
code repository, and runs on different platforms in different environments. A new version of a
package may be released at any time and this release must be managed in such a way that the
main development line is not disturbed. In addition, changes in language, compiler, and operating
system must be envisaged as the software evolves.

These configuration management issues should be solved using a tool to relieve developers
from the burden of writing makefiles that must take account of the various environments and
platforms. At the same time the tool should help librarians with installation of new packages as
well as specific versions of programs on different platforms. In addition, the developer should be
allowed to customise the configuration of his own package and to query the configuration which
has been used to build his application.

After evaluation of several existing software release tools, CMT [4] has been selected on
the basis of its ability to satisfy these requirements and for its very convenient and intuitive user
interface. CMT builds makefiles, which in turn are used to build libraries and executables. CMT
reads a requirements file in order to determine which application has to be built and which compiler
and link options are to be used. CMT can handle a single package or a collection of packages.
Default options are available for compiler and link options. The user can query CMT in order to
get the options used and can modify them.

2 Software Release Structure

A large software project, such as ours, spans many developers distributed over many geographic
sites. The challenge is to partition the work such that pieces can be developed independently and
then easily combined to form stable snapshots for each data processing application i.e. the recon-
struction program, event display etc. The way in which LHCb software is physically managed
therefore reflects the organisational structure of the LHCb project, as well as the logical structure
of the code itself. A set of configuration management procedures has been introduced to support
this distributed development process. The nomenclature used to describe these procedures follows
that proposed by Lakos [5].

Related software components are combined into logically cohesive physical units, called
packages. Each package is under the responsibility of a package manager, who is typically one
of the main authors of the package. Packages are identified and retrieved by their name and version
number.

A specific directory structure has been defined in order to facilitate the release procedure
(Figure 1). Beneath the root directory of each package are sub-directories holding several par-
allel release structures (versions). Under the package’s release directory are a number of sub-
directories. The source sub-directory (/src) contains source code (C++, Fortran, HTML). The
interface sub-directory (/packagename) contains include files accessible from other packages in
the form #include “packagename/file.h”. The documentation sub-directory (/doc) contains all doc-
umentation related to the package (ASCII, HTML,..). The manager sub-directory (/mgr) contains
a requirements file which gives a high level description of the package environment, details on
what to build (library, application) and how to build it (compile and link options), and where to
find the constituents (file locations). There is a single requirements file for all platforms, including
NT. In addition there are a number of subdirectories that contain binary products. Multiple ver-
sions of binary products are built according to the compiler and platform on which they run and
the particular compile and link options that are available e.g. debug and optimisation level. The
names of these binary directories are chosen to reflect these options.

Figure 1: package layout

3 Package design issues

There are a number of physical design issues that can lead to problems at compile time, at link-
time and at run-time. Many of these have been described in detail by Lakos [1] and have served
as guiding principles when setting up our configuration management procedures. In particular
dependencies between packages must be strictly controlled in order to minimise coupling between
different software components. Minimising dependencies reduces the number of packages that
must be linked and therefore the size of the executable image. Cyclic dependencies between
packages can result in unresolved references at link time and can prevent staged releases. The
existence of package dependencies is an architectural issue and must be controlled by the system
architect at design time. Control can be exercised if dependencies are documented and validated
by the librarian at build time. As a general rule, the number of exported header files should be
minimised as the fewer details that are exposed in the interface of a package, the easier it is for a
developer to maintain it.

Dependencies between packages can be declared to CMT in the package requirements file.
CMT recognises dependencies at compile time and uses this information to rebuild libraries and
executables accordingly. An example of a package requirements file is given below.

package packA
version v1
branches doc src mgr packA
include dirs $(PACKAROOT)
use packB v1
use packR v2r1
library packA ../src/*.cpp
macro packA linkopts ‘‘$(PACKAROOT)/$(packA tag)/libpackA.a’’\
VisualC ‘‘$(PACKAROOT)/Win32Debug/packA.lib’’

Packages can be further categorised according to their special features:
• A program is a package which contains a main routine and a list of dependent packages

needed to link it. Since the requirements file contains the version of the package and the
name and version of all packages used by the application, it is easy to distribute a new
version of the program, to archive it or to retrieve it.

• A package group contains a list of other packages with their version number valid for the
specific version of the framework. To install the current version of the framework in a new
environment it is sufficient to install the framework package and all dependent packages.

• An external package is a package that is developed and maintained by external groups.
Familiar examples include CERNLIB, CLHEP, ROOT, XML, and GEANT4. These are
normally released in binary form and their requirements file contains references to their
interface and binary locations. The use of the CMTSITE environment variable allows the
various locations to be defined in a single place.

4 Roles and Procedures

Essentially all LHCb people involved in software development use CMT, but the way in which
each person uses it depends on the role they play. This section contains some examples illustrating
this.

The casual user typically develops a software algorithm in his working area and builds an
application by linking it with other selected packages from the public release area. The program

package must firstly be checked out from the CVS repository with CMT. CMT will then build
in the working area an image of the package. The user develops code in the /src area. The
requirements file is modified to describe the application to be built. Finally gmake must be run
from the /mgr area in order to create the application and this will be stored in the binary sub-
directory corresponding to the compiler and platform option selected. A session that follows this
sequence of commands would look as follows:

> cd somewhere
> cmt checkout LHCbprog
> cd LHCbprog/v1/src
... add user code > cd ../mgr
> gmake

The package developer develops and maintains software for general public use and is ex-
pected to supply test routines and documentation in addition to the code. The developer will
checkout with CMT the package he is working with, as well as the program package he wants to
use to check it. CMT commands can be submitted from the /mgr sub-directory to check which
packages will be used. CMT specifies default compiler and linker options, which can be queried
and overridden if required. In the manager sub-directory belonging to the program package, CMT
can be queried to get the location of used packages, and these locations can be modified if neces-
sary by changing the CMT search path.

> cd somewhere
> setenv CMTPATH $PWD
> cmt checkout packA
> cd packA/v2/src
- modify some code
> cd ../mgr
> gmake

The librarian installs new versions of packages, programs or package groups in the public
release area.This is achieved by checking it out of the repository with CMT in the public release
area and then by running gmake from the /mgr sub-directory. CMT offers a special recursive mode
to automatically checkout all packages that are dependent on the package being checked out, and
also a broadcast facility to automatically build the corresponding libraries in their appropriate
sub-directories.

To install a package group in a new site, the librarian will check-out the package recursively
as for the program package. He will update the so-called external package requirements file to
add the new site external library locations and then run CMT to configure and setup the new
environment. From there he will use the CMT broadcast facility to build all libraries.

> cd $LHCBSOFT
> unsetenv CMTPATH
> cmt checkout -R LHCbprog
> cmt broadcast cmt config
> cd LHCbprog/v1/mgr
> cmt broadcast gmake

5 Experience with CMT

We have been using CMT for about one year both for the legacy Fortran code, which comprises
32 packages, and the new C++ Framework, comprising 10 packages. In addition we use some
10 external packages. Some of the Fortran packages are used by the C++ Framework. Our sim-
ulation program is maintained under CMT and is in production in 5 institutes in very different
environments.

The management of our software has been improved by the combined usage of CMT and
CVS. CMT is extremely simple and convenient to use and avoids the need to write complicated
makefiles. Features, such as the query facility for identifying options used during build, as well as
the possibility of inheriting and customizing build options from within the package hierachy, are
heavily used. In addition it runs on NT and UNIX platforms which is an essential requirement for
LHCb.

We conclude by saying that the use of a Configuration Management Tool from the very
beginning of our software development activity has been essential for managing the contributions
made by the various developers and for handling the various software development environments
and platforms.

References

1 LHCb Technical proposal CERN/LHCC 98-4 LHCC/P4.
2 M.Cattaneo & al, “GAUDI - The Software Architecture and Framework for building LHCb

Data Processing Applications”, CHEP2000, Padova, February 2000.
3 CVS free software.
4 C.Arnault, “CMT”, CHEP2000, Padova, February 2000.
5 J.Lakos, Large scale C++ Software Design, Addison Wesley, 1996

