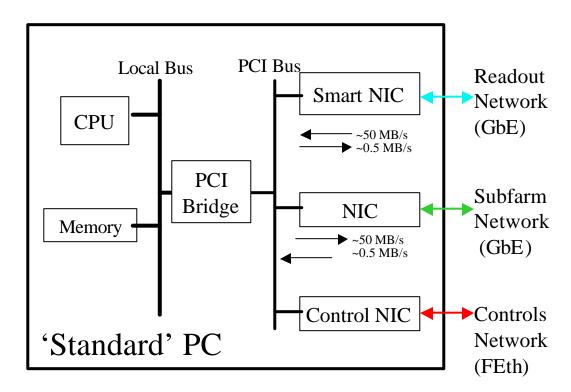

Readout Unit using Network Processors

IBM NP4GS3

- 4 x 1Gb full duplex
 Ethernet MACs
- 16 RI SC processors
 @ 133 MHz
- Up-to 64 MB external RAM
 - Used in routers

RU Functions

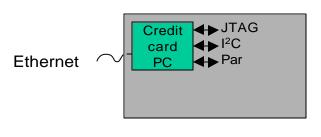
- EB and formatting
- 7.5 ?sec/event
 - ~200 kHz evt rate

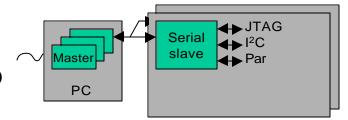

Sub Farm Controller (SFC)

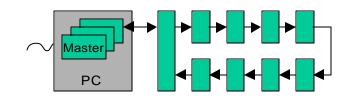
Alteon Tigon 2

- Mail R4000-class processor running at 88 MHz
- 🧭 Up to 2 MB memory
- ✓ GigE MAC+link-level interface
- *×* PCI interface
- ~90 kHz event fragments/s

Development environment


- GNU C cross compiler with few special features to support the hardware
- Source-level remote debugger





Control Interface to Electronics

- Select a reduced number of solutions to interface Front-end electronics to LHCb's control system:
 - Mo radiation (counting room): Ethernet to credit card PC on modules
 - Low level radiation (cavern):
 10Mbits/s custom serial LVDS twisted pair
 SEU immune antifuse based FPGA interface chip
 - High level radiation (inside detectors):
 CCU control system made for CMS tracker
 Radiation hard, SEU immune, bypass
- Provide support (HW and SW) for the integration of the selected solutions

Experiment Control System

Control and Monitoring

Experimental Control System

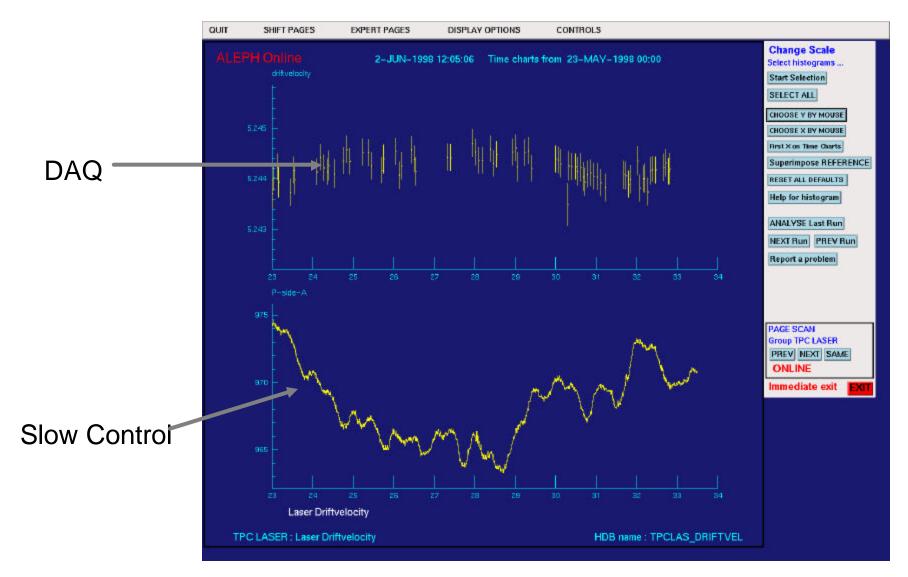
The Experiment Control System will be used to control and monitor the operational state of the detector, of the data acquisition and of the experimental infrastructure.

Zetector controls

- High and Low voltages
- *C*rates
- Cooling and ventilation
- ∠ Gas systems etc.
- Alarm generation and handling

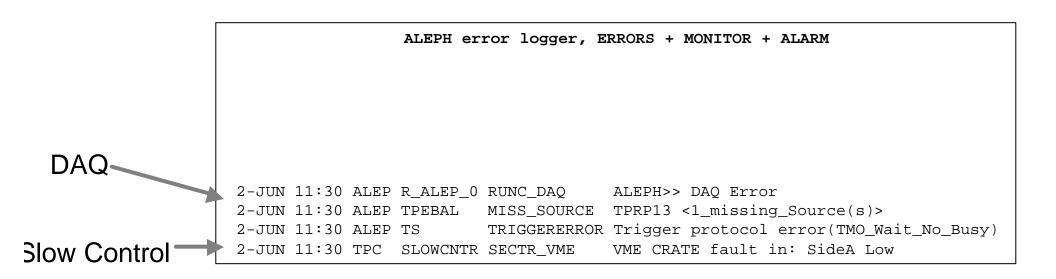
📈 DAQ controls

- *«* RUN control
- Setup and configuration of all readout components (FE, Trigger, DAQ, CPU Farm, Trigger algorithms,...)



System Requirements

- Common control services across the experiment
 - System configuration services coherent information in database
 - Z Distributed information system control data archival and retrieval
 - Error reporting and alarm handling
 - Z Data presentation status displays, trending tools etc.
 - Expert system to assist shift crew
- ∠ Objectives
 - Easy to operate 2/3 shift crew to run complete experiment
 - Easy to adapt to new conditions and requirements
- Implies integration of DCS with the control of DAQ and data quality monitoring

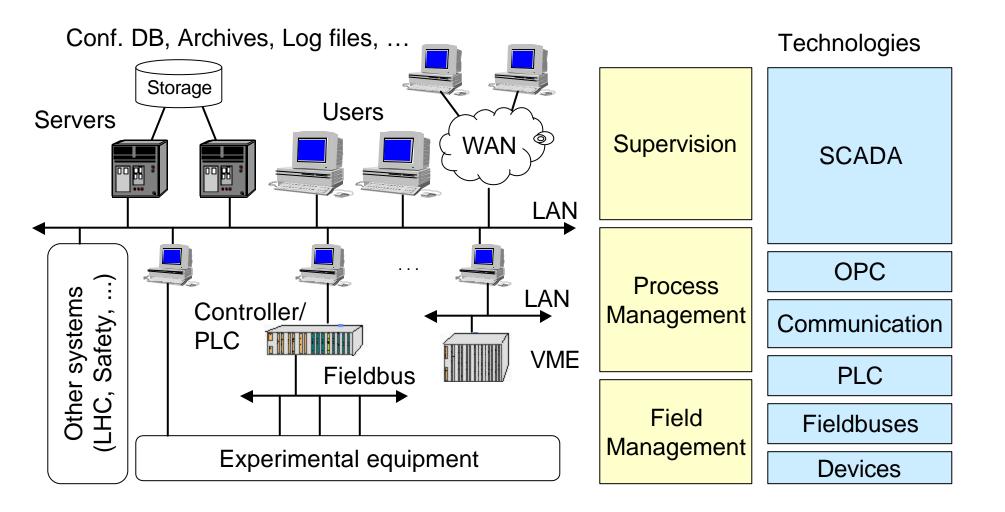


Integrated System – trending charts

Integrated system – error logger

Scale of the LHCb Control system

Parameters


- ∠ Detector Control: O (10⁵) parameters
- \thickapprox FE electronics: Few parameters x 10⁶ readout channels
- Trigger & DAQ: O(10³) DAQ objects x O(10²) parameters
- Implies a high level description of control components (devices/channels)

// Infrastructure

- < 100-200 Control PCs
- Several hundred credit-card PCs.
- By itself a sizeable network (ethernet)

LHCb Controls Architecture

Supervisory Control And Data Acquisition

- ✓ Used virtually everywhere in industry including very large and mission critical applications
- ∠ Toolkit including:
 - ∠ Development environment
 - Set of basic SCADA functionality (e.g. HMI, Trending, Alarm Handling, Access Control, Logging/Archiving, Scripting, etc.)
 - Networking/redundancy management facilities for distributed applications

Flexible & Open Architecture

- Multiple communication protocols supported
- Support for major Programmable Logic Controllers (PLCs) but not VME
- Powerful Application Programming Interface (API)
- 🛩 Open Database Connectivity (ODBC)
- ØLE for Process Control (OPC)

Benefits/Drawbacks of SCADA

- Standard framework => homogeneous system
- Support for large distributed systems
- Buffering against technology changes, Operating Systems, platforms, etc.
- Saving of development effort (50-100 man-years)
- Stability and maturity available immediately
- Support and maintenance, including documentation and training
- Reduction of work for the end users
- Not tailored exactly to the end application
- Risk of company going out of business
- Company's development of unwanted features
 Have to pay

Commercial SCADA system chosen

- Major evaluation effort
 - technology survey looked at ~150 products
- PVSS II chosen from an Austrian company (ETM)
 - ✓ Device oriented, Linux and NT support
- The contract foresees:
 - Unlimited usage by members of all institutes participating in LHC experiments
 - 10 years maintenance commitment
 - Training provided by company to be paid by institutes
 - Licenses available from CERN from October 2000
- PVSS II will be the basis for the development of the control systems for all four LHC experiments (Joint COntrols Project)

Controls Framework

LHCb aims to distribute with the SCADA system a framework

- Reduce to a minimum the work to be performed by the sub-detector teams
- Ensure work can be easily integrated despite being performed in multiple locations
- Ensure a consistent and homogeneous DCS
- Engineering tasks for framework :
 - Definition of system architecture (distribution of functionality)
 - Model standard device behaviour
 - Zevelopment of configuration tools
 - Templates, symbols libraries, e.g. power supply, rack, etc.
 - ✓ Support for system partitioning (uses FSM)
 - Guidelines on use of colours, fonts, page layout, naming, ...
 - *«* Guidelines for alarm priority levels, access control levels, etc.
- ✓ First Prototype released end 2000

Application Architecture

Run Control

FCS: ctrlunit\ui\std.	pnl					_ 🗆 >	×				
	System	s	State	Mode	Share						
	Experiment Contro	·	ок	Included							
Sub-System	State Mod	e Shai	re								
Data Acquisition	RUNNING	d 🗆	0 0.00								
Detector Control	READY	d 🗆	g DCS: c	trlunit\ui\sta	l.pnl						_ 🗆 🗙
	SET_NOT_READY					Syste	em	State	Mode	Share	alle.
						Detector	Control	READY	Included		
			Sub-9	System		State	Mode	Share			
				on DCS	1	EADY	Included				
Messages				ker DCS		EADY	Included				
				ex DCS		EADY	Included				
							Exclude Disable Ignore				
			Messag	es							Close

Summary

- ✓ Organisation has important consequences for cohesion, maintainability, manpower needed to build system
- Architecture driven development maximises common infrastructure and results in systems more resilient to change
- Software frameworks maximuse level of reuse and simplify distributed development by many application builders
- ✓ Use of industrial components (hardware and software) can reduce development effort significantly
- Zeric DAQ is designed with simplicity and maintainability in mind
- Maintain a unified approach e.g. same basic infrastructure for detector controls and DAQ controls

Extra Slides