

Baseline Model of LHCb's Distributed Computing Facilities

Report to World Wide Analysis Review Panel 23 March 2000

J.Harvey / CERN

- Logical dataflow and workflow model
- Data processing and storage requirements
- □ Baseline computing model
- Comparison with MONARC generic model
- □ Data processing at CERN
- Plans for deployment of the computing model

Following talk by Frank Harris will focus on :

- □ Resources at regional facilities
- □ Comments on Disk vs Tape

- □ LHCb Technical Note in preparation see draft
- □ Only rough estimates of requirements are available
- Baseline model reflects current thinking
 - ➤ based on what seems most appropriate technically
 - ➤ discussions are just starting
- □ Open meeting of the collaboration April 5-7
 - ➤ feedback and changes can be expected

- Study CP violation by measuring different final states of rare B-meson decays (>20 channels) e.g.
- □ About 10¹² bb pairs produced in 1 year
- Numbers of interesting events reconstructed offline varies according to channel (10⁵ to a few hundred)
- $\hfill Trigger on high P_t$ and displaced secondary vertices

LHCB Dataflow Model - Production

- L2/L3 runs algorithms use partial reconstruction of final states
 Detailed studies still to be made
- Small samples of rejected events kept for efficiency studies
- Reconstruction determines raw physical quantities such as energy in calorimeter, assigns hits to tracks etc.
- Reconstruction is repeated a number of times (~2) to accommodate changes in algorithms, calibration and alignment

- □ Simulates all steps :
 - \gg bb generation
 - ➤ GEANT tracking
 - ➤ Digitisation
 - ➤ trigger
 - ➤ reconstruction
- Truth information is stored to record physics history of the event
 - ➤ RAWmc larger than RAW
- Simulation also repeated as algorithms evolve , and as detector design continues to be optimised

LHCP Dataflow Model - Final State Reconstruction

- Determine P^µ of measured particle tracks, vertices, invariant masses
- □ Run tagging algorithms to identify candidates for composite particles $(J/\Psi, \pi^0)$
- Common to different decay modes - run in production as First Pass Analysis
- Use Reconstruction Tags to optimise
- Step will be repeated (3-4 times/year) on complete sample as algorithms evolve

Report to Worldwide Analysis Review Panel 23 March 2000 J. Harvey

Slide 8

Generate private data (e.g. ntuple) □ Study systematic effects by looking at ESD for small event

Physicist runs physics analysis

□ Reconstruct B-decay channels

of interest using AOD only

> copy parts of ESD if needed

□ Select interesting events

jobs

using tags

- samples Access raw data of individual
- events (~100) and study in detail e.g. with event display

KHCS Real Data Processing Requirements

Length of period	120 days	10 ⁷ secs	
LHC duty cycle	50%		
Event rate stored	200 Hz	10 ⁷ per day	10 ⁹ per year
RAW data size	100 kB/event	1 TB/day	100 TB/yr
ESD data size	100 kB/event	1 TB/day	100 TB/yr
AOD data size	20 kB/event	0.2 TB/day	20 TB/yr
TAG data size	1 kB/event	0.01 TB/day	1 TB/yr
L2 trigger CPU	0.25 SI 95sec/event	@40 kHz	10,000 SI 95
L3 trigger CPU	5 SI 95sec/event	@5 kHz	25,000 SI 95
Reconstruction CPU	250 SI 95sec/event	@200 Hz	50,000 SI 95
First Pass Analysis	5 SI 95/event	2.10 ⁸ in 2 days	5000 SI 95
User analysis at RC	20 SI 95/event		10,000 SI 95
User analysis CERN	20 SI 95/event		20,000 SI 95

LHCP User Analysis Requirements

- Assume that physicist performs a production analysis and requires a response time of 4 hours
- □ The ~10⁷ events tagged by first pass analysis are scanned and candidates selected (0.25 SI 95 /event)
- The selected candidates are subjected to analysis algorithm (20 SI 95 / event)
- □ Total installed cpu power needed calculated assuming:
 - ➤ ~140 physicists actively doing analysis
 - > each submits 1 job / day (NB. many short jobs as well)
 - >> analysis distributed over a number of regional centres (~5) and assume ~20 physicists at each Regional Centre, ~40 at CERN
 - > Assume 0.3 x 10^7 events selected for algorithm on average
 - >> 10,000 SI 95 at each Regional Centre, 20,000 SI 95 at CERN

LHCS Simulation Requirements - Signal Events

\Box CPU power to simulate 10⁷ B -> D* π events in 1 year

- \gg assume need to simulate 10 times real data sample (10⁶)
- ➤ N.B.this channel dominates
- ➤ installed capacity needed is 100,000 SI 95

Step	Number of	Cpu time/evt	Total cpu power
	events		
Generator	10 ¹⁰	200 SI 95sec	2. 10 ¹² SI 95sec
GEANT	10 ⁹	1000 SI 95sec	10 ¹² SI 95sec
tracking			
Digitisation	10 ⁹	100 SI 95sec	10 ¹¹ SI 95sec
Trigger	10 ⁹	100 SI 95sec	10 ¹¹ SI 95sec
Reconstruction	10 ⁸	250 SI 95sec	2.5 10 ¹⁰ SI 95sec
First Pass	10 ⁷	20 SI 95sec	2. 10 ⁸ SI 95sec
analysis			

Luck Simulation Requirements - Background

- $\hfill\square$ 10⁵ bb inclusive events in detector every second
- □ ~100 Hz are recorded in real data

➤ trigger efficiency 10⁻³

- If need as many to be simulated then need to generate, track, digitise and trigger 10¹² bb inclusive events/yr and 10⁹ will have to be reconstructed
 - > corresponds to 3. 10¹⁴ SI 95 sec / yr
- □ Obviously need to study ways of optimising background simulation
 - >> store and reuse data produced at generator level
 - > optimise generation step without biasing physics
 - Focus on background particularly dangerous for a specific physics channel
 - >> aim to reduce requirements by > 1 order of magnitude
- □ Assume 400,000 SI 95 required

Kick Simulation Requirements - Summary

RAWmc data size	200 kB/event	200 TB/10 ⁹ events
Generator data	12 kB/event	12 TB/10 ⁹ events
size		
ESD data size	100 kB	100 TB/10 ⁹ events
AOD data size	20 kB/event	20TB/10 ⁹ events
TAG data size	1 kB/event	1 TB/10 ⁹ events
CPU power	~100,000 SI 95	~400,000 SI 95
	signal events	background events

KHCP Baseline Computing Model

□ Based on a distributed multi-tier regional centre model

□ I dentify the production centre

➤ responsible for all production processing phases

- ➤ generation, reconstruction, and first pass analysis
- □ Production Centre archives all data generated > RAW, ESD, AOD, TAG (+ generator for simulation)
- Assume bulk physicis analysis normally only requires access to AOD and TAG datasets

>> specific ESD data needed in analysis (small) added to AOD

 \gg only ship AOD and TAG outside to other centres

❑ Assume analysis repeated ~4 times per year > 80 TB / yr (real), 120 TB/yr (simulated) to each RC

Move data using most appropriate medium (network, tape...)

Luck Baseline Computing Model - Roles

- To provide an equitable sharing of the total computing load can envisage a scheme such as the following
- □ After 2005 role of CERN
 - \gg to be production centre for real data
 - ➤ support physics analysis of real and simulated data by CERN based physicists
- □ Role of regional centres
 - \gg to be production centre for simulation
 - > to support physics analysis of real and simulated data by local physicists
- Institutes with sufficient cpu capacity share simulation load with data archive at nearest regional centre
- NB This scheme still to be discussed in the collaboration - political issue as well as technical

Technical Note describes three typical scenarios for a distributed physics analysis

- ➤ physics channel under study
- \gg regional centres and institutes involved
- > how data are achived, and requirements on shipping to remote sites

Luck Differences with MONARC

Do not explicitly identify Group Analyses

- ➤ First pass analysis run as one production job as much of final state reconstruction is common to different decay channels
- Run all production data processing from RAW to AOD at the production centre. Only ship AOD and TAG datasets to regional facilities.
- Envisage to focus activities at CERN after 2005 on processing of real data and simulation at remote facilities
- Our data processing requirements do not imply a clear need to distinguish Tier 1 and Tier 2 centres.

LHCP Computing at CERN

- Run high level triggers and reconstruction on same cpu farm located at LHCb pit
- □ Send RAW and ESD data over the CDR link (80 Gbps) to computer centre for archive, and first pass analysis
- ❑ Maintain local storage at pit in case CDR down >> accumulate 2 TB/day, therefore need >10 TB
- □ Dispatch AOD and TAG etc to regional centres
- During shutdowns, down periods do re-processing of RAW data on the farm in the pit
 - ➤ read RAW back from computer centre
 - ➤ send new ESD from pit to computer centre
 - ➤ full farm available so proceeds at twice the rate
 - ➤ allows 2-3 reprocessings of complete year's data
- □ Flexible, efficient and maintainable solution

CERN Computer Centre

Experiment - LHC Pit 8

CPU Farm	~100,000 SI 95
Disk storage event buffer	> 10 TB
Disk storage calibration and secondary data	> 5TB
CDR link capacity (80 Gb/s)	1 Gb/s

KRCS CERN Computer Centre Requirements

RAW data storage	100 TB/yr
Copy RAW data storage	100 TB/yr
ESD data storage	100 TB/yr
AOD data storage	4 x 20 TB/yr
TAG data storage	1 TB/yr
AODmc, Generator storage	120 TB (30 TB imported 4 times/yr)
TAGmc data storage	4 TB (1 TB imported 4 times/yr)
Total data storage	~500 TB / yr
CPU for First Pass analysis	2000 SI 95
CPU for user analysis	20,000 SI 95
WAN for AOD TAG export	80 TB/yr
WAN for AOD TAG import	124 TB/yr

Kick Simulation requirements 2000-2005

2000-2001

 $> 10^7$ simulated events/yr for detector optimisation studies

>> prepare TDRs

2002-2003

> 2. 10⁷ events/yr for high level trigger studies

2004 - 2005

➤ start to install and commission large scale facilities

- start to produce large samples of background events with the final detector description
- > ~10⁸ simulated events/yr

□ >2001

➤ use simulation and MDC to test computing model

> contribute to HEP Application WP of EU grid proposal (scenario3)

Kitch Sizing Estimate for Regional Centre

	2000-2001	2002-2003	2004-2005	>2005
AOD TAG				80TB/yr
AODmc TAGmc imported	2TB/yr	5TB/yr	20TB/yr	120 TB/yr
CPU analysis	3000 SI 95	5000 SI 95	10000 SI 95	10000 SI 95
RAWmc, ESDmc AODmc TAGmc generated	5TB/yr	10TB/yr	33TB/yr	333TB
CPU mc production	20000 SI 95	40000 SI 95	60000 SI 95	100000 SI 95

Kick LHCb Dataflow Model - Calibration

Calibration Cycle

□ I O overhead (20% from BaBar)