

BRUNEL
LHCb Reconstruction Program

User Guide

Version: 1.5
Issue: 1
Edition: 0
Status:
ID: [Document ID]
Date: 17 November 2000

European Laboratory for Particle Physics
Laboratoire Européen pour la Physique des Particules
CH-1211 Genève 23 - Suisse

BRUNEL User Guide
 17 November 2000 Version/Issue: 1.5/1
Document Control Sheet

Document Status Sheet

Table 1 Document Control Sheet

Document Title: BRUNEL User Guide

Version: 1.5

Issue: 1

Edition: 0

ID: [Document ID]

Status:

Created: 25 May 2000

Date: 17 November 2000

Access: :

Keywords:

Tools DTP System: Adobe FrameMaker Version: 5.5

Layout
Template:

Software Documentation
Layout Templates

Version: V1 - 15 January 1999

Content
Template:

-- Version: --

Authorship Coordinator: M.Cattaneo

Written by: M.Cattaneo

Table 2 Document Status Sheet

Title: BRUNEL User Guide

ID: [Document ID]

Version Issue Date Reason for change

1 0 26 May 2000 First draft version

1 1 28 July 2000 Minor changes for Brunel v1r2

1.5 1 17 Nov. 2000 Updated for Brunel v1r5, GaudiSys v6
page 2

BRUNEL User Guide
 Table of Contents Version/Issue: 1/1
Table of Contents

Document Control Sheet . 2
Document Status Sheet . . 2

Table of Contents . 3

Chapter 1
Introduction . 5

1.1 Purpose of this document . . 5
1.2 What does "Brunel" mean? . 5
1.3 Editor’s note . 5

Chapter 2
Structure of Brunel . . 7

2.1 Brunel Phases . 7
2.1.1 Instantiating Brunel Phases 8

2.2 Brunel sub-detector code . 8
2.2.1 Instantiating sub-detector sequences 9

2.3 Accessing Gaudi services and data from Brunel 10
2.4 Adding user code . 10

Chapter 3
Current Implementation . 11

3.1 Wrapped SICBDST . 11
3.2 Choice of execution mode . 12

3.2.1 Choice of pileup mode . 12
3.3 Input/Output definition . 13
3.4 Monitoring . 13

3.4.1 Histograms . 13
3.4.2 Debug printout . 14
3.4.3 Profiling . 14

3.5 Known problems . 15

Chapter 4
Running Brunel . 17

Appendix A
References . 19
 page 3

BRUNEL User Guide
 Table of Contents Version/Issue: 1/1
page 4

BRUNEL User Guide
Chapter 1 Introduction Version/Issue: 1.5/1
Chapter 1

Introduction

1.1 Purpose of this document

This document is a user guide and reference manual for the LHCb reconstruction program,
Brunel. It should be useful both to users wishing to run the program, and to programmers
wishing to add functionality.

This document does not describe the physics algorithms or the data model.

1.2 What does "Brunel" mean?

All LHCb data processing applications are based on a framework which enforces the GAUDI
architecture. Antoni Gaudi [1] was a Catalan architect who greatly influenced the
development of Barcelona around the beginning of the nineteenth century. For the
reconstruction program we decided to use the name of an engineer. Isambard Kingdom
Brunel [2] was a British engineer who greatly contributed to the industrial revolution in the
first half of the eighteenth century.

1.3 Editor’s note

This document is a snapshot of the Brunel software at the time of the release of version v1r5.
We have made every effort to ensure that the information it contains is correct, but in the
event of any discrepancies between this document and information published on the Web, the
latter should be regarded as correct, since it is maintained between releases and, in the case of
code documentation, it is automatically generated from the code.
 page 5

BRUNEL User Guide
Chapter 1 Introduction Version/Issue: 1.5/1
We encourage our readers to provide feedback about the structure, contents and correctness
of this document and of other Gaudi documentation. Please send your comments to the
editor, Marco.Cattaneo@cern.ch
page 6

mailto:Marco.Cattaneo@cern.ch

BRUNEL User Guide
Chapter 2 Structure of Brunel Version/Issue: 1.5/1
Chapter 2

Structure of Brunel

2.1 Brunel Phases

The LHCb reconstruction program, Brunel, is composed of a number of Gaudi algorithms:
BrunelInitialisation, BrunelFinalisation and a number of BrunelPhases.

BrunelInitialisation is where all initializations which are independent of BrunelPhase
are performed. These can be global program initializations (in the initialize() method),
or event by event initializations (in the execute() method). Note that initializations specific
to a given BrunelPhase should not be performed here.

BrunelFinalisation is where all finalizations which are independent of BrunelPhase are
performed. These can be global program finalizations (in the finalize() method), or event
by event finalizations (in the execute() method). Note that finalizations specific to a given
BrunelPhase should not be performed here.

BrunelPhase is where the meat of the reconstruction program lies. BrunelPhase is a base
class from which actual phases are derived. Each BrunelPhase should be independent of other
BrunelPhases: it should be possible to run only one phase, providing of course that event
input data in the appropriate format exists1. All initializations and finalizations specific to the
phase should be performed inside the phase. The following BrunelPhases are currently
implemented:

• BrunelDigi is where simulated RAW Hits are converted into DIGItisings. The
output of this phase has the same format as real RAW data coming from the
detector2. Obviously this phase would not be present when reconstructing real data,
and could be moved to the simulation program when reconstructing simulated data.
Note that this implies some discipline when designing the DIGItised data model, in
particular for what concerns links to Monte Carlo truth information.

1. This is not entirely true in the current version of the reconstruction program, due to the underlying calls to
SICBDST routines which do not have this structure.
 page 7

BRUNEL User Guide
Chapter 2 Structure of Brunel Version/Issue: 1.5/1
• BrunelTrigger is where the LHCb trigger decision is applied. The input event data
are DIGItisings. The output are also DIGItisings, with the addition of the trigger
decision information.

• BrunelReco is where the first pass reconstruction is carried out. By first pass we
mean that the reconstruction algorithms in this phase rely only on DIGItisings and do
not require input from the reconstruction of other subdetectors. This restriction can
be somewhat relaxed by ensuring that subdetectors are reconstructed in a specific
order: those that only require input from the DIGItisings are processed first, those
that require input from the reconstruction of other sub-detectors are processed after
those sub-detectors.

• BrunelFinalFit is the second pass reconstruction, to allow for processing which
requires input from the reconstruction of several subdetectors.

Note that additional phases could easily be implemented if further reconstruction passes are
required.

2.1.1 Instantiating Brunel Phases

Brunel Phases are Gaudi top Algorithms. They are therefore instantiated using the standard
Gaudi job option ApplicationMgr.TopAlg [3]. Listing 1 shows the value of this option for
the current implementation. Note the different phases in lines 2 to 5, which are different
instances of the class BrunelPhase and will be executed in the order shown

2.2 Brunel sub-detector code

It is expected that sub-detector specific code will be executed inside one or more Brunel
Phases. Each Brunel Phase instantiates a Gaudi Sequence for each detector participating in
that phase. The instance name of the Sequence follows a specific convention: it is composed of
the Phase name (e.g. BrunelDigi) followed by the abbreviated sub-detector name (e.g. MUON),
followed by the string "Seq" (e.g. BrunelDigiMUONSeq). These Sequences are intended to be
the phase specific steering algorithms of the sub-detectors.

Within each Sequence, the sub-detectors are able to instantiate any number of algorithms by
simply adding the appropriate job option. For example, to instantiate the BrunelDigiECAL and

2. This is not entirely true in the current version of the reconstruction program, due to the underlying use of
the SICB event data model, which does not have this structure.

Listing 1 Brunel Top Algorithms as defined in $BRUNELOPTS/Common.dst1.txt job options file

1: ApplicationMgr.TopAlg = { "BrunelInitialisation/BrunelInit",
2: "BrunelPhase/BrunelDigi",
3: "BrunelPhase/BrunelTrigger",
4: "BrunelPhase/BrunelReco",
5: "BrunelPhase/BrunelFinalFit",
6: "BrunelFinalisation/BrunelFinish" };
page 8

BRUNEL User Guide
Chapter 2 Structure of Brunel Version/Issue: 1.5/1
BrunelDigiHCAL algorithms in the BrunelDigiCALOSeq sequence (and to execute ECAL before
HCAL), one would add the following job option::

The advantage of this system is that it is easily extendable and modifiable. To add a new
phase, or a new sub-detector, or a new algorithm (or to change any of their names), it is
sufficient to make the necessary changes to the job options. No changes are necessary to the
Brunel steering code.

The list of sub-detector names and sub-algorithm classes currently implemented is shown in
Table 3

2.2.1 Instantiating sub-detector sequences

The reason for the naming convention described above is to provide a simple method for
selecting which sub-detectors to reconstruct and in which order. It is sufficient to provide a
DetectorList job option for each phase, containing the list of sub-detectors to be processed
in that phase, as shown in Listing 3.

Listing 2 Example of sequence definition in $BRUNELOPTS/Common.dst1.txt job options file

BrunelDigiCALOSeq.Members = { "BrunelDigiECAL", "BrunelDigiHCAL" };

Table 3 Sub-detector algorithms currently implemented in Brunel

Sub-detector Abbreviation Algorithms implemented

Calorimeters CALO BrunelDigiECAL
BrunelDigiHCAL
BrunelRecoECAL
BrunelRecoHCAL

Muon Detector MUON BrunelDigiMUON

Ring Imaging Cherenkov RICH BrunelDigiRICH
BrunelRecoRICH

Tracking Detectors TRAC BrunelDigiTRAC
BrunelRecoTRAC
BrunelFinalFitTRAC

Trigger System TRIGGER BrunelTriggerTRIGGER

Vertex Locator VELO BrunelDigiVELO

Listing 3 Processing order of sub-detector algorithms in Brunel.

1: BrunelDigi.DetectorList = { "VELO","TRAC","RICH","CALO","MUON" };
2: BrunelTrigger.DetectorList = { "TRIGGER" };
3: BrunelReco.DetectorList = { "TRAC" , "RICH" , "CALO" };
4: BrunelFinalFit.DetectorList = { "TRAC" };
 page 9

BRUNEL User Guide
Chapter 2 Structure of Brunel Version/Issue: 1.5/1
2.3 Accessing Gaudi services and data from Brunel

Brunel sub-detector algorithms are instances of Gaudi algorithms. As such they have access to
all the services currently implemented in Gaudi, and to all data in the Gaudi data stores.
Please refer to the Gaudi user guide [3] for details.

2.4 Adding user code

User code can be added to Brunel in several ways:

1. By providing a Gaudi Algorithm that can be run as a top algorithm outside of a
Brunel phase. This would typically be a monitoring algorithm that would analyse the
progress of the reconstruction. It can be inserted into the application by declaring it as
an additional ApplicationMgr.TopAlg in the option shown in Listing 1

2. By providing a new sub-detector algorithm to be called within a given Brunel Phase.
It is instantiated by adding the appropriate algorithm name to the Members list of
appropriate sequence in the job options file, as shown for example in Listing 2.

3. By replacing an existing sub-detector algorithm.

4. In the current implementation, it is also possible to add a Fortran analysis routine,
using the SICB user routines SUINIT, SUANAL, SULAST. SUANAL is called at the
end of all event processing.
page 10

BRUNEL User Guide
Chapter 3 Current Implementation Version/Issue: 1.5/1
Chapter 3

Current Implementation

The current version of Brunel implements the "wrapping" of SICBDST Fortran code: Brunel is
simply a skeleton within Gaudi which calls the full set of SICBDST Fortran algorithms. There
are no C++ algorithms in this version. Version v1r5 of Brunel uses version v235r2 of SICBDST.

3.1 Wrapped SICBDST

The SICBDST code has been wrapped into Brunel Phases and Brunel sub-detector algorithms.
Each algorithm calls the corresponding FORTRAN steering routine, as summarised in Table 4

Table 4 List of wrapped SICBDST sub-detector steering routines

Brunel Algorithm SICBDST steering routine

BrunelInitialisation DETINIT (calls ECINIT, ECDINIT,
HCINIT, HCDINIT, MUGINIT, MPINIT)

BrunelDigiVELO VSDIGI

BrunelDigiTRAC WDDIGI

BrunelDigiRICH RIDIGI

BrunelDigiECAL ECDIGI

BrunelDigiHCAL HCDIGI

BrunelDigiMuon MUDIGI

BrunelTriggerTRIGGER TRIGGER

BrunelRecoTRAC AXTFIT

BrunelRecoRICH RIRECO
 page 11

BRUNEL User Guide
Chapter 3 Current Implementation Version/Issue: 1.5/1
Communication between the various FORTRAN algorithms is done, as in SICBDST, via
COMMON blocks, in particular the ZEBRA common block. The FORTRAN algorithms are
controlled via the SICB data cards file. All data cards recognised by SICBDST are valid, with
the exception of cards dealing with input event data (TRIGGERS card, IOPA ’GETX’, ’GETY’,
’GETZ’ cards) and selection of processing steps (SKIP data card). Please refer to the SICB
documentation [4] for details

3.2 Choice of execution mode

Four types of excution mode exist for Brunel: with or without Pileup, and using either shared
libraries or a statically linked excution. The main Brunel job options file
$BRUNELOPTS/BrunelOptions.txt contains the four lines shown in Listing 4. You should
uncomment the line corresponding to the chosen execution mode.

3.2.1 Choice of pileup mode

Brunel uses the Gaudi implementation of pileup. If you choose a pileup execution mode, you
should also select whether you are doing pileup on signal events or on minimum bias events,
as shown in Listing 5

BrunelRecoECAL ECRECO

BrunelRecoHCAL HCRECO

BrunelFinalFitTRAC AXRECO

BrunelFinalisation SUANAL
RECEVOUT

Table 4 List of wrapped SICBDST sub-detector steering routines

Brunel Algorithm SICBDST steering routine

Listing 4 Execution mode specific Brunel options

1: //--
2: // Define the execution mode:
3: //--
4: #include "$BRUNELOPTS/Dynamic.dst1.txt"
5:
6: // Other possibilities are:
7: // #include "$BRUNELOPTS/Dynamic.dst2.txt"
8: // #include "$BRUNELOPTS/Static.dst1.txt"
9: // #include "$BRUNELOPTS/Static.dst2.txt"

Listing 5 Job option for selection of pileup mode

1: // Use LUMISIGNAL if main event is signal, otherwise LUMIMINBIAS
2: PileUpAlg.PileUpMode = "LUMISIGNAL";
3: // PileUpAlg.PileUpMode = "LUMIMINBIAS";
page 12

BRUNEL User Guide
Chapter 3 Current Implementation Version/Issue: 1.5/1
3.3 Input/Output definition

The current version of Brunel uses the Gaudi SicbEventSelector to read in event data
from a SICBMC RAWH file. The relevant job options are shown in Listing 6

If you have chosen an execution mode with pileup, you also have to define the file containing
the pileup events, as shown in Listing 7

The Gaudi framework does not provide a facility for writing out event data to ZEBRA files.
For this reason, Brunel calls the SICB routine RECEVOUT to write out the SICB DST file. The
output stream is defined using an IOPA ’SAVX’ data card as for SICBDST [4] (see Listing 8).:

In addition, it is possible to write out an object-oriented DST to a ROOT file, using the
facilities provided by Gaudi. Please refer to the Gaudi manual [3] for details

3.4 Monitoring

3.4.1 Histograms

In the current version of Brunel, the only predefined histograms are those created by the
subdetector code inside SICBDST, control of filling and of output of these histograms is via
the SICB data cards in the usual way.

Listing 6 Job Options for event input definition

1: // Input file name (all on one line!)
2: EventSelector.Input = {"JOBID=’19612’"};
3: // Number of events to be processed (default is all events)
4: EventSelector.EvtMax = 100;
5: // Print event number at each event
6: EventSelector.PrintFreq = 1;
7:
8: // Enable next card if you wish to skip some events
9: // EventSelector.FirstEvent = 3;

Listing 7 Job Options for pileup

1: // Define the file containing the pileup events
2: PileUpSelector.JobInput = "JOBID 19065";

Listing 8 SICB card fto define ZEBRA output file

1: IOPA
2: ’SAVX’ ’XO’ ’$WORKDIR/Brunel.dst!’
 page 13

BRUNEL User Guide
Chapter 3 Current Implementation Version/Issue: 1.5/1
The standard SICBDST checking histograms are also linked into Brunel by default. This is
done by line 3 in Listing 9, taken from,the Brunel requirements file.

Fill of these histograms is enabled with the following SICB data card:

In addition, it is possible for users to define their own histograms inside Gaudi algorithms,
using the facilities provided by Gaudi. Such histograms are output by the Gaudi histogram
service, to a file defined by the following job option

3.4.2 Debug printout

In the current version of Brunel, control of debug printout from the SICBDST Fortran
algorithms is via the SICB data cards in the usual way.

In addition, it is possible to define the level of debug printout available from the Gaudi
Services and from the Brunel control framework via the standard Gaudi MessageSvc job
options:

3.4.3 Profiling

Brunel makes use of Gaudi Auditors to monitor the code performance at run time. The
following auditors are available:

NameAuditor Prints out the name of an algorithm whenever its execute() method is called.
Disabled by default.

Listing 9 Definition of Brunel application in CMT requirements file

1: application Brunel ../Brunel/*.cpp \
2: $(SICBDSTROOT)/src/sicbvers.F \
3: $(SICBDSTROOT)/dst/*.F \
4: ../Brunel/*.F

IOPA
 ’CHCK’ ’HO’ ’$WORKDIR/Brunel.hbook!’

HistogramPersistencySvc.OutputFile = "histo.hbook";

// Global output level
MessageSvc.OutputLevel = 3;

// Over-ride global level for some algorithms
BrunelInit.OutputLevel = 2;
BrunelDigiVELO.OutputLevel = 2;
BrunelRecoVELO.OutputLevel = 2;
page 14

BRUNEL User Guide
Chapter 3 Current Implementation Version/Issue: 1.5/1
ChronoAuditor Monitors CPU usage of each algorithm and reports at the end of the job the
total and average time per algorithm. Enabled by default.

MemoryAuditor Prints out information on memory usage, in particular whenever the memory
allocation changes. Currently only works on Linux. Enabled by default.

The default behaviour of these auditors can be changed using the following job options:

3.5 Known problems

The following problems and workarounds are known:

• When building Brunel on Linux, you have to source setup.csh before typing
gmake. If you do not do this, gmake will not find some of the SICBDST files.

• On NT, the LHCBHOME environment variable must contain a path with at least one
backslash (e.g. "V:\cern.ch\lhcb"). If not, ZEBRA will complain when trying to
open the file $LHCBHOME/sim/data/v111-prob-2d-d0.hbook. This is a feature
of the shift library for Windows..

• Auditors are not currently working in the static exceutable of Brunel.

Listing 10 Job options to control default Auditor behaviour

//--
// Enable/Disable some monitoring by setting lines below to true/false
//--
NameAuditor.Enable = false;
ChronoAuditor.Enable = true;
MemoryAuditor.Enable = true;

//--
// Enable/Disable monitoring of methods of individual algorithms
// by setting lines below to true/false
//--
myAlgorithm.AuditInitialize = false;
myAlgorithm.AuditExceute = true;
myAlgorithm.AuditFinalize = false;
 page 15

BRUNEL User Guide
Chapter 3 Current Implementation Version/Issue: 1.5/1
page 16

BRUNEL User Guide
Chapter 4 Running Brunel Version/Issue: 1.5/1
Chapter 4

Running Brunel

Brunel is implemented as a CMT [5] package, with the following subdirectory structure:

— Brunel C++ and Fortran source code

— doc release notes

— job example job

— options structure of example steering data cards

— mgr CMT requirements file

— Visual Visual Studio Workspace

The job subdirectory contains an example job for running Brunel on Linux. The options
subdirectory contains and example structure of Gaudi job options files (the top file of the
structure is BrunelOptions.txt) and a SICB data file (Brunel.cards). You should
customise these files according to your needs.

The files BrunelOptions.txt and Brunel.cards are picked up by default when you run
one of the example jobs on Linux, or inside Visual Studio on NT. To pick up different files, you
should modify the following two lines in the requirements file

Set the paths for Brunel and SICBDST data cards.
set JOBOPTPATH ${BRUNEOPTS}/BrunelOptions.txt
set SICBCARDS ${BRUNELOPTS}/Brunel.cards
 page 17

BRUNEL User Guide
Chapter 4 Running Brunel Version/Issue: 1.5/1
page 18

BRUNEL User Guide
Appendix A References Version/Issue: 1.5/1
Appendix A

References

1 See for example http://www.gaudiclub.com/ingles/i_vida/i_menu.html for more
information about Antoni Gaudi

2 See for example http://www.spartacus.schoolnet.co.uk/RAbrunel.htm for more
information about Isambard Kingdom Brunel

3 The GAUDI users guide is available at:
http://cern.ch/lhcb-comp/Components/Gaudi_v6/gug.pdf

4 The SICB documentation is available at: http://cern.ch/lhcb-comp/SICB/

5 CMT documentation is available at http://cern.ch/lhcb-comp/Support/html/cmt.htm
 page 19

http://www.spartacus.schoolnet.co.uk/RAbrunel.htm
http://www.gaudiclub.com/ingles/i_vida/i_menu.html
http://cern.ch/lhcb-comp/Components/Gaudi_v6/gug.pdf
http://cern.ch/lhcb-comp/SICB/
http://cern.ch/lhcb-comp/Support/html/cmt.htm

BRUNEL User Guide
Appendix A References Version/Issue: 1.5/1
page 20

	Document Control Sheet
	Document Status Sheet
	Table of Contents
	Chapter 1 Introduction
	1.1�� Purpose of this document
	1.2�� What does "Brunel" mean?
	1.3�� Editor’s note

	Chapter 2 Structure of Brunel
	2.1�� Brunel Phases
	2.1.1�� Instantiating Brunel Phases

	2.2�� Brunel sub-detector code
	2.2.1�� Instantiating sub-detector sequences

	2.3�� Accessing Gaudi services and data from Brunel
	2.4�� Adding user code

	Chapter 3 Current Implementation
	3.1�� Wrapped SICBDST
	3.2�� Choice of execution mode
	3.2.1�� Choice of pileup mode

	3.3�� Input/Output definition
	3.4�� Monitoring
	3.4.1�� Histograms
	3.4.2�� Debug printout
	3.4.3�� Profiling

	3.5�� Known problems

	Chapter 4 Running Brunel

