

Gaudi
LHCb Data Processing Applications Framework

Users Guide
 Corresponding to Gaudi release v9

Version: 9
Issue: 0
Edition: 0
Status:
ID:
Date: 19 December 2001

European Laboratory for Particle Physics
Laboratoire Européen pour la Physique des Particules
CH-1211 Genève 23 - Suisse

Gaudi Users Guide
 19 December 2001 Version/Issue: 9/0
Document Control Sheet

Document Status Sheet

Document Title: Gaudi Users Guide

Version: 9

Issue: 0

Edition: 0

ID:

Date: 19 December 2001

Keywords:

Tools DTP System: Adobe FrameMaker Version: 6.0

Layout
Template:

Software Documentation
Layout Templates

Version: V1 - 15 January 1999

Authorship Coordinator: M.Cattaneo (from October 1999)
P. Maley (until September 1999)

Title: Gaudi Users Guide

ID:

Version Issue Date Reason for change

6 0 15/Nov/00 Release of version 6 of the GAUDI framework

6 1 27/Nov/00 Update chapter 8 and section 3.3.1

6 2 5/Dec/00 Corrections to section 6.10, Appendix B

6 3 8/Jan/01 Add first two lines of code listing 76

7 0 20/Apr/01 Release of version 7 of GAUDI framework

8 0 28/Aug/01 Release of version 8 of GAUDI framework

9 0 19/Dec/01 Release of version 9 of GAUDI framework
page ii

Gaudi Users Guide
 Table of Contents Version/Issue: 9/0
Table of Contents

Document Control Sheet .ii
Document Status Sheet . .ii

Chapter 1
Introduction . 1

1.1 Purpose of the document . . 1
1.2 Conventions . 2

1.3 Reporting problems . . 5
1.4 Editor’s note . 5

Chapter 2
The framework architecture . . 7

2.1 Overview . . 7

2.2 Why architecture? . 7
2.3 Data versus code . . 8

2.4 Main components . . 9
2.5 Controlling and Scheduling . 11

Chapter 3
Release notes and software installation 13

3.1 Release History . 13

3.2 Current Functionality . 14
3.3 Changes between releases . 16

3.4 Availability . 19
3.5 Using the framework . 19

3.6 Working with development releases 21
3.7 Installation of the framework outside CERN 22

Chapter 4
Getting started . 25

4.1 Overview . 25

4.2 Creating a job . 25
4.3 The main program . 26

4.4 Configuring the job . 27
4.5 Algorithms . 30

4.6 Job execution . 32
4.7 Examples distributed with Gaudi 34

4.8 Additional LHCb specific examples 35

Chapter 5
Writing algorithms . 37
 page iii

Gaudi Users Guide
 Table of Contents Version/Issue: 9/0
5.1 Overview . 37

5.2 Algorithm base class . 37
5.3 Derived algorithm classes . 40

5.4 Nesting algorithms . 43
5.5 Algorithm sequences, branches and filters 44

Chapter 6
Accessing data . 47

6.1 Overview . 47

6.2 Using the data stores . 47
6.3 Using data objects . 49

6.4 Object containers . 50
6.5 Using object containers . 51

6.6 Data access checklist . 53
6.7 Defining Data Objects . 53

6.8 The SmartDataPtr/SmartDataLocator utilities 55
6.9 Smart References and Smart Reference Vectors 56

6.10 Persistent storage of data . 57

Chapter 7
Modelling Event Data . 59

Chapter 8
Detector Description . 61

8.1 Overview . 61

8.2 Detector Description Database 61
8.3 Detector Data Transient Store 63

8.4 General features of the detector description 69
8.5 Persistent representation based on XML files 73

8.6 Persistent storage in a Conditions Database 87

Chapter 9
Histogram facilities . 93

9.1 Overview . 93
9.2 The Histogram service. . 93

9.3 Using histograms and the histogram service 94
9.4 Persistent storage of histograms 95

Chapter 10
N-tuple and Event Collection facilities . 97

10.1 Overview . 97

10.2 N-tuples and the N-tuple Service 97
10.3 Event Collections . 102

10.4 Known Problems . 109

Chapter 11
page iv

Gaudi Users Guide
 Table of Contents Version/Issue: 9/0
Framework services . 111

11.1 Overview . 111
11.2 Requesting and accessing services 111

11.3 The Job Options Service . 113
11.4 The Standard Message Service 120

11.5 The Particle Properties Service 123
11.6 The Chrono & Stat service . 126

11.7 The Auditor Service . 129
11.8 The Random Numbers Service 131

11.9 The Incident Service . 134
11.10 The GiGa Service . 135

11.11 The Gaudi Introspection Service 135
11.12 Developing new services . 136

Chapter 12
Tools and ToolSvc . . 139

12.1 Overview . 139

12.2 Tools and Services . . 139
12.3 The ToolSvc . 145

12.4 GaudiTools . 147

Chapter 13
Converters . 153

13.1 Overview . 153
13.2 Persistency converters . 153

13.3 Collaborators in the conversion process 154
13.4 The conversion process . 156

13.5 Converter implementation - general considerations 158
13.6 Storing Data using the ROOT I/O Engine 158

13.7 The Conversion from Transient Objects to ROOT Objects 159
13.8 Storing Data using other I/O Engines 160

Chapter 14
Scripting and Interactivity . 161

14.1 Overview . 161

14.2 How to enable Python scripting 161
14.3 Current functionality . . 163

14.4 Physics Analysis Environment 167

Chapter 15
Visualization Facilities . 169

15.1 Overview . 169
15.2 The data visualization model 169

15.3 VisSys - the Gaudi visualisation services 170
15.4 Panoramix - the LHCb event display 172
 page v

Gaudi Users Guide
 Table of Contents Version/Issue: 9/0
Chapter 16
Framework packages, interfaces and libraries 173

16.1 Overview . 173
16.2 Gaudi Package Structure . . 173

16.3 Interfaces in Gaudi . . 176
16.4 Libraries in Gaudi . 179

Chapter 17
Analysis utilities. . 185

17.1 Overview . 185

17.2 CLHEP . 185
17.3 HTL . 185

17.4 NAG C . 186
17.5 ROOT . 186

Chapter 18
Accessing SICB facilities . 187

18.1 Overview . 187

18.2 Reading tapes . . 187
18.3 Populating the GAUDI transient data store: SICB Converters 188

18.4 Access to the Magnetic Field 190
18.5 Accessing the SICB detector Geometry from Gaudi 191

18.6 Using FORTRAN code in Gaudi 192
18.7 Handling pile up in Gaudi. 193

18.8 Handling SpillOver in Gaudi 195
18.9 Increasing the size of the ZEBRA COMMON block 196

Appendix A
References . . 197

Appendix B
Options for standard components 199

Appendix C
Job Options Grammar and Error Codes. 207

Appendix D
Design considerations . . 213
page vi

Gaudi Users Guide
Chapter 1 Introduction Version/Issue: 9/0
Chapter 1

Introduction

1.1 Purpose of the document

This document is intended as a combination of user guide and tutorial for the use of the
Gaudi application framework software. It is complemented principally by two other
“documents”: the Architecture Design Document (ADD) [1], and the online auto-generated
reference documentation [2]. A third document [3] lists the User Requirements and Scenarios
that were used as input and validation of the architecture design. All these documents and
other information about Gaudi, including source code documentation, are available via the
Gaudi home page: http://cern.ch/proj-gaudi. Documentation of the LHCb extensions to Gaudi,
and a copy of this user guide, are available on the LHCb web at:
http://cern.ch/lhcb-comp/Frameworks/Gaudi/. It is recommended that you also study the material
of the LHCb Gaudi tutorials given at CERN, which is available at
http://cern.ch/lhcb-comp/Frameworks/Gaudi/GaudiTutorial.htm. Should you wish to enrol on a
future tutorial, you should send mail to Markus.Frank@cern.ch.

The ADD contains a discussion of the architecture of the framework, the major design choices
taken in arriving at this architecture and some of the reasons for these choices. It should be of
interest to anyone who wishes to write anything other than private analysis code.

As discussed in the ADD the application framework should be usable for implementing the
full range of offline computing tasks: the generation of events, simulation of the detector,
event reconstruction, testbeam data analysis, detector alignment, visualisation, etc. etc..

In this document we present the main components of the framework which are available in
the current release of the software. It is intended to increment the functionality of the software
at each release, so this document will also develop as the framework increases in functionality.
Having said that, physicist users and developers actually see only a small fraction of the
framework code in the form of a number of key interfaces. These interfaces should change
very little if at all and the user of the framework cares very little about what goes on in the
background.
 page 1

http://cern.ch/proj-gaudi
http://cern.ch/lhcb-comp/Frameworks/Gaudi/
http://cern.ch/lhcb-comp/Frameworks/Gaudi/GaudiTutorial.htm
mailto:Markus.Frank@cern.ch

Gaudi Users Guide
Chapter 1 Introduction Version/Issue: 9/0
The document is arranged as follows: Chapter 2 is a short resume of the framework
architecture, presented from an “Algorithm-centric” point of view, and re-iterating only a part
of what is presented in the ADD.

Chapter 3 contains a summary of the functionality which is present in the current release, and
details of how to obtain and install the software.

Chapter 4 discusses in some detail an example which comes with the framework library. It
covers the main program, some of the basic aspects of implementing algorithms, the
specification of job options and takes a look at how the code is actually executed. The subject
of coding algorithms is treated in more depth in Chapter 5.

Chapter 6 discusses the use of the framework data stores and event data. Chapter 7 gives
pointers to guidelines for defining the LHCb event data model. Chapters 8, 9, 10 discuss the
other types of data accessible via these stores: detector description data (material and
geometry), histogram data and n-tuples.

Chapter 11 deals with services available in the framework: job options, messages, particle
properties, auditors, chrono & stat, random numbers, incidents, introspection. It also has a
section on developing new services. Framework tools are discussed in Chapter 12, the use and
implementation of converter classes in Chapter 13.

Chapter 14 discusses scripting as a means of configuring and controlling the application
interactively. This is followed by a description in Chapter 15 of how visualisation facilities
might be implemented inside Gaudi.

Chapter 16 describes the package structure of Gaudi and discusses the different types of
libraries in the distribution.

Chapter 17 gives pointers to the documentation for class libraries which we are
recommending to be used within Gaudi.

The use of certain SICB facilities within Gaudi and the wrapping of FORTRAN code are
discussed in Chapter 18.

Appendix A contains a list of references. Appendix B lists the options which may be specified
for the standard components available in the current release. Appendix C gives the details of
the syntax and possible error messages of the job options compiler. Finally, Appendix D is a
small guide to designing classes that are to be used in conjunction with the application
framework.

1.2 Conventions

1.2.1 Units

We have decided to adopt the same system of units as CLHEP, as used also by GEANT4. This
system is fully documented in the CLHEP web pages, at the URL:
http://wwwinfo.cern.ch/asd/lhc++/clhep/manual/UserGuide/Units/units.html.
page 2

http://wwwinfo.cern.ch/asd/lhc++/clhep/manual/UserGuide/Units/units.html

Gaudi Users Guide
Chapter 1 Introduction Version/Issue: 9/0
The list of basic units is reproduced in Table 1.1. Note that this differs from the convention
used in SICB, where the basic units of length, time and energy are, respectively, centimetre,
GeV, second..

Users should not actually need to know what units are used in the internal representation of
the data, as long as they are consistent throughout the Gaudi data stores. What they care
about is that they can define and plot quantities with the correct units. In some specialised
algorithms they may also wish to renormalise the data to a different set of units, if the default
set would lead to numerical precision problems.

We therefore propose the following rules, which are discussed more fully in reference [5].

1. All dimensioned quantities in the Gaudi data stores shall conform to the CLHEP
system of units.

2. All definitions of dimensioned quantities shall be dimensioned by multiplying by the
units defined in the CLHEP/Units/SystemOfUnits.h header file. For example:

Note that the user should not care about the numerical value of the numbers
my_height and my_weight. Internally these numbers are represented as 1700. and
4.68e+26. respectively, but the user does not need to know.

3. All output of dimensioned quantities should be converted to the required units by
dividing by the units defined in the CLHEP/Units/SystemOfUnits.h header file.
For example:

which, for a healthy person, should plot a number between 19. and 25....

4. Physical constants should not be defined in user code. They should be taken directly
from the CLHEP/Units/PhysicalConstants.h header file. For example:

Table 1.1 CLHEP system of units

Quantity Unit

Length millimetre

Time nanosecond

Energy MeV

Electric charge positron charge

Temperature Kelvin

Amount of substance mole

Plane angle radian

const double my_height = 170*cm;
const double my_weight = 75*kg;

my_hist = histoSvc()->book("/stat/diet","corpulence (kg/m**2)",30,10.,40.);
double my_corpulence = my_weight / (my_height*my_height);
my_hist->fill(my_corpulence/(kg/m2), 1.);

float my_rest_energy = my_weight * c_squared;
 page 3

Gaudi Users Guide
Chapter 1 Introduction Version/Issue: 9/0
5. Users may wish to use a different set of units for specific purposes (e.g. when the
default units may lead to precision problems). In this case algorithms can renormalise
their private copy of the data (as shown in the last line of the rule 3 example) for
internal use, but making sure that any data subsequently published to the public data
stores is converted back to the CLHEP units.

1.2.2 Coding Conventions

The Gaudi software follows (or should follow!) the LHCb C++ coding conventions described
in reference [6]. A tool to check compliance with these coding conventions is described at
http://cern.ch/lhcb-comp/Support/Conventions/RuleChecker.htm

1.2.2.1 File extensions

One consequence of following the LHCb coding conventions is that the specification of the
C++ classes is done in two parts: the header or “.h” file and the implementation or “.cpp” file.

We also define file extensions for Gaudi specific files. The recommended file extension for Job
Options files is ".opts" (see Section 11.3.3 on page 116). For Python scripts, the extension ".py"
is mandatory (see Chapter 14).

1.2.3 Naming Conventions

Histograms In order to avoid clashes in histogram identifiers, we suggest that histograms are
placed in named subdirectories of the transient histogram store. The top level subdirectory
should be the name of a sub-detector group (e.g. VELO). Below this, users are free to define
their own structure. One possibility is to group all histograms produced by a given algorithm
into a directory named after the algorithm.

Event data Naming conventions for LHCb data are discussed in reference [8].

1.2.4 Conventions of this document

Angle brackets are used in two contexts. To avoid confusion we outline the difference with an
example.

The definition of a templated class uses angle brackets. These are required by C++ syntax, so
in the instantiation of a templated class the angle brackets are retained:

AlgFactory<UserDefinedAlgorithm> s_factory;
page 4

http://cern.ch/lhcb-comp/Support/Conventions/RuleChecker.htm

Gaudi Users Guide
Chapter 1 Introduction Version/Issue: 9/0
This is to be contrasted with the use of angle brackets to denote “replacement” such as in the
specification of the string:

which implies that the string should look like:

Hopefully what is intended will be clear from the context.

1.3 Reporting problems

Users of the Gaudi software are encouraged to report problems and requests for new features
via the LHCb problem reporting system. This system is integrated in the CERN Problem
Report Management System (CPRMS) provided by IT division, based on the Action Request
System software from Remedy Corporation.

To report a new problem, go to the LHCb CPRMS home page
http://cern.ch/hep-service-prms/lhcb.html, click on the Submit button, and fill in the form. This
will add the report to the system and notify the developers by E-mail. You will receive E-mail
notification of any changes in the status of your report.

To view the list of current problems, and their status, click the Query button on the LHCb
CPRMS home page.

Active developers of the Gaudi software are encouraged to use the gaudi-developers mailing
list for discussion of Gaudi features and future developments. This list is not, primarily,
intended for bug reports. In order to send mail to gaudi-developers@listbox.cern.ch, you must
first subscribe to the list, using the form at
https://wwwlistbox.cern.ch/admin-cgi/listbox-admin?operation=viewlist&mail=gaudi-developers@cern.ch.
You need a CERN mailserver account to be able to use this form...

The archive of the mailing list is publically accessible on the Web, at
http://cern.ch/~majordom/news/gaudi-developers/index.html.

1.4 Editor’s note

This document is a snapshot of the Gaudi software at the time of the release of version v9. We
have made every effort to ensure that the information it contains is correct, but in the event of
any discrepancies between this document and information published on the Web, the latter
should be regarded as correct, since it is maintained between releases and, in the case of code
documentation, it is automatically generated from the code.

“<concreteAlgorithmType>/<algorithmName>”

“EmptyAlgorithm/Empty”
 page 5

http://cern.ch/hep-service-prms/lhcb.html
http://cern.ch/~majordom/news/gaudi-developers/index.html
https://wwwlistbox.cern.ch/admin-cgi/listbox-admin?operation=viewlist&mail=gaudi-developers@cern.ch
mailto:gaudi-developers@listbox.cern.ch

Gaudi Users Guide
Chapter 1 Introduction Version/Issue: 9/0
We encourage our readers to provide feedback about the structure, contents and correctness
of this document and of other Gaudi documentation. Please send your comments to the
editor, Marco.Cattaneo@cern.ch
page 6

mailto:Marco.Cattaneo@cern.ch

Gaudi Users Guide
Chapter 2 The framework architecture Version/Issue: 9/0
Chapter 2

The framework architecture

2.1 Overview

In this chapter we outline some of the main features of the Gaudi architecture. A (more)
complete view of the architecture, along with a discussion of the main design choices and the
reasons for these choices may be found in references [1] and [4].

2.2 Why architecture?

The basic “requirement” of the physicists is a set of programs for doing event simulation,
reconstruction, visualisation, etc. and a set of tools which facilitate the writing of analysis
programs. Additionally a physicist wants something that is easy to use and (though he or she
may claim otherwise) is extremely flexible. The purpose of the Gaudi application framework
is to provide software which fulfils these requirements, but which additionally addresses a
larger set of requirements, including the use of some of the software online.

If the software is to be easy to use it must require a limited amount of learning on the part of
the user. In particular, once learned there should be no need to re-learn just because
technology has moved on (you do not need to re-take your licence every time you buy a new
car). Thus one of the principal design goals was to insulate users (physicist developers and
physicist analysists) from irrelevant details such as what software libraries we use for data
I/O, or for graphics. We have done this by developing an architecture. An architecture
consists of the specification of a number of components and their interactions with each other.
A component is a “block” of software which has a well specified interface and functionality.
An interface is a collection of methods along with a statement of what each method actually
does, i.e. its functionality.

The main components of the Gaudi software architecture can be seen in the object diagram
shown in Figure 2.1. Object diagrams are very illustrative for explaining how a system is
decomposed. They represent a hypothetical snapshot of the state of the system, showing the
 page 7

Gaudi Users Guide
Chapter 2 The framework architecture Version/Issue: 9/0
objects (in our case component instances) and their relationships in terms of ownership and
usage. They do not illustrate the structure, i.e. class hierarchy, of the software.

It is intended that almost all software written by physicists, whether for event generation,
reconstruction or analysis, will be in the form of specialisations of a few specific components.
Here, specialisation means taking a standard component and adding to its functionality while
keeping the interface the same. Within the application framework this is done by deriving
new classes from one of the base classes:

• DataObject

• Algorithm

• Converter

In this chapter we will briefly consider the first two of these components and in particular the
subject of the “separation” of data and algorithms. They will be covered in more depth in
chapters 5 and 6. The third base class, Converter, exists more for technical necessity than
anything else and will be discussed in Chapter 13. Following this we give a brief outline of the
main components that a physicist developer will come into contact with.

2.3 Data versus code

Broadly speaking, tasks such as physics analysis and event reconstruction consist of the
manipulation of mathematical or physical quantities: points, vectors, matrices, hits, momenta,
etc., by algorithms which are generally specified in terms of equations and natural language.
The mapping of this type of task into a programming language such as FORTRAN is very
natural, since there is a very clear distinction between “data” and “code”. Data consists of
variables such as:

integer n
real p(3)

Figure 2.1 Gaudi Architecture Object Diagram

&RQYHUWHU

$OJRULWKP

(YHQW�'DWD
6HUYLFH

3HUVLVWHQF\
6HUYLFH

'DWD
)LOHV

$OJRULWKP$OJRULWKP

7UDQVLHQW�
(YHQW�6WRUH

'HWHF��'DWD
6HUYLFH

3HUVLVWHQF\
6HUYLFH

'DWD
)LOHV

7UDQVLHQW�
'HWHFWRU�
6WRUH

0HVVDJH
6HUYLFH

-RE2SWLRQV
6HUYLFH

3DUWLFOH�3URS�
6HUYLFH

2WKHU
6HUYLFHV

+LVWRJUDP
6HUYLFH

3HUVLVWHQF\
6HUYLFH

'DWD
)LOHV

7UDQVLHQW
+LVWRJUDP�
6WRUH

$SSOLFDWLRQ
0DQDJHU

&RQYHUWHU
&RQYHUWHU(YHQW

6HOHFWRU
page 8

Gaudi Users Guide
Chapter 2 The framework architecture Version/Issue: 9/0
and code which may consist of a simple statement or a set of statements collected together
into a function or procedure:

real function innerProduct(p1, p2)
real p1(3),p2(3)
innerProduct = p1(1)*p2(1) + p1(2)*p2(2) + p1(3)*p2(3)
end

Thus the physical and mathematical quantities map to data and the algorithms map to a
collection of functions.

A priori, we see no reason why moving to a language which supports the idea of objects, such
as C++, should change the way we think of doing physics analysis. Thus the idea of having
essentially mathematical objects such as vectors, points etc. and these being distinct from the
more complex beasts which manipulate them, e.g. fitting algorithms etc. is still valid. This is
the reason why the Gaudi application framework makes a clear distinction between “data”
objects and “algorithm” objects.

Anything which has as its origin a concept such as hit, point, vector, trajectory, i.e. a clear
“quantity-like” entity should be implemented by deriving a class from the DataObject base
class.

On the other hand anything which is essentially a “procedure”, i.e. a set of rules for
performing transformations on more data-like objects, or for creating new data-like objects
should be designed as a class derived from the Algorithm base class.

Further more you should not have objects derived from DataObject performing long
complex algorithmic procedures. The intention is that these objects are “small”.

Tracks which fit themselves are of course possible: you could have a constructor which took a
list of hits as a parameter; but they are silly. Every track object would now have to contain all
of the parameters used to perform the track fit, making it far from a simple object.
Track-fitting is an algorithmic procedure; a track is probably best represented by a point and a
vector, or perhaps a set of points and vectors. They are different.

2.4 Main components

The principle functionality of an algorithm is to take input data, manipulate it and produce
new output data. Figure 2.2 shows how a concrete algorithm object interacts with the rest of
the application framework to achieve this.

The figure shows the four main services that algorithm objects use:

• The event data store

• The detector data store

• The histogram service

• The message service
 page 9

Gaudi Users Guide
Chapter 2 The framework architecture Version/Issue: 9/0
The particle property service is an example of additional services that are available to an
algorithm. The job options service (see Chapter 11) is used by the Algorithm base class, but
is not usually explicitly seen by a concrete algorithm.

Each of these services is provided by a component and the use of these components is via an
interface. The interface used by algorithm objects is shown in the figure, e.g. for both the event
data and detector data stores it is the IDataProviderSvc interface. In general a component
implements more than one interface. For example the event data store implements another
interface: IDataManagerSvc which is used by the application manager to clear the store
before a new event is read in.

An algorithm’s access to data, whether the data is coming from or going to a persistent store
or whether it is coming from or going to another algorithm is always via one of the data store
components. The IDataProviderSvc interface allows algorithms to access data in the store
and to add new data to the store. It is discussed further in Chapter 6 where we consider the
data store components in more detail.

The histogram service is another type of data store intended for the storage of histograms and
other “statistical” objects, i.e. data objects with a lifetime of longer than a single event. Access
is via the IHistogramSvc which is an extension to the IDataProviderSvc interface, and is
discussed in Chapter 9. The n-tuple service is similar, with access via the INtupleSvc
extension to the IDataProviderSvc interface, as discussed in Chapter 10.

In general, an algorithm will be configurable: It will require certain parameters, such as
cut-offs, upper limits on the number of iterations, convergence criteria, etc., to be initialised
before the algorithm may be executed. These parameters may be specified at run time via the
job options mechanism. This is done by the job options service. Though it is not explicitly
shown in the figure this component makes use of the IProperty interface which is
implemented by the Algorithm base class.

During its execution an algorithm may wish to make reports on its progress or on errors that
occur. All communication with the outside world should go through the message service
component via the IMessageSvc interface. Use of this interface is discussed in Chapter 11.

Figure 2.2 The main components of the framework as seen by an algorithm object.

&RQFUHWH$OJRULWKP

(YHQW'DWD6YF
,'DWD3URYLGHU6YF

,'DWD3URYLGHU6YF

,+LVWRJUDP6YF

,0HVVDJH6YF

,3URSHUW\

2EMHFW$ 2EMHFW%

,$OJRULWKP

'HWHFWRU'DWD6YF

+LVWRJUDP6YF

0HVVDJH6YF

3DUWLFOH3URSHUW\6YF
,3DUWLFOH3URSHUW\6YF

$SSOLFDWLRQ0JU

,6YF/RFDWRU
page 10

Gaudi Users Guide
Chapter 2 The framework architecture Version/Issue: 9/0
As mentioned above, by virtue of its derivation from the Algorithm base class, any concrete
algorithm class implements the IAlgorithm and IProperty interfaces, except for the three
methods initialize(), execute(), and finalize() which must be explicitly
implemented by the concrete algorithm. IAlgorithm is used by the application manager to
control top-level algorithms. IProperty is usually used only by the job options service.

The figure also shows that a concrete algorithm may make use of additional objects internally
to aid it in its function. These private objects do not need to inherit from any particular base
class so long as they are only used internally. These objects are under the complete control of
the algorithm object itself and so care is required to avoid memory leaks etc.

We have used the terms “interface” and “implements” quite freely above. Let us be more
explicit about what we mean. We use the term interface to describe a pure virtual C++ class,
i.e. a class with no data members, and no implementation of the methods that it declares. For
example:

is a pure abstract class or interface. We say that a class implements such an interface if it is
derived from it, for example:

A component which implements more than one interface does so via multiple inheritance,
however, since the interfaces are pure abstract classes the usual problems associated with
multiple inheritance do not occur. These interfaces are identified by a unique number which is
available via a global constant of the form: IID_InterfaceType, such as for example
IID_IDataProviderSvc. Interface identifiers are discussed in detail in Chapter 16.

Within the framework every component, e.g. services and algorithms, has two qualities:

• A concrete component class, e.g. TrackFinderAlgorithm or MessageSvc.

• Its name, e.g. “KalmanFitAlgorithm” or “MessageService”.

2.5 Controlling and Scheduling

2.5.1 Application Bootstrapping

The application is bootstrapped by creating an instance of the ApplicationMgr component. The
ApplicationMgr is in charge of creating an initializing a minimal set of basic and essential
services before control is given to specialized scheduling services. These services are shown in

class PureAbstractClass {
virtual method1() = 0;
virtual method2() = 0;

}

class ConcreteComponent: public PureAbstractClass {
method1() { }
method2() { }

}

 page 11

Gaudi Users Guide
Chapter 2 The framework architecture Version/Issue: 9/0
Figure 2.3. The EventLoopMgr is in charge controlling the main physics event1 loop and
scheduling the top algorithms. There will be a number of more or less specialized
implementations of EventLoopMgr which will perform the different actions depending on the
running environment, and experiment specific policies (clearing stores, saving histograms,
etc.). There exists the possibility to give the full control of the application to a component
implementing the IRunable interface. This is needed for interactive applications such as
event display, interactive analysis, etc. The Runable component can interact directly with the
EventLoopMgr for triggering the processing of the next physics event.

The essential services that the ApplicationMgr need to instantiate and initialize are the
MessageSvc and JobOptionsSvc.

2.5.2 Algorithm Scheduling

The Gaudi architecture foresees explicit invocation of algorithms by the framework or by
other algorithms. This latter possibility allows for a hierarchical organization of algorithms,
for example, a high level algorithm invoking a number of sub-algorithms.

The EventLoopMgr component is in charge of initializing, finalizing and executing the set of
Algorithms that have been declared with the TopAlg property. These Algorithms are executed
unconditionally in the order they have been declared. This vary basic scheduling is
insufficient for many use cases (event filtering, conditional execution, etc.). Therefore, a
number of Algorithms have been introduced that perform more sophisticated scheduling and
can be configured by some properties. Examples are: Sequencers, Prescalers, etc. and the list
can be easily extended. See Section 5.5 for more details on these generic high level
Algorithms.

1. We state physics event to differentiate from what is called generally an event in computing.

Figure 2.3 Control and Scheduling collaboration

(YHQW/RRS6YF(YHQW/RRS6YF

$SSOLFDWLRQ0JU$SSOLFDWLRQ0JU

,$SS0JU8,
(YHQW/RRS0JU(YHQW/RRS0JU

,5XQDEOH

5XQDEOH5XQDEOH

(YHQW/RRS6YF(YHQW/RRS6YF$OJRULWKP�$OJRULWKP�
(YHQW/RRS6YF(YHQW/RRS6YF(YHQW/RRS6YF(YHQW/RRS6YF0HVVDJH6YF0HVVDJH6YF

,$OJRULWKP

7RS$OJ
SURSHUW\

(YHQW/RRS
SURSHUW\

5XQDEOH
SURSHUW\

([W6YF
SURSHUW\

,6HUYLFH
page 12

Gaudi Users Guide
Chapter 3 Release notes and software installation Version/Issue: 9/0
Chapter 3

Release notes and software installation

3.1 Release History

The Gaudi architecture and framework, which was initially developed by the LHCb
collaboration, became a joint development project between several experiments, starting from
release v6. At this time the package structure was modified, to split the experiment specific
packages from the common packages. The following table reflects the version history since
the re-packaging. For the history of earlier releases, please refer to previous versions of the
(LHCb) Gaudi Users Guide.

Version Date Package List

v9 Dec 2001 GaudiPolicy[v5], GaudiExamples[v9], GaudiKernel[v11], GaudiSvc[v7],
GaudiAud[v5], GaudiAlg[v5], GaudiTools[v5], GaudiNagC[v6], Gaud-
iDb[v5], GauiRootDb[v5], GaudiODBCDb[v5], HbookCnv[v11],
RootHistCnv[v5], GaudiPython[v2], GaudiObjDesc[v2], GaudiIntrospec-
tion[v2], GaudiConf[6], Event/LHCbEvent [v12], SICB/SicbCnv [v14],
Det/XmlDDDB [v7],Det/DetDesc [v8], Det/DetCond [v1], Sim/GEANT4
[v3r0p1], Sim/GiGa [v6],Ex/*[v3], Vis/OnXSvc [v3], Vis/SoLHCb [v3],
Vis/Panoramix [v3]

v8r1 July 2001 GaudiPolicy[v5], GaudiExamples[v8], GaudiKernel[v10], GaudiSvc[v6],
GaudiAud[v4], GaudiAlg[v4], GaudiTools[v4], GaudiNagC[v5r3p2],
GaudiDb[v4], GauiRootDb[v4], GaudiODBCDb[v3], HbookCnv[v10r1],
RootHistCnv[v4], SIPython[v2], GaudiConf[5], Event/LHCbEvent [v11],
Event/DbCnv [v5], SICB/SicbCnv [v13], Det/XmlDDDB [v6],
Det/DetDesc [v7], Sim/GEANT4 [v3r0p1], Sim/GiGa [v5],Ex/*[v2]

v7 23/03/2001 GaudiPolicy[v4], GaudiExamples[v7], GaudiKernel[v9], GaudiSvc[v5],
GaudiAud[v3], GaudiAlg[v3], GaudiTools[v3], GaudiNagC[v5r3p1],
GaudiDb[v3], HbookCnv[v9], RootHistCnv[v3], SIPython[v1r1],
DetDesc[v6], XmlDDDB[v5], XmlEditor{v3], LHCbEvent[v9], DbCnv[v4],
GiGa[v4], GaudiConf[v4], SicbCnv[v11],Ex/*[v1]
 page 13

Gaudi Users Guide
Chapter 3 Release notes and software installation Version/Issue: 9/0
3.2 Current Functionality

We use an incremental and iterative approach for producing the Gaudi software. We plan to expand its
capabilities release by release. The functionality list that follows is organized by categories.

Interfaces A set of interfaces that facilitates the interaction between the different components of the
framework. Mainly these are interfaces to services.

Basic framework services This set of services offer the minimal functionality needed for
constructing applications. They are described in detail in Chapter 11.
The message service is used to send and format messages generated in the code, with an associated
severity that is used for filtering and dispatching them.
The job options service allows the configuration of the application by end users assigning values to
properties defined within the code; properties can be basic types (float, bool, int, string),
or extended with bounds checking, hierarchical lists, and immediate callback from string "commands".
The Random Numbers service makes available several random number distributions via a standard
interface, and ensures that applications use a unique random number engine in a reproducible fashion.
The Chrono service offers the functionality for measuring elapsed time and job execution statistics.
Auditors and AuditorSvc provide monitoring of various characteristics of the execution of Algorithms.
Auditors are called before and after invocation of any Algorithm method.
The Incident service provides a synchronization between objects within the Application by using
named incidents that are communicated to listener clients.
The Tools service, which provides management of Tools, is discussed in Chapter 12. Tools are
lightweight objects which can be requested and used many times by other components to perform well
defined tasks. A base class for associator tools has been added in this release.
Data services provide the access to the transient data objects (event, detector and statistical data). The
data services are described in chapters 6 to 10. The basic building blocks for the implementation of the
experiment specific data models are also described in Chapter 6.

Event data model The event model has been extended to Velo, L0, L1 and updated for Calo. The
current status is presented in Chapter 7.

Event data persistent storage The current version provides a set of generic classes for implementing
event data persistency (GaudiDb package) and a set of classes supporting persistent I/O to ROOT files
(GaudiRootDb package). Details can be found in Chapter 13.

Input from event data files (or tapes) produced by SICB in ZEBRA format (RZ) is also supported. The
ZEBRA banks are converted to C++ objects by specialized fragments of code (SICB converters). This
conversion is available in the framework for a number of SICB banks. Adding more converters is
possible and will be done on request. The event data produced by the application can be stored in
ROOT files and retrieved later. This also requires to write specialized converters.

Histograms & N-tuples The framework provides facilities for creating histograms (1 and 2
dimensional) and n-tuples (row and column wise) from user algorithms. The histogram interface is the
AIDA[13] common interface. Saving histograms and n-tuples is currently implemented using the
HBOOK and ROOT format. The interface to histograms and n-tuples from the user code should not be
affected if the persistency representation is changed later. Details of the histogram and n-tuple facilities
can be found in Chapter 9 and 10 respectively.
page 14

Gaudi Users Guide
Chapter 3 Release notes and software installation Version/Issue: 9/0
Event tag collections The framework provides facilities for creating and using collections of
event tags (based on an n-tuples implementation) for fast direct access to physics events. The
user can specify an event tag collection as input data to an application and perform
sophisticated selections using the facilities existing in the data storage technology. This is
explained in Chapter 10.

Detector description and geometry The framework provides facilities for accessing detector
description and geometry data. The logical structure of the detector is described in terms of a hierarchy
of detector elements, the basic geometry in terms of volumes, solids and materials. Facilities for
customizing the generic description to many specific detector needs are also provided. This allows the
development of detector specific code which can provide geometry answers to questions from the
physics algorithms (simulation, reconstruction and analysis). The persistent representation of the
detector description is based on text files in XML format. An XML editor that understands the detector
description semantics has been developed. A transport service is provided to estimate the amount of
material between two arbitrary points in the detector setup. This is described in detail in Chapter 8.

Analysis services A number of facilities and services are included in the current release to
facilitate writing physics analysis code. The GaudiAlg package is a collection of general
purpose algorithms, including a sequencer which uses the filtering capability of algorithms to
manage the execution of algorithm sequences in a filtering application (see Section 5.5). The
Particle Properties service (Section 11.5) provides the properties of all the elementary particles.
Numerical utilities are available via the CLHEP and NAG C libraries (Chapter 17).

Visualization services The framework provides facilities for the visualisation of event and detector
data. These services are currently based on the packages that constitute the Open Scientist suite
(OpenGL, OpenInventor(soFree), Lab,...). An event and geometry display application has been built
using these facilities. This is briefly described in Chapter 15.

SICB services A number of services are included in the current release to facilitate the access to SICB
data (detector description, magnetic field, etc.) and to facilitate re-using existing Fortran code with the
framework. These services can be extended to accommodate new concrete requests when integrating
big parts of the current legacy code (SICB). In the latest release there full support for event pile-up. It is
possible to read events from two input data streams and merge them before any processing is done.
Refer to Chapter 18 for more details.

Object Description and Object Introspection The framework provides object modelling and
description using XML files. Two code generation back-ends are currently available: to
generate the data object header files and to generate the object dictionaries for the object
introspection. Refer to Section 6.7 and Section 11.11 for more details.

Scripting services The framework provides a service for interfacing Python with a Gaudi
application. The user can interact with a Gaudi application from the Python prompt. The
current functionality allows the user to set and get properties from Algorithms and Services,
interact with the data stores (event, detector and histogram) using the object introspection
capability, and to schedule the execution of the application’s algorithms. Refer to Chapter 14
for more details.

Dynamic loading of libraries The framework can be used to implement different data processing
applications for different environments. It is important that the services and their concrete
implementations are extendable and configurable dynamically at run time and not statically. The latter
would imply linking with all the available libraries producing huge executables. And in certain
applications and environments some of the libraries will surely never be used. The framework provides
support for dynamic libraries for the Windows and Linux platforms.
 page 15

Gaudi Users Guide
Chapter 3 Release notes and software installation Version/Issue: 9/0
3.3 Changes between releases

3.3.1 Changes between current release (v9) and previous release (v8)

• Data-store classes. Release v9 includes a major re-design of the Data Store classes
and interfaces triggered by ATLAS data store implementation.

• Object description and object introspection. Two new packages has been added that
provide the object description based on XML files and run-time object introspection
capability. Refer to Section 6.7 and Section 11.11 for more details.

• Python service. The scripting service based on Python has been re-implemented
using the Boost library1. Its functionality has been extended. Refer to Chapter 14 for
more details.

• Algorithms. Added toolSvc() accessor to Algorithm base class.

• Algorithm Tools. Added initialize() and finalize() methods in IAlgTool
interface. The base class AlgTool implements them as dummy but allows an
implementation of them on specific Algorithm Tools. Removed the need to
implement a queryInterface() in specific Algorithm tools. Instead use the
expression declareInterface<Ixxxx>(this) in the constructor.

• A number of small internal framework improvements:

• ApplicationMgr. Re-organization to relocate the management of services to
ServiceManager class. The interfaces ISvcManager and ISvcLocator
have changed.

• Introduced a new constructor for InterfaceID that uses a name (class
name) instead of an interface number.

• JobOptions. Introduced new options #pragma print on, #pragma
print off to switch the printing of job options on and off.

• Histograms. New job option HistogramPersistencySvc.PrintHistos
to steer printing to standard output. Allow RZ directory names up to 16
characters rather than 8.

3.3.1.1 Incompatible changes

In this section we will list changes that users need to make to their code in order to upgrade to
the current version of Gaudi from the previous version.

1. In the area of Data Stores many low level base classes (DataObject, DataSvc,
Converters, Registry, GenericAddress, etc.) have changed together with some
basic interfaces (IConverter, IDataManagerSvc, IDataProviderSvc, etc.). This
implies that some packages, typically converters packages, will need deep changes in
the code. Instructions on how to upgrade them can be found in
http://cern.ch/lhcb-comp/Frameworks/Gaudi/Gaudi_v9/Changes_cookbook.pdf.

1. http://www.boost.org/libs/libraries.htm
page 16

http://cern.ch/lhcb-comp/Frameworks/Gaudi/Gaudi_v9/Changes_cookbook.pdf

Gaudi Users Guide
Chapter 3 Release notes and software installation Version/Issue: 9/0
End user algorithm packages should not be too affected by these changes.

2. Removed the list of default interfaces in ApplicationMgr. Services are late created
if needed. This may cause problems if the order of creation played a role. The
Algorithms and Tools that were accessing services using the call
serviceLocator()->service("name", interface) may require to force the
creation of a previously default service by adding a third argument with true to
force such creation if not existing.

3. The constant CLID_Event has been removed from ClassID.h. It needs to be
defined now in the Event.h header file.

4. Algorithm tools are required to implement an interface (pure abstract base class)
using the facility provided for declaring it as mentioned above in the list of changes.

3.3.2 Changes between release v8 and release v7

3.3.2.1 Incompatible changes

In this section we will list changes that users need to make to their code in order to upgrade to
version v8 of Gaudi from version v7.

1. Location of Histogram Interfaces. Gaudi version v8 uses the standard AIDA
interfaces for histograms. These interfaces are located in the AIDA project area. The
changes to the end-user code is that the include file should be prefixed with AIDA/
instead of the current GaudiKernel/.

2. Persistent representation of N-tuples. N-tuples saved in HBOOK format no longer
have type information in the first row. See the discussion in Section 10.2.3.2 for more
details.

3. The output of N-tuples to ODBC (Open DataBase Connectivity) is no longer
supported. N-Tuple preselections based on SQL or interpreted C++ are no longer
available. If you rely on these features, please contact the Gaudi development team.

4. When saving data objects in a data store, all the sub-directory nodes in the path must
already exist or should be explicitly created. In fact this is not a new feature, but a bug
fix! Implicit creation of sub-directory nodes will be implemented in a future version.

3.3.3 Changes between release v7 and release v6

• Release v7 includes some re-packaging and changes in location of some include files,
see section 3.3.3.1.

• The control of the “physics event” loop has been separated from the
ApplicationMgr and has become a new component, the event loop manager. A
number of subsequent specializations have been provided:
MininalEventLoopMgr, EventLoopMgr, and GaudiEventLoopMgr. These
changes have been made to allow the possibility to have other types of event loop
processing. These changes are backward compatible.
 page 17

Gaudi Users Guide
Chapter 3 Release notes and software installation Version/Issue: 9/0
• The first version of a scripting service based on Python has been released.

• A number of small internal framework improvements:

• Elimination of the up to now required static libraries.

• Added version number (major and minor) to the Interface ID to check for
interface compatibility at run-time.

• Re-shuffling of the System class and conversion to a namespace.

• Handling empty vectors in JobOptions.

3.3.3.1 Incompatible changes

In this section we will list changes that users need to make to their code in order to upgrade to
version v7 of Gaudi from version v6.

1. Histogram persistency. In previous versions, the HBOOK histogram persistency
service was created by default. From this version there is no default histogram
persistency: the ROOT or HBOOK persistency services have to be explicitly declared.
See Section 9.4 for details

2. EvtMax. In previous versions it was possible to declare the number of events to be
processed through either of the properties ApplicationMgr.EvtMax or
EventSelector.EvtMax. In this release, only ApplicationMgr.EvtMax is
supported, the default being all the events in the input file

3. The property EventSelector.JobInput has been removed. Use
EventSelector.Input instead (note the change in format of the value string).

4. Detector Description. The detector description interfaces (ISolid.h,
IDetectorElement.h, IGeometryInfo.h etc.) have been moved out of the
GaudiKernel package and into the DetDesc package. The detector description related
options of the Application Manager (ApplicationMgr.DetDbLocation etc.) are
now properties of the Detector Data Service (e.g.
DetectorDataSvc.DetDbLocation etc.).

5. Gaudi has been restructured into a set of experiment independent packages, and a set
of LHCb packages. Since many of the packages have changed name, the paths on
which to find include files has also changed.

3.3.4 Deprecated features

We list here features of the framework which have become obsolete, because they have been
superseded by more recent features. Users are discouraged from using the deprecated
features, which may be removed in a future release.

Adding indexed items to N-tuples Use the function addIndexedItem instead of addItem.

Accessors names in Algorithm Use the service accessors with short names (e.g. msgSvc())
instead of the long equivalent ones (e.g. messageService())
page 18

Gaudi Users Guide
Chapter 3 Release notes and software installation Version/Issue: 9/0
Access to extra services from Algorithms. Use the templated method service() instead of
using the serviceLocator() together with the queryInterface() to get a reference to a
service interface.

User Parameters in detector elements. The XML tag for user parameters in the detector
description (detector elements, etc.) is now <param/> instead of <userparameter/>. The
old name will be maintained for a while. The methods in DetectorElement and
Condition classes will accordonly be changed to use the word param instead of
userParameter.

3.4 Availability

The application framework is supported on the following platforms:

• Windows NT4 and Windows 2000, using the Developer Studio 6.0 SP2 Visual C++
environment

• RedHat Linux 6.1 (certified CERN Linux distribution with SUE and AFS) with
egcs-2.91.66 and gcc-2.95.2.

The code, documentation and installation instructions are available from the LHCb web site
at: http://cern.ch/lhcb-comp/Frameworks/Gaudi/ .

Framework sources and binaries are also available in the CERN AFS cell, at
/afs/cern.ch/sw/Gaudi for the common Gaudi packages, and at /afs/cern.ch/lhcb/software/NEW for
the LHCb specific packages.

3.5 Using the framework

3.5.1 CVS repository

The framework sources are stored in CVS and can be accessed using the getpack command. The
first time you access a Gaudi package, the CVS server will ask for a password, reply CERNuser. Note
that you only have write access to the LHCb specific part of the repository. For the common Gaudi
packages you can send all the CVS commands that don’t require write access. If you use a command
like commit, you will get an error message.

3.5.2 CMT

The framework libraries have been built using the Configuration Management Tool (CMT)
[7]. Therefore, using the CMT tool is the recommended way to modify existing packages or
re-build the examples included in the release. If CMT is not available in your system, please
follow the installation instructions in [7]. The following simple examples are for Unix, but
 page 19

http://cern.ch/lhcb-comp/Frameworks/Gaudi/

Gaudi Users Guide
Chapter 3 Release notes and software installation Version/Issue: 9/0
similar commands exist also for Windows. They assume that the CMTPATH environment
variable is set to $HOME/mycmt:$GAUDIHOME.

Getting a copy of a package: Suppose you want to build the latest released version of the
GaudiExamples package:

Building and running an example: Now that you have the code, suppose you want to modify
the AlgSequencer example, then build it and run it:

Modifying a library and rerunning the example: Suppose now you want to modify one of the
Gaudi libraries, build it, then rerun the AlgSequencer example with it:

3.5.3 Using the framework on Windows with Developer Studio or Nmake

The libraries for Windows are available for download from the web, and in AFS in the Win32Debug
subdirectory of each package.

Instructions for installing the Gaudi environment on Windows and for customising MS Visual Studio
are available at: http://cern.ch/lhcb-comp/Support/html/DevStudio/default.htm

The requirements files and CMT commands expect the following environment variables:

1: cd mycmt
2: cmt checkout GaudiExamples -r v7

3: cd GaudiExamples/v7/src/AlgSequencer
4: emacs HelloWorld.cpp

----- Make your modification, then
5: cd ../../cmt
6: source setup.csh
7: emacs requirements

----- Uncomment AlgSequencer and comment all the others
8: gmake
9: cd ../home
10: emacs AlgSequencer.txt

----- Make any modification if needed
11: ../$CMTCONFIG/AlgSequencer.exe

12: cd $HOME/mycmt
13: cmt checkout GaudiAlg v3
14: cd GaudiAlg/v3/src
15: emacs ...

---- Make your modification...
16: cd ../cmt
17: source setup.csh
18: gmake
19: cd $HOME/mycmt/GaudiExamples/v7/cmt
20: cmt show uses
21: ---- Verify the you are now using the GaudiAlg version from $HOME/mycmt
22: ---- There is no need to relink, since GaudiAlg is a component library
23: cd ../home
24: ../$CMTCONFIG/AlgSequencer.exe
page 20

http://cern.ch/lhcb-comp/Support/html/DevStudio/default.htm

Gaudi Users Guide
Chapter 3 Release notes and software installation Version/Issue: 9/0
• HOME Needs to be set to the user's home directory. Typically this is in a network
server and will have the form "\\server\username" or can also be a local directory
like "C:\home". This environment variable is used to locate the .cmtrc file that
contains the default CMTPATH.

• PATH Should be set up correctly to locate the Developer Studio executables (this is
typically the case after installation).

• TEMP Location for temporary files. This is set correctly after the operating system
installation.

• SITEROOT This is the root where software is installed. Typically it will point to
some share in some server (\\server\siteroot) or to the locally mounted AFS drive
(F:\cern.ch).

• CMTPATH The first location where CMT is looking for packages. This is typically
the local directory C:/mycmt

• CMTSITE This is your site name. At CERN site and for the Windows platform we
use CERN_WIN32.

3.5.4 Using the framework in Unix

The libraries for Linux are available for download from the web, and in AFS in the i386_linux22 and
Linuxdbx subdirectories of each package (for the optimised and debug versions respectively).

Instructions for installing the Gaudi environment on Linux are available at:
http://cern.ch/lhcb-comp/Support/html/start_gaudi.htm

3.6 Working with development releases

This User Guide corresponds to release v9 of the Gaudi software.

For Gaudi as well as for LHCb packages, before they are publicly released and frozen, the
development versions are periodically rebuilt from the head revision of the CVS repository in
the development release area. These versions are not guaranteed to work and may change
without notice; they are intended for integration tests. They should be used with care, mainly
if you wish to use new features of the software which have not yet been incorporated in a
public release.

3.6.1 The Gaudi common development area

Development releases of Gaudi packages are made periodically into the AFS directory tree
below /afs/cern.ch/sw/Gaudi/dev (pointed to by the GAUDIDEV environment variable
on Unix), by checking out and building the CVS head revision of modified packages
 page 21

http://cern.ch/lhcb-comp/Support/html/start_gaudi.htm

Gaudi Users Guide
Chapter 3 Release notes and software installation Version/Issue: 9/0
3.6.2 The LHCb development release area

Development releases of packages are made periodically into the AFS directory tree below
/afs/cern.ch/lhcb/software/DEV (pointed to by the LHCBDEV environment variable
on Unix), by checking out and building the CVS head revision of modified packages. The
directory structure of LHCBDEV is analogous to LHCBSOFT - there is a subdirectory per
package, below which there are subdirectories for each development release version of that
package. These subdirectories have a name which is constructed from the version number of
the package and the date of the build, e.g. v4r1d010316 corresponds to version v4r1 and was
built on 16th March 2001. The version number is greater than or equal to that of the most
recent public release, depending on what has been changed in the package since the release.

3.6.3 Using the development version of packages

The purpose of the development area is to make it easy to work with the development version
of packages, without needing to make a private copy of the head revision of a package.

To use packages from the development area, it is sufficient to add the $LHCBDEV (and/or
$GAUDIDEV) area to your CMTPATH, ahead of the release area. This is done either by
editing the file .cmtrc in your home directory (both Unix and Windows), by typing (Unix
only):

setenv CMTPATH ${HOME}/mycmt:${LHCBDEV}:${GAUDIDEV}

Note that this latter method is valid only for the current login session, whereas the former
method is valid until the next time you modify the file.

3.7 Installation of the framework outside CERN

3.7.1 Package installation

To use the Gaudi framework you also need to have access to installations of some external
packages, listed below:

CMT, CLHEP, NAG C, HTL, Python, Xerces, qqlhcb, ROOT, BOOST and CERNLIB.

Up to date instructions for installation of these packages and setting of the environment
(variables, path,..) needed to use the framework can be found on the Web at
http://cern.ch/lhcb-comp/Support/html/Install.htm.

3.7.2 Event Data access

At CERN, the information about datasets stored in the CASTOR system is obtained from the
LHCb bookkeeping database. Other sites may have their own way to access bookkeeping
page 22

http://cern.ch/lhcb-comp/Support/html/Install.htm

Gaudi Users Guide
Chapter 3 Release notes and software installation Version/Issue: 9/0
information and the associated data files. Gaudi reads the bookkeeping database and stages
data files via scripts that should be customised for the installation (see
http://cern.ch/lhcb-comp/Support/html/Install.htm), the only restriction being that they must have
the same input and output signatures as the CERN version, which can be found in the
package Tools/Bookkeeping.
 page 23

http://cern.ch/lhcb-comp/Support/html/Install.htm

Gaudi Users Guide
Chapter 3 Release notes and software installation Version/Issue: 9/0
page 24

Gaudi Users Guide
Chapter 4 Getting started Version/Issue: 9/0
Chapter 4

Getting started

4.1 Overview

In this chapter we walk through one of the example applications (RandomNumber) which are
distributed with the framework. We look briefly at the different files and go over the steps
needed to compile and execute the code. We also outline where various subjects are covered
in more detail in the remainder of the document. Finally we cover briefly the other example
applications which are distributed and say a few words on what each one is intended to
demonstrate.

4.2 Creating a job

Traditionally, a “job” is the running of a program on a specified set of input data to produce a
set of output data, usually in batch.

For the example applications supplied this is essentially a two step process. First the
executable must be produced, and secondly the necessary environment variables must be set
and the required job options specified, as illustrated in Figure 4.1.

The example applications consist of a number of “source code” files which together allow you
to generate an executable program. These are:

• The main program.

• Header and implementation files for each of the concrete algorithm classes.

• A CMT requirements file.

• The set of Gaudi libraries.

In order for the job to run as desired you must provide the correct configuration information
for the executable. This is done via entries in the job options file.
 page 25

Gaudi Users Guide
Chapter 4 Getting started Version/Issue: 9/0
4.3 The main program

The main program is needed to bootstrap the job. It can be completely general, and can be
reused by all Gaudi applications. An example main program, from the package
GaudiExamples, is shown in Listing 4.1. It is constructed as follows:

Include files These are needed for the creation of the application manager and Smart interface
pointers.

Application Manager instantiation Line 12 instantiates an ApplicationMgr object. The
application manager is essentially the job controller. It is responsible for creating and correctly
initialising all of the services and algorithms required, for looping over the input data events
and executing the algorithms specified in the job options file, and for terminating the job
cleanly.

Figure 4.1 Creating a job from the AlgSequencer example application

GaudiMain.cpp

HelloWorld.cpp

HelloWorld.h

makefile/project

Gaudi Libraries

Application executable

gmake/Nmake

Job options

job

Environment

Batch machine

requirements

CMT
page 26

Gaudi Users Guide
Chapter 4 Getting started Version/Issue: 9/0
Retrieval of Interface pointers The code on lines 14 and 15 retrieves the pointers to the
IProperty and IAppMgrUI interfaces of the application manager.

Setting the application manager’s properties The only property which needs to be set
explicitly in the main program is the name of the job options file which contains all of the
other configuration information needed to run the job. In this example, the name is the first
argument of the program and defaults to "../options/job.opts" (line 23); it is set on line 25.

Program execution All of the code before line 28 is essentially for setting up the job. Once this
is done, a call to appMgr::run() is all that is needed to start the job proper! The steps that
occur within this method are discussed briefly in section 4.6.

4.4 Configuring the job

The application framework makes use of a job options file for job configuration. Part of the job
options file of an example application is shown in Listing 4.2.

Listing 4.1 The example main program.

1: // Include files
2: #include "GaudiKernel/SmartIF.h"
3: #include "GaudiKernel/Bootstrap.h"
4: #include "GaudiKernel/IAppMgrUI.h"
5: #include "GaudiKernel/IProperty.h"
6: #include <iostream>
7:
8: //--- Example main program
9: int main(int argc, char** argv) {
10:
11: // Create an instance of an application manager
12: IInterface* iface = Gaudi::createApplicationMgr();
13:
14: SmartIF<IProperty> propMgr (IID_IProperty, iface);
15: SmartIF<IAppMgrUI> appMgr (IID_IAppMgrUI, iface);
16:
17: if(!appMgr.isValid() || !propMgr.isValid()) {
18: std::cout << "Fatal error creating ApplicationMgr " << std::endl;
19: return 1;
20: }
21:
22: // Get the input configuration file from arguments
23: std:: string opts = (argc>1) ? argv[1] : "../options/job.opts";
24:
25: propMgr->setProperty("JobOptionsPath", opts);
26:
27: // Run the application manager and process events
28: appMgr->run();
29:
30: // All done - exit
31: return 0;
32: }
 page 27

Gaudi Users Guide
Chapter 4 Getting started Version/Issue: 9/0
The format of an options file is discussed fully in Chapter 11. Options may be set both for
algorithms and services and the list of available options for standard components is given in
Appendix B. Here we look briefly at a few of the more commonly used options.

4.4.1 Defining the algorithms to be executed

The option ApplicationMgr.TopAlg (line 7) is a list of algorithms that will be created and
controlled directly by the application manager, the so-called top-level algorithms. The syntax
is a list of the form:

ApplicationMgr.TopAlg = { "Type1/Name1", "Type2/Name2" };

The line above instructs the application manager to create two top level algorithms. One of
type Type1 called “Name1” and one of type Type2 called “Name2”.

In the case where the name of the algorithm is the same as the algorithm’s type (i.e. class),
only the class name is necessary. In the example, an instance of the class "ReadAlg" will be
created with name "ReadAlg".

4.4.2 Defining the job input

Event data input is controlled by an EventSelector. The EventSelector uses a storage
technology dependent data persistency service to load the data into the transient event data
store, with the help of converters which are able to convert the data from the technology

Listing 4.2 Part of the job options file for the RootIORead example application.

1: // Include standard option files
2: #include "$STDOPTS/Common.opts"
3:
4: // Private Application Configuration options
5: ApplicationMgr.DLLs += { "GaudiDb", "GaudiRootDb" };
6: ApplicationMgr.ExtSvc += { "DbEventCnvSvc/RootEvtCnvSvc" };
7: ApplicationMgr.TopAlg = { "ReadAlg" };
8:
9: // Set output level threshold (2=DEBUG,3=INFO,4=WARNING,5=ERROR,6=FATAL)
10: MessageSvc.OutputLevel = 4;
11: EventSelector.OutputLevel = 2;
12:
13: // Input File
14: EventSelector.Input = {"DATAFILE=’RootDst.root’ TYP=’ROOT’ OPT=’READ’"};
15: EventSelector.FirstEvent = 1;
16: ApplicationMgr.EvtMax = 5;
17:
18: // Persistency service setup:
19: EventPersistencySvc.CnvServices += { "RootEvtCnvSvc" };
20:
21: // Setup for ROOT I/O system
22: RootEvtCnvSvc.DbType = "ROOT";
page 28

Gaudi Users Guide
Chapter 4 Getting started Version/Issue: 9/0
dependent persistent representation, to the technology independent representation in the
transient data store.

In order to set up this mechanism, one needs a number of job options:

— Line 14 defines the input data file, and the persistency technology (ROOT I/O in this
example).

— Line 6 tells the application manager to create a new event conversion service, to be
called RootEvtCnvSvc. Note that this is just a name for our convenience, the service
is of type DbEventCnvSvc and does not (yet) know that it will deal with ROOT
technology. The configuration of RootEvtCnvSvc to use the ROOT I/O technology
is done in line 22.

— Line 19 tells the event persistency service (EventPersistencySvc created by the
application manager by default) to use the RootEvtCnvSvc to do the conversion
between persistent and transient data representations.

— Line 5 tells the application manager which additional libraries to load in order to find
the required conversion service. In this example, the GaudiDb library contains the
DbEventCnvSvc class, the GaudiRootDb library contains the ROOT specific
database drivers.

— Finally, the options on lines 15 and 16 tell the EventSelector to start reading
sequentially from the first event in the file, for five events.

In the special case where no event input is required (e.g. for event generation), one can replace
the above options by the two options:

ApplicationMgr.EvtMax = 20; // events to be processed (default is 10)
ApplicationMgr.EvtSel = "NONE"; // do not use any event input

A discussion of event I/O can be found in Chapter 10. Converters and the conversion process
are described in Chapter 13.

4.4.3 Defining job output

One can consider three types of job output: event data (including event collections and
n-tuples), statistical data (histograms) and printout. Here we discuss only the simplest
(printout); histograms are discussed in Chapter 9, event data in Section 6.10.1, event
collections in Section 10.3.1.

Printout in Gaudi is handled by the message service (described in Chapter 11), which allows
to control the amount of printout according to severity level. The global threshold for printout
is set by the option on line 10 - in this example only messages of severity level WARNING or
above will be printed. This can be over-ridden for individual algorithms or services, as in
line 11, where the threshold for EventSelector is set to DEBUG.
 page 29

Gaudi Users Guide
Chapter 4 Getting started Version/Issue: 9/0
4.5 Algorithms

The subject of specialising the Algorithm base class to do something useful will be covered in
detail in Chapter 5. Here we will limit ourselves to looking at an example HelloWorld class.

4.5.1 The HelloWorld.h header file

The HelloWorld class definition is shown in Listing 4.3.

Note the following:

• The class is derived from the Algorithm base class as must be all specialised
algorithm classes. This implies that the Algorithm.h file must be included (line 6).

• All derived algorithm classes must provide a constructor with the parameters shown
in line 9. The first parameter is the name of the algorithm and is used amongst other
things to locate any options that may have been specified in the job options file.

• The HistoAlgorithm class has three (private) data members, defined in lines 18 to
20. These are properties that can be set via the job options file.

• The three methods on lines 12 to 14 must be implemented, since they are pure virtual
in the base class.

Listing 4.3 The header file of the class: HelloWorld.

1: // Include files
2: #include "GaudiKernel/Algorithm.h" // Required for inheritance
3: #include "GaudiKernel/Property.h"
4: #include "GaudiKernel/MsgStream.h"
5:
6: class HelloWorld : public Algorithm {
7: public:
8: /// Constructor of this form must be provided
9: HelloWorld(const std::string& name, ISvcLocator* pSvcLocator);
10:
11: /// Three mandatory member functions of any algorithm
12: StatusCode initialize();
13: StatusCode execute();
14: StatusCode finalize();
15: private:
16: /// These data members are used in the execution of this algorithm
17: /// and are set in the initialisation phase by the job options service
18: int m_int;
19: double m_double;
20: std::string m_string;
21: };
page 30

Gaudi Users Guide
Chapter 4 Getting started Version/Issue: 9/0
4.5.2 The HelloWorld implementation file

The implementation file contains the actual code for the constructor and for the methods:
initialize(), execute() and finalize(). It also contains two lines of code for the
HelloWorld factory, which we will discuss in section 5.3.1

The constructor must call the base class constructor, passing on its two arguments. As usual,
member variables should be initialised. Here we declare and initialise the member variables
that we wish to be set by the job options service. This is done by calling the
declareProperty() method.

Initialisation The application manager invokes the sysInitialize() method of the
algorithm base class which, in turn, invokes the initialize() method of the base class, the
setProperties() method, and finally the initialize() method of the concrete
algorithm class. As a consequence all of an algorithm’s properties will have been set before its
initialize() method is invoked, and all of the standard services such as the message
service are available. This is discussed in more detail in Chapter 5.

Looking at the code in the example (Listing 4.4) we see that we are now able to print out the
values of the algorithm’s properties, using the message service and the MsgStream utility
class. A local MsgStream object is created (line 3), which uses the Algorithm’s standard
message service via the msgSvc() accessor, and the algorithm’s name via the name()
accessor. The use of these is discussed in more detail in Chapter 11.

Note that the job will stop if the initialize() method of any algorithm does not return
StatusCode::SUCCESS. This is to avoid processing with a badly configured application.:

1: HelloWorld::HelloWorld(const std::string& name, ISvcLocator* ploc)
2: : Algorithm(name, ploc) {
3: //---
4: // Declare the algorithm’s properties
5: declareProperty("Int", m_int = 100);
6: declareProperty("Double", m_double = 100.);
7: declareProperty("String", m_string = std::string("one hundred"));
8: }

Listing 4.4 Example of initialize() method

1: StatusCode HelloWorld::initialize() {
2: //--
3: MsgStream log(msgSvc(), name());
4: log << MSG::INFO << "initializing...." << endreq;
5: log << MSG::INFO << "Property Int = " << m_int << endreq;
6: log << MSG::INFO << "Property Double = " << m_double << endreq;
7: log << MSG::INFO << "Property String = " << m_string << endreq;
8:
9: m_initialized = true;
10: return StatusCode::SUCCESS;
11: }
 page 31

Gaudi Users Guide
Chapter 4 Getting started Version/Issue: 9/0
execution The execute() method is called by the application manager once for every event.
This is where most of the real action should take place. The trivial HelloWorld class just prints
out a message... Note that the method must return StatusCode::SUCCESS on successful
completion. If a particular algorithm returns a FAILURE status code more than a
(configurable) maximum number of times, the application manager will decide that this
algorithm is badly configured and jump to the finalisation stage before all events have been
processed. .

Finalisation The finalize() method is called at the end of the job. In this trivial example a
message is printed. .

4.6 Job execution

From the main program and the CMT requirements file we can make an executable, as
explained in section 3.5. This executable together with the file of job options form a job which
may be submitted for batch or run interactively. Figure 4.2 shows a trace of an example
program execution. The diagram is not intended to be complete, merely to illustrate a few of
the points mentioned earlier in the chapter.

1. The application manager instantiates the required services and initialises them. The
message service is done first to allow the other services to use it, and the job options
service is second so that the other services may be configured at run time.

2. The algorithms which have been declared to the application manager within the job
options (via the TopAlg option) are created. We denote these algorithms “top-level”
as they are the only ones controlled directly by the application manager. For
illustration purposes we instantiate an EmptyAlgorithm and a HistoAlgorithm.

3. The top-level algorithms are initialised. Their properties (if they have any) are set and
they may make use of the message service. If any algorithm fails to initialise, the job
is stopped.

1: StatusCode HelloWorld::execute() {
2: //--
3: MsgStream log(msgSvc(), name());
4: log << MSG::INFO << "executing...." << endreq;
5:
6: return StatusCode::SUCCESS;
7: }

1: StatusCode HelloWorld::finalize() {
2: //--
3: MsgStream log(msgSvc(), name());
4: log << MSG::INFO << "finalizing...." << endreq;
5:
6: return StatusCode::SUCCESS;
7: }
page 32

Gaudi Users Guide
Chapter 4 Getting started Version/Issue: 9/0
Figure 4.2 A sequence diagram showing a part of the execution of an example program.

"log"

sysFinalize()

"log"

"log"

"log"

create

create

AppMgr

HistoAlgorithm

EmptyAlgorithm

MessageSvc

JobOptionsSvc

create+initialize()

create+initialize()

sysInitialize()

sysInitialize()

declareProperty()

setProperties()

setMyPropeties()

SetProperty()

execute()

execute()

execute()

execute()

sysFinalize()

configure()

initialize()

nextEvent()

finalize()

terminate()
 page 33

Gaudi Users Guide
Chapter 4 Getting started Version/Issue: 9/0
4. The application manager now starts to loop over events. After each event is read, it
executes each of the top level algorithms in order. The order of execution of the
algorithms is the order in which they appear in the TopAlg option. This will
continue until the required number of events has been processed, unless one or more
of the algorithms return a FAILURE status code more than the maximum number of
times, in which case the application manager will jump to the finalisation stage
before all events have been processed.

5. After the required data sample has been read the application manager finalises each
top level algorithm.

6. Services are finalised.

7. All objects are deleted and resources freed. The program terminates.

4.7 Examples distributed with Gaudi

A number of examples is included in the current release of the framework, in the
GaudiExamples package. The package has some sub-directories in addition to the standard
ones shown in Figure 16.3. The options sub-directory contains files of standard job options
common to many examples. These files are included in the job options of the specific
examples when necessary. The specific job options files can be found in the home
sub-directory.

The code of the examples is in sub-directories of the src directory, one sub-directory per
example. The intention is that each example demonstrates how to make use of some part of
the functionality of the framework. The list of available examples is shown in Table 4.1.

Table 4.1 List of examples available in Gaudi release v9

Example Name Target Functionality

AlgSequencer Illustrating the use of the sequencer algorithm provided in the GaudiAlg
package

AlgTool Example implementation and use of a Gaudi Tool

Common Actually not a complete example: contains the main program used in the
examples

GPython Exercise the Python scripting packages

Properties Trivial algorithm showing how to set and retrieve Properties

RandomNumber Example of use of the Random Number service

RootIO Two examples, reading and writing persistent data with ROOT I/O
page 34

Gaudi Users Guide
Chapter 4 Getting started Version/Issue: 9/0
4.8 Additional LHCb specific examples

The examples described so far are rather simple and do not contain any specific knowledge
about the LHCb event and detector data. A set of LHCb specific examples is provided in the
Ex group of packages, as listed in Table 4.2 .

All examples share a single main program and some default job options, which can be found
in the GaudiConf package.

Table 4.2 List of LHCb specific examples available in the current release

Example Package Name Target Functionality

Ex/AssociatorExample Illustrating the use of the AxPart2MCParticleAsct associator tool
to navigate between reconstructed tracks and Monte Carlo parti-
cles

Ex/DetCondExample Illustrating the use of the detctor conditions database

Ex/DetDescExample Illustrating the use of the detector description

ExDumpEventExample Navigation of the LHCb transient event data model

Ex/EvtCollectionExample Two examples, writing and reading event collections, starting
from the vent data file produced by the RootIO example

Ex/FieldGeomExample Making available existing Sicb magnetic field and geometry data
to Gaudi algorithms. Example of nested algorithms

ExFortranAlgorithmExample Wrapping Fortran code in Gaudi

Ex/GiGaExample Uses GEANT4 to visualise the LHCb detector geometry and event
data, as an example of using the GiGa service to interface Gaudi
to GEANT4

Ex/HistogramsExample Basic functionality of the framework to execute a simple algo-
rithm, access event data and fill histograms.

Ex/MCPrimaryVertexExample Retrieve data using SmartDataPtr

Ex/NtuplesExample Two examples, reading and writing Ntuples

Ex/ParticlePropertiesExample Access the Particle Properties service to retrieve Particle Proper-
ties

Ex/RootIOExample Two examples, reading and writing persistent data with ROOT
I/O

Ex/SimpleAnalysisExample A realistic example of using the framework for a physics analysis,
including access to Monte Carlo data, creation of reconstructed
data and filling an n-tuple

Ex/ToolsAnalysisExample Example of use of framework tools in an analysis
 page 35

Gaudi Users Guide
Chapter 4 Getting started Version/Issue: 9/0
4.8.1 Simple Physics Analysis Example

The algorithms in the examples of Table 4.2 use many of the Gaudi Services that someone
would want to be able to utilize while doing physics analysis: histograms, ntuples, creating
and retrieving private transient data, retrieving particle properties (like mass values), etc.
Detailed examples on how to use the specific services are provided in the topical examples
but in the SimpleAnalysisExample they are combined together. Tools to make physics
analysis in a more elegant and complex way are under development and their concrete
implementation will be part of DaVinci, the OO Physics Analysis Program. A trivial
implementation of an algorithm similar to that of the SimpleAnalysisAlgorithm
implemented using tools is provided in the ToolAnalysisExample.

The SimpleAnalysisAlgorithm is an example in which pi+ pi- invariant masses are made
while requiring the component particles to satisfy some simple kinematic and quality cuts.
Private containers of the particles satisfying successive cuts are created and filled (charged
particles, detection in the silicon, best particle ID). Invariant masses are made and
corresponding histograms are filled for all combinations of the final private containers, for
combinations with Pt of both pions greater than a cut value and for combinations with impact
parameter of both pions greater then a cut value. The Pt and impact parameter cut values are
properties of the algorithm and as such can be specified in the jobOptions, where the number
is taken in Gaudi Units. CLHEP vectors’ classes are used to evaluate transverse momentum
and invariant masses as well as to calculate the impact parameter. When nominal mass values
are required they are retrieved via the ParticlePropertySvc. Since a primary vertex is
required a "dummy" algorithm RecPrimaryVertex retrieves the Monte Carlo primary
vertex and uses the quantites to fill a MyVertex object (/Event/MyAxVertices), which is
then retrieved by the SimpleAnalysisAlgorithm. Since the MyVertex object is created
and registered in the Transient Event store by the RecPrimaryVertex algorithm, the
sequencing of RecPrimaryVertex and SimpleAnalysisAlgorithm in the jobOptions
file is very important. A protection is put in place so that the SimpleAnalysisAlgorithm
will return a failure code if not all of the necessary input data exist in the store.

When doing physics analysis on Monte Carlo data, it is necessary to compare the
reconstructed decay with the Monte Carlo truth in order to calculate efficiencies. The
MCDecayFinder algorithm is an example of how to find any one step decay. The parent of
the decay and the list of its direct descendants are properties of the algorithm and can be
specified in the jobOptions file. If no decay is specified in the jobOptions this example will
look for a B0->pi+pi- decay. The Algorithm will retrieve the particle Geant3 ID from the
ParticlePropertySvc (the identifying particleID in MCParticles) and search the
MCParticles to find the requested parent and that is has the correct type and number of
decay products. If a decay is found kinematic variables are stored in an ntuple that can be
accessed by PAW. In addition the Algorithm uses the Message service with DEBUG or INFO
levels to print a summary of its behaviour for each event as well as for the job.
page 36

Gaudi Users Guide
Chapter 5 Writing algorithms Version/Issue: 9/0
Chapter 5

Writing algorithms

5.1 Overview

As mentioned previously the framework makes use of the inheritance mechanism for
specialising the Algorithm component. In other words, a concrete algorithm class must
inherit from (“be derived from” in C++ parlance, “extend” in Java) the Algorithm base class.

In this chapter we first look at the base class itself. We then discuss what is involved in
creating concrete algorithms: specifically how to declare properties, what to put into the
methods of the IAlgorithm interface, the use of private objects and how to nest algorithms.
Finally we look at how to set up sequences of algorithms and how to control processing
through the use of branches and filters.

5.2 Algorithm base class

Since a concrete algorithm object is-an Algorithm object it may use all of the public and
protected methods of the Algorithm base class. The base class has no protected or public
data members, so in fact, these are the only methods that are available. Most of these methods
are provided solely to make the implementation of derived algorithms easier. The base class
has two main responsibilities: the initialization of certain internal pointers and the
management of the properties of derived algorithm classes.

A part of the Algorithm base class definition is shown in Listing 5.1. Include directives,
forward declarations and private member variables have all been suppressed. It declares a
constructor and destructor; some methods of the IAlgorithm interface; several accessors to
services that a concrete algorithm will almost certainly require; a method to create a sub
algorithm, the two methods of the IProperty interface; and a whole series of methods for
declaring properties.
 page 37

Gaudi Users Guide
Chapter 5 Writing algorithms Version/Issue: 9/0
Listing 5.1 The definition of the Algorithm base class.

1: class Algorithm : virtual public IAlgorithm,
 virtual public IProperty {

2: public:
3: // Constructor and destructor
4: Algorithm(const std::string& name, ISvcLocator *svcloc);
5: virtual ~Algorithm();
6:
7: // IAlgorithm interface only partially implemented
8: StatusCode sysInitialize();
9: StatusCode sysExecute();
10: StatusCode sysFinalize();
11: StatusCode beginRun();
12: StatusCode endRun();
13: const std::string& name() const;
14:
15: virtual bool isExecuted() const;
16: virtual StatusCode setExecuted(bool state);
17: virtual StatusCode resetExecuted();
18: virtual bool isEnabled() const;
19: virtual bool filterPassed() const;
20: virtual StatusCode setFilterPassed(bool state);
21:
22: // Service accessors
23: template<class T> StatusCode service(const std::string& name, T*& svc,

bool createIf = false);
24: void setOutputLevel(int level);
25: IMessageSvc* msgSvc() const;
26: IAuditorSvc* auditorSvc() const;
27: IDataProviderSvc* eventSvc() const;
28: IConversionSvc* eventCnvSvc() const;
29: IDataProviderSvc* detSvc() const;
30: IConversionSvc* detCnvSvc() const;
31: IHistogramSvc* histoSvc() const;
32: INtupleSvc* ntupleSvc() const;
33: IChronoStatSvc* chronoSvc() const;
34: IRndmGenSvc* randSvc() const;
35: IToolSvc* toolSvc() const;
36: ISvcLocator* serviceLocator() const;
37:
38: StatusCode createSubAlgorithm(const std::string& type,

 const std::string& name, Algorithm*& pSubAlg);
39: std::vector<Algorithm*>* subAlgorithms() const;
40:
41: // IProperty interface
42: virtual StatusCode setProperty(const Property& p);
43: virtual StatusCode setProperty(std::istream s&);
44: virtual StatusCode setProperty(const std::string& n,

 const std::string& v);
45: virtual StatusCode getProperty(Property* p) const;
46: const Property& getProperty(const std::string& name) const;
47: virtual StatusCode getProperty(const std::string& n,

 std::string& v) const;
48: const std::vector<Property*>& getProperties() const;
page 38

Gaudi Users Guide
Chapter 5 Writing algorithms Version/Issue: 9/0
Constructor and Destructor The base class has a single constructor which takes two
arguments: The first is the name that will identify the algorithm object being instantiated and
the second is a pointer to one of the interfaces implemented by the application manager:
ISvcLocator. This interface may be used to request special services that an algorithm may
wish to use, but which are not available via the standard accessor methods (below).

The IAlgorithm interface The base class only partially implements this interface: the three
pure virtual methods initialize(), execute() and finalize() must be implemented
by a derived algorithm: these are where the algorithm does its useful work and are discussed
in more detail in section 5.3. The base class provides default implementations of the methods
beginRun() and endRun(), and the accessor name() which returns the algorithm’s
identifying name. The methods sysInitialize(), sysFinalize(), sysExecute() are
used internally by the framework; they are not virtual and may not be overridden.

Service accessor methods Lines 25 to 35 declare accessor methods which return pointers to
key service interfaces. These methods are available for use only after the Algorithm base class
has been initialized, i.e. they may not be used from within a concrete algorithm constructor,
but may be used from within the initialize() method (see Section 5.3.3). The services and
interface types to which they point are self explanatory. Services may be located by name
using the templated service() function in line 23 or by using the serviceLocator()
accessor method on line 36, as described in Section 11.2. Line 24 declares a facility to modify
the message output level from within the code (the message service is described in
Section 11.4).

Creation of sub algorithms The methods on lines 38 to 39 are intended to be used by a derived
class to manage sub-algorithms, as discussed in section 5.4.

Declaration and setting of properties A concrete algorithm must declare its properties to the
framework using the templated declareProperty method (line 50), as discussed in
Section 5.3.2 and Section 11.3.1. The Algorithm base class then uses the setProperties()
method (line 49) to tell the framework to set these properties to the values defined in the job
options file. The methods in lines 42 to 48 can later be used to access and modify the values of
specific properties, as explained in Section 11.3.2.

49: StatusCode setProperties();
50: template <class T>

 StatusCode declareProperty(const std::string& name, T& property);
51: StatusCode declareRemoteProperty(const std::string& name,

 IProperty* rsvc, const std::string& rname = "") const;
52: /// Methods for IInterface
53: unsigned long addRef();
54: unsigned long release();
55: StatusCode queryInterface(const IID& riid, void**);
56:
57: protected:
58: bool isInitialized() const;
59: void setInitialized();
60: bool isFinalized() const;
61: void setFinalized();
62: private:
63: // Data members not shown
64: Algorithm(const Algorithm& a); // NO COPY ALLOWED
65: Algorithm& operator=(const Algorithm& rhs); // NO ASSIGNMENT ALLOWED};

Listing 5.1 The definition of the Algorithm base class.
 page 39

Gaudi Users Guide
Chapter 5 Writing algorithms Version/Issue: 9/0
Filtering The methods in lines 14 to 19 are used by sequencers and filters to access the state of
the algorithm, as discussed in Section 5.5.

5.3 Derived algorithm classes

In order for an algorithm object to do anything useful it must be specialised, i.e. it must extend
(inherit from, be derived from) the Algorithm base class. In general it will be necessary to
implement the methods of the IAlgorithm interface, and declare the algorithm’s properties
to the property management machinery of the Algorithm base class. Additionally there is
one non-obvious technical matter to cover, namely algorithm factories.

5.3.1 Creation (and algorithm factories)

A concrete algorithm class must specify a single constructor with the same parameter
signature as the constructor of the base class.

In addition to this, a concrete algorithm factory must be provided. This is a technical matter
which permits the application manager to create new algorithm objects without having to
include all of the concrete algorithm header files. From the point of view of an algorithm
developer it implies adding three lines into the implementation file, of the form:

where “ConcreteAlgorithm” should be replaced by the name of the derived algorithm
class (see for example lines 10 and 11 in Listing 5.2 below).

5.3.2 Declaring properties

In general, a concrete algorithm class will have several data members which are used in the
execution of the algorithm proper. These data members should of course be initialized in the
constructor, but if this was the only mechanism available to set their value it would be
necessary to recompile the code every time you wanted to run with different settings. In order
to avoid this, the framework provides a mechanism for setting the values of member variables
at run time.

The mechanism comes in two parts: the declaration of properties and the setting of their
values. As an example consider the class TriggerDecision in Listing 5.2 which has a
number of variables whose value we would like to set at run time.

The default values for the variables are set within the constructor (within an initialiser list). To
declare them as properties it suffices to call the declareProperty() method. This method

#include "GaudiKernel/AlgFactory.h"
...
static const AlgFactory<ConcreteAlgorithm> s_factory;
const IAlgFactory& ConcreteAlgorithmFactory = s_factory;
page 40

Gaudi Users Guide
Chapter 5 Writing algorithms Version/Issue: 9/0
is templated to take an std::string as the first parameter and a variety of different types
for the second parameter. The first parameter is the name by which this member variable shall
be referred to, and the second parameter is a reference to the member variable itself.

In the example we associate the name “PassAllMode” to the member variable
m_passAllMode, and the name “MuonCandidateCut” to m_muonCandidateCut. The
first is of type boolean and the second an integer. If the job options service (described in
Section 11.3 on page 113) finds an option in the job options file belonging to this algorithm
and whose name matches one of the names associated with a member variable, then that
member variable will be set to the value specified in the job options file.

5.3.3 Implementing IAlgorithm

Any concrete algorithm must implement the three pure virtual methods initialize(),
execute() and finalize() of the IAlgorithm interface. For a top level algorithm, i.e.
one controlled directly by the application manager, the methods are invoked as is described in
section 4.6. This dictates what it is useful to put into each of the methods.

Initialization Figure 5.1 shows an example trace of the initialization phase.In a standard job
the application manager will initialize all top level algorithms exactly once before reading any
event data. It does this by invoking the sysInitialize() method of each top-level
algorithm in turn, in which the framework takes care of setting up internal references to
standard services and to set the algorithm properties (using the mechanism described in
Section 11.3.1 on page 113). At the end, sysInitialize() calls the initialize() method,
which can be used to do such things as creating histograms, or creating sub-algorithms if

Listing 5.2 Declaring member variables as properties.

1: //------- In the header file --------------------------------------//
2: class TriggerDecision : public Algorithm {
3:
4: private:
5: bool m_passAllMode;
6: int m_muonCandidateCut;
7: std::vector m_ECALEnergyCuts;
8: }
9: //------- In the implementation file -------------------------------//
10: static const AlgFactory<TriggerDecision> s_factory;
11: const IAlgFactory& TriggerDecisionFactory = s_factory;
12:
13: TriggerDecision::TriggerDecision(std::string name, ISvcLocator *pSL) :
14: Algorithm(name, pSL), m_passAllMode(false), m_muonCandidateCut(0) {
15: m_ECALenergyCuts.push_back(0.0);
16: m_ECALenergyCuts.push_back(0.6);
17:
18: declareProperty(“PassAllMode”, m_passAllMode);
19: declareProperty(“MuonCandidateCut”, m_muonCandidateCut);
20: declareProperty(“ECALEnergyCuts”, m_ECALEnergyCuts);
21: }
22:
23: StatusCode TriggerDecision::initialize() {
24: }
 page 41

Gaudi Users Guide
Chapter 5 Writing algorithms Version/Issue: 9/0
required (sub-algorithms are discussed in Section 5.4). If an algorithm fails to initialize it
should return StatusCode::FAILURE. This will cause the job to terminate.

Execution The guts of the algorithm class is in the execute() method. For top level
algorithms this will be called once per event for each algorithm object in the order in which
they were declared to the application manager. For sub-algorithms (Section 5.4) the control
flow may be as you like: you may call the execute() method once, many times or not at all.

Figure 5.1 Algorithm initialization.

Te
xt

Algorithm

SubAlgorithm

SubAlgorithm

sysInitialize

initialize

createSubAlgorithm

"create"

"create"

sysInitialize

initialize

initialize

sysInitialize

createSubAlgorithm

setProperties

setProperties

setProperties
page 42

Gaudi Users Guide
Chapter 5 Writing algorithms Version/Issue: 9/0
Just because an algorithm derives from the Algorithm base class does not mean that it is
limited to using or overriding only the methods defined by the base class. In general, your
code will be much better structured (i.e. understandable, maintainable, etc.) if you do not, for
example, implement the execute() method as a single block of 100 lines, but instead define
your own utility methods and classes to better structure the code.

If an algorithm fails in some manner, e.g. a fit fails to converge, or its data is nonsense it
should return from the execute() method with StatusCode::FAILURE. This will cause
the application manager to stop processing events and end the job. This default behaviour can
be modified by setting the <myAlgorithm>.ErrorMax job option to something greater
than 1. In this case a message will be printed, but the job will continue as if there had been no
error, and just increment an error count. The job will only stop if the error count reaches the
ErrorMax limit set in the job option.

The framework (the Algorithm base class) calls the execute() method within a try/catch
clause. This means that any exception not handled in the execution of an Algorithm will be
caught at the level of sysExecute() implemented in the base class. The behaviour on these
exceptions is identical to that described above for errors.

Finalization The finalize() method is called at the end of the job. It can be used to analyse
statistics, fit histograms, or whatever you like. Similarly to initialization, the framework
invokes a sysFinalize() method which in turn invokes the finalize() method of the
algorithm and of any sub-algorithms.

Optionally, the methods beginRun() and endRun() can also be implemented. These are
called at the beginning and the end of the event loop respectively.

Monitoring of the execution (e.g. cpu usage) of each Algorithm instance is performed by
auditors under control of the Auditor service (described in Section 11.7 on page 129). This
monitoring can be turned on or off with the boolean properties AuditInitialize,
AuditExecute, AuditFinalize.

The following is a list of things to do when implementing an algorithm.

• Derive your algorithm from the Algorithm base class.

• Provide the appropriate constructor and the three methods initialize(),
execute() and finalize().

• Make sure you have implemented a factory by adding the magic two lines of code
(see Section 5.3.1).

5.4 Nesting algorithms

The application manager is responsible for initializing, executing once per event, and
finalizing the set of top level algorithms, i.e. the set of algorithms specified in the job options
file. However such a simple linear structure is very limiting. You may wish to execute some
algorithms only for specific types of event, or you may wish to “loop” over an algorithm’s
execute method. Within the Gaudi application framework the way to have such control is via
the nesting of algorithms or through algorithm sequences (described in section 5.5). A nested
 page 43

Gaudi Users Guide
Chapter 5 Writing algorithms Version/Issue: 9/0
(or sub-) algorithm is one which is created by, and thus belongs to and is controlled by,
another algorithm (its parent) as opposed to the application manager. In this section we
discuss a number of points which are specific to sub-algorithms.

In the first place, the parent algorithm will need a member variable of type Algorithm* (see
the code fragment below) in which to store a pointer to the sub-algorithm.

The sub-algorithm itself is created by invoking the createSubAlgorithm() method of the
Algorithm base class. The parameters passed are the type of the algorithm, its name and a
reference to the pointer which will be set to point to the newly created sub-algorithm. Note
that the name passed into the createSubAlgorithm() method is the same name that
should be used within the job options file for specifying algorithm properties.

The algorithm type (i.e. class name) string is used by the application manager to decide which
factory should create the algorithm object.

The execution of the sub-algorithm is entirely the responsibility of the parent algorithm
whereas the initialize() and finalize() methods are invoked automatically by the
framework as shown in Figure 5.1. Similarly the properties of a sub-algorithm are also
automatically set by the framework.

Note that the createSubAlgorithm() method returns a pointer to an Algorithm object,
not an IAlgorithm interface. This means that you have access to the methods of both the
IAlgorithm and IProperty interfaces, and consequently as well as being able to call
execute() etc. you may also change the properties of a sub-algorithm during the main
event loop as explained in Section 11.3.2. Note also that the vector of pointers to the
sub-algorithms is available via the subAlgorithms() method.

5.5 Algorithm sequences, branches and filters

A physics application may wish to execute different algorithms depending on the physics
signature of each event, which might be determined at run-time as a result of some
reconstruction. This capability is supported in Gaudi through sequences, branches and filters.
A sequence is a list of Algorithms. Each Algorithm may make a filter decision, based on some
characteristics of the event, which can either allow or bypass processing of the downstream
algorithms in the sequence. The filter decision may also cause a branch whereby a different
downstream sequence of Algorithms will be executed for events that pass the filter decision
relative to those that fail it. Eventually the particular set of sequences, filters and branches
might be used to determine which of multiple output destinations each event is written to (if
at all). This capability is not yet implemented but is planned for a future release of Gaudi.

Algorithm* m_pSubAlgorithm; // Pointer to the sub algorithm
// Must be a member variable of the parent class

std::string type; // Type of sub algorithm
std::string name; // Name to be given to subAlgorithm
StatusCode sc; // Status code returned by the call
sc = createSubAlgorithm(type, name, Algorithm*& m_pSubAlgorithm);
page 44

Gaudi Users Guide
Chapter 5 Writing algorithms Version/Issue: 9/0
A Sequencer class is available in the GaudiAlg package which manages algorithm
sequences using filtering and branching protocols which are implemented in the Algorithm
class itself. The list of Algorithms in a Sequencer is specified through the Members property.
Algorithms can call setFilterPassed(true/false) during their execute()
function. Algorithms in the membership list downstream of one that sets this flag to false
will not be executed, unless the StopOverride property of the Sequencer has been set, or the
filtering algorithm itself is of type Sequencer and its BranchMembers property specifies a
branch with downstream members. Please note that, if a sub-algorithm is of type Sequencer,
the parent algorithm must call the resetExecuted() method of the sub-algorithm before
calling the execute() method, otherwise the sequence will only be executed once in the
lifetime of the job!

An algorithm instance is executed only once per event, even if it appears in multiple
sequences. It may also be enabled or disabled, being enabled by default. This is controlled by
the Enable property. Enabling and disabling of algorithm instances is a capability that is
designed for a future release of Gaudi that will include an interactive scripting language.

The filter passed or failed logic for a particular Algorithm instance in a sequence may be
inverted by specifying the :invert optional flag in the Members list for the Sequencer in
the job options file.

A Sequencer will report filter success if either of its main and branch member lists succeed.
The two cases may be differentiated using the Sequencer branchFilterPassed()
boolean function. If this is set true, then the branch filter was passed, otherwise both it and the
main sequence indicated failure.

The following examples illustrate the use of sequences with filtering and branching.

5.5.1 Filtering example

Listing 5.3 is an extract of the job options file of the AlgSequencer example: a Sequencer
instance is created (line 2) with two members (line 5); each member is itself a Sequencer,
implementing the sequences set up in lines 7 and 8, which consist of Prescaler,
EventCounter and HelloWorld algorithms. The StopOverride property of the
TopSequence is set to true, which causes both sequences to be executed, even if the first one
indicates a filter failure.

The Prescaler and EventCounter classes are example algorithms distributed with the
GaudiAlg package. The Prescaler class acts as a filter, passing the fraction of events
specified by the PercentPass property (as a percentage). The EventCounter class just
prints each event as it is encountered, and summarizes at the end of job how many events
were seen. Thus at the end of job, the Counter1 instance will report seeing 50% of the events,
while the Counter2 instance will report seeing 10%.

Note the same instance of the HelloWorld class appears in both sequences. It will be
executed in Sequence1 if Prescaler1 passes the event. It will be executed in Sequence2 if
Prescaler2 passes the event only if Prescaler1 failed it.
 page 45

Gaudi Users Guide
Chapter 5 Writing algorithms Version/Issue: 9/0
5.5.2 Sequence branching

Listing 5.4 illustrates the use of explicit branching. The BranchMembers property of the
Sequencer specifies some algorithms to be executed if the algorithm that is the first member
of the branch (which is common to both the main and branch membership lists) indicates a
filter failure. In this example the EventCounter instance Counter1 will report seeing 80%
of the events, whereas Counter2 will report seeing 20%.

Listing 5.5 illustrates the use of inverted logic. It achieves the same goal as the example in
Listing 5.4 through use of two sequences with the same instance of a Prescaler filter, but
where the second sequence contains inverted logic for the single instance.

Listing 5.3 Example job options using Sequencers demonstrating filtering

1: ApplicationMgr.DLLs += { "GaudiAlg" };
2: ApplicationMgr.TopAlg = { "Sequencer/TopSequence" };
3:
4: // Setup the next level sequencers and their members
5: TopSequence.Members = {"Sequencer/Sequence1", "Sequencer/Sequence2"};
6: TopSequence.StopOverride = true;
7: Sequence1.Members = {"Prescaler/Prescaler1", "HelloWorld",

"EventCounter/Counter1"};
8: Sequence2.Members = {"Prescaler/Prescaler2", "HelloWorld",

"EventCounter/Counter2"};
9:
10: Prescaler1.PercentPass = 50.;
11: Prescaler2.PercentPass = 10.;

Listing 5.4 Example job options using Sequencers demonstrating branching

1: ApplicationMgr.DLLs += { "GaudiAlg" };
2: ApplicationMgr.TopAlg = { "Sequencer" };
3:
4: // Setup the next level sequencers and their members
5: Sequencer.Members = {"HelloWorld", "Prescaler",

"EventCounter/Counter1"};
6: Sequencer.BranchMembers = {"Prescaler", "EventCounter/Counter2"};
7:
8: Prescaler.PercentPass = 80.;

Listing 5.5 Example job options using Sequencers demonstrating inverted logic

1: ApplicationMgr.DLLs += { "GaudiAlg" };
2: ApplicationMgr.TopAlg = { "Sequencer/Seq1", "Sequencer/Seq2" };
3:
4: // Setup the next level sequencers and their members
5: Seq1.Members = {"HelloWorld", "Prescaler", "EventCounter/Counter1"};
6: Seq2.Members = {"HelloWorld", "Prescaler:invert",

"EventCounter/Counter2"};
7:
8: Prescaler.PercentPass = 80.;
page 46

Gaudi Users Guide
Chapter 6 Accessing data Version/Issue: 9/0
Chapter 6

Accessing data

6.1 Overview

The data stores are a key component in the application framework. All data which comes
from persistent storage, or which is transferred between algorithms, or which is to be made
persistent must reside within a data store. In this chapter we use a trivial event data model to
look at how to access data within the stores, and also at the DataObject base class and some
container classes related to it.

We also cover how to define your own data types and the steps necessary to save newly
created objects to disk files. The writing of the converters necessary for the latter is covered in
Chapter 13.

6.2 Using the data stores

There are four data stores currently implemented within the Gaudi framework: the event data
store, the detector data store, the histogram store and the n-tuple store. Event data is the
subject of this chapter. The other data stores are described in chapters 8, 9 and 10 respectively.
The stores themselves are no more than logical constructs with the actual access to the data
being via the corresponding services. Both the event data service and the detector data service
implement the same IDataProviderSvc interface, which can be used by algorithms to
retrieve and store data. The histogram and n-tuple services implement extended versions of
this interface (IHistogramSvc, INTupleSvc) which offer methods for creating and
manipulating histograms and n-tuples, in addition to the data access methods provided by
the other two stores.

Only objects of a type derived from the DataObject base class may be placed directly within
a data store. Within the store the objects are arranged in a tree structure, just like a Unix file
system. As an example consider Figure 6.1 which shows the trivial transient event data model
of the RootIO example. An object is identified by its position in the tree expressed as a string
 page 47

Gaudi Users Guide
Chapter 6 Accessing data Version/Issue: 9/0
such as: “/Event”, or “/Event/MyTracks”. In principle the structure of the tree, i.e. the set
of all valid paths, may be deduced at run time by making repeated queries to the event data
service, but this is unlikely to be useful in general since the structure will be largely fixed.

Interactions with the data stores are usually via the IDataProviderSvc interface, whose
key methods are shown in Listing 6.1

The first four methods are for retrieving a pointer to an object that is already in the store. How
the object got into the store, whether it has been read in from a persistent store or added to the
store by an algorithm, is irrelevant.

The find and retrieve methods come in two versions: one version uses a full path name as
an object identifier, the other takes a pointer to a previously retrieved object and the name of
the object to look for below that node in the tree.

Additionally the find and retrieve methods differ in one important respect: the find
method will look in the store to see if the object is present (i.e. in memory) and if it is not will
return a null pointer. The retrieve method, however, will attempt to load the object from a
persistent store (database or file) if it is not found in memory. Only if it is not found in the
persistent data store will the method return a null pointer (and a bad status code of course).

Navigation through the tree stucture of the data store is possible via the IDataManagerSvc
interface of the data service, as described for example in
http://cern.ch/lhcb-comp/Frameworks/Gaudi/Gaudi_v9/Changes_cookbook.pdf.

Figure 6.1 The structure the event data model of the RootIO example.

(YHQW

0\7UDFNV

Event

ObjectVector<MyTrack>

Listing 6.1 Some of the key methods of the IDataProviderSvc interface.

StatusCode findObject(const std::string& path, DataObject*& pObject);
StatusCode findObject(DataObject* node, const std::string& path,

DataObject*& pObject);
StatusCode retrieveObject(const std::string& path, DataObject*& pObject);
StatusCode retrieveObject(DataObject* node, const std::string& path,

DataObject*& pObject);

StatusCode registerObject(const std::string path, DataObject*& pObject);
StatusCode registerObject(DataObject *node, DataObject*& pObject);
page 48

http://cern.ch/lhcb-comp/Frameworks/Gaudi/Gaudi_v9/Changes_cookbook.pdf

Gaudi Users Guide
Chapter 6 Accessing data Version/Issue: 9/0
6.3 Using data objects

Whatever the concrete type of the object you have retrieved from the store the pointer which
you have is a pointer to a DataObject, so before you can do anything useful with that object
you must cast it to the correct type, for example:

The typedef on line 1 is just to save typing: in what follows we will use the two syntaxes
interchangeably. After the dynamic_cast on line 10 all of the methods of the
MyTrackVector class become available. If the object which is returned from the store does
not match the type to which you try to cast it, an exception will be thrown. If you do not catch
this exception it will be caught by the algorithm base class, and the program will stop,
probably with an obscure message. A more elegant way to retrieve the data involves the use
of Smart Pointers - this is discussed in section 6.8

The last two methods shown in Listing 6.1 are for registering objects into the store. Suppose
that an algorithm creates objects of type UDO from, say, objects of type MyTrack and wishes
to place these into the store for use by other algorithms. Code to do this might look something
like:

1: typedef ObjectVector<MyTrack> MyTrackVector;
2: DataObject *pObject;
3:
4: StatusCode sc = eventSvc()->retrieveObject(“/Event/MyTracks”,pObject);
5: if(sc.isFailure())
6: return sc;
7:
8: MyTrackVector *tv = 0;
9: try {
10: tv = dynamic_cast<MyTrackVector *> (pObject);
11: } catch(...) {
12: // Print out an error message and return
13: }
14: // tv may now be manipulated.

Listing 6.2 Registering of objects into the event data store

1: UDO* pO; // Pointer to an object of type UDO (derived from DataObject)
2: StatusCode sc;
3:
4: pO = new UDO;
5: sc = eventSvc()->registerObject(“/Event/tmp”,”OK”, pO);
6:
7: // THE NEXT LINE IS AN ERROR, THE OBJECT NOW BELONGS TO THE STORE
8: delete pO;
9:
10: UDO autopO;
11: // ERROR: AUTOMATIC OBJECTS MAY NOT BE REGISTERED
12: sc = eventSvc()->registerObject(“/Event/tmp”, “notOK”, autopO);
 page 49

Gaudi Users Guide
Chapter 6 Accessing data Version/Issue: 9/0
Once an object is registered into the store, the algorithm which created it relinquishes
ownership. In other words the object should not be deleted. This is also true for objects
which are contained within other objects, such as those derived from or instantiated from the
ObjectVector class (see the following section). Furthermore objects which are to be
registered into the store must be created on the heap, i.e. they must be created with the new
operator.

6.4 Object containers

As mentioned before, all objects which can be placed directly within one of the stores must be
derived from the DataObject class. There is, however, another (indirect) way to store objects
within a store. This is by putting a set of objects (themselves not derived from DataObject
and thus not directly storable) into an object which is derived from DataObject and which
may thus be registered into a store.

An object container base class is implemented within the framework and a number of
templated object container classes may be implemented in the future. For the moment, two
“concrete” container classes are implemented: ObjectVector<T> and ObjectList<T>.
These classes are based upon the STL classes and provide mostly the same interface. Unlike
the STL containers which are essentially designed to hold objects, the container classes within
the framework contain only pointers to objects, thus avoiding a lot of memory to memory
copying.

A further difference with the STL containers is that the type T cannot be anything you like. It
must be a type derived from the ContainedObject base class, see Figure 6.2. In this way all
“contained” objects have a pointer back to their containing object. This is required, in
particular, by the converters for dealing with links between objects. A ramification of this is
that container objects may not contain other container objects (without the use of multiple
inheritance).

As mentioned above, objects which are contained within one of these container objects may
not be located, or registered, individually within the store. Only the container object may be
located via a call to findObject() or retrieveObject(). Thus with regard to interaction
with the data stores a container object and the objects that it contains behave as a single object.

The intention is that “small” objects such as clusters, hits, tracks, etc. are derived from the
ContainedObject base class and that in general algorithms will take object containers as
their input data and produce new object containers of a different type as their output.

The reason behind this is essentially one of optimization. If all objects were treated on an
equal footing, then there would be many more accesses to the persistent store to retrieve very
small objects. By grouping objects together like this we are able to have fewer accesses, with
each access retrieving bigger objects.
page 50

Gaudi Users Guide
Chapter 6 Accessing data Version/Issue: 9/0
6.5 Using object containers

The code fragment below shows the creation of an object container. This container can contain
pointers to objects of type MyTrack and only to objects of this type (including derived types).
An object of the required type is created on the heap (i.e. via a call to new) and is added to the
container with the standard STL call.

After the call to push_back() the MyTrack object “belongs” to the container. If the container
is registered into the store, the hits that it contains will go with it. Note in particular that if you
delete the container you will also delete its contents, i.e. all of the objects pointed to by the
pointers in the container.

Removing an object from a container may be done in two semantically different ways. The
difference being whether on removal from a container the object is also deleted or not.
Removal with deletion may be achieved in several ways (following previous code fragment):

Figure 6.2 The relationship between the DataObject, ObjectVector and ContainedObject classes.

parent

DataObject

ObjectVector

T

ObjectContainerBase

T

ContainedObject

ObjectVector <MyTrack> trackContainer;
MyTrack* h1 = new MyTrack;
trackContainer.push_back(h1);

trackContainer.pop_back();
trackContainer.erase(end());
delete h1;
 page 51

Gaudi Users Guide
Chapter 6 Accessing data Version/Issue: 9/0
The method pop_back() removes the last element in the container, whereas erase()
maybe used to remove any other element via an iterator. In the code fragment above it is used
to remove the last element also.

Deleting a contained object, the third option above, will automatically trigger its removal
from the container. This is done by the destructor of the ContainedObject base class.

If you wish to remove an object from the container without destroying it (the second possible
semantic) use the release() method:

Since the fate of a contained object is so closely tied to that of its container life would become
more complex if objects could belong to more than one container. Suppose that an object
belonged to two containers, one of which was deleted. Should the object be deleted and
removed from the second container, or not deleted? To avoid such issues an object is allowed
to belong to a single container only.

If you wish to move an object from one container to another, you must first remove it from
one and then add to the other. However, the first operation is done implicitly for you when
you try to add an object to a second container:

Since the object h1 has a link back to its container, the push_back() method is able to first
follow this link and invoke the release() method to remove the object from the first
container, before adding it into the second.

In general your first exposure to object containers is likely to be when retrieving data from the
event data store. The sample code in Listing 6.3 shows how, once you have retrieved an object
container from the store you may iterate over its contents, just as with an STL vector.

trackContainer.release(h1);

container1.push_back(h1); // Add to fist container

container2.push_back(h1); // Move to second container
// Internally invokes release().

Listing 6.3 Use of the ObjectVector templated class.

1: typedef ObjectVector<MyTrack> MyTrackVector;
2: MyTrackVector *tracks;
3: MyTrackVector::iterator it;
4:
5: for(it = tracks->begin(); it != tracks->end(); it++) {
6: // Get the energy of the track and histogram it
7: double energy = (*it)->fourMomentum().e();
8: m_hEnergyDist->fill(energy, 1.);
9: }
page 52

Gaudi Users Guide
Chapter 6 Accessing data Version/Issue: 9/0
The variable tracks is set to point to an object in the event data store of type:
ObjectVector<MyTrack> with a dynamic cast (not shown above). An iterator (i.e. a
pointer-like object for looping over the contents of the container) is defined on line 3 and this
is used within the loop to point consecutively to each of the contained objects. In this case the
objects contained within the ObjectVector are of type “pointer to MyTrack”. The iterator
returns each object in turn and in the example, the energy of the object is used to fill a
histogram.

6.6 Data access checklist

A little reminder:

• Do not delete objects that you have registered.

• Do not delete objects that are contained within an object that you have registered.

• Do not register local objects, i.e. objects NOT created with the new operator.

• Do not delete objects which you got from the store via findObject() or
retrieveObject().

• Do delete objects which you create on the heap, i.e. by a call to new, and which you
do not register into a store.

6.7 Defining Data Objects

If you want to create a new data object in the transient or persistent stores of Gaudi, you will
have to define the structure of this object. This structure will be defined by C++-classes. These
classes in general look very similar to each other; mainly they define the members of the class,
which are either data values or which point to another class (eg. via a Smart Reference - see
Section 6.9). For each of these members there is usually a set- and a get-method and some
more stuff for the Smart Reference Vectors.

The writing of these classes is a tedious task and having to write this redundant information
many times, of course, also bears the risk of many unnecessary typos. To overcome this
problem one may use XML in conjunction with the GaudiObjDesc package to describe the
data-objects. There were two key issues which led to the development of this description
language:

• The core information of a data-object lies in the members of the class, most of the rest
is redundant information which can be produced automatically around the members.

• There is a lot of information which also must be provided, but which has a
default-value in most of the cases.

The information provided in the XML files can be used to produce not only the object
information in the classes but also reflection information about the objects (see Section 11.11,
"The Gaudi Introspection Service"). Future releases may also produce, e.g., converters, or a
description of the object in other languages.
 page 53

Gaudi Users Guide
Chapter 6 Accessing data Version/Issue: 9/0
As an example, the following XML code describes an MCParticle class:

All of the elements in this listing (eg. <class>, <attribute>, <relation>) have several
attributes with default values (eg. for relations and attributes " setMeth=’TRUE’ "), which
don’t have to be mentioned explicitly. If one doesn’t want to use the default, the only thing
that has to be done is to set the corresponding attribute to another value. There are also
several hooks which can be applied eg. to define your own methods if they were not created
automatically. The complete syntax of this description language can be found on the web at
t(http://cern.ch/lhcb-comp/Frameworks/DataDictionary/).

Once a set of data-objects is defined, the XML file has to be saved to the xml directory of the
package. The production of the C++ header files containing the object description can be
automated by adding a line to the CMT requirements file of the package, as shown for
example below:

Another possibility is to produce the information by hand with the tools of the
GaudiObjDesc package (eg. GODCppHeaderWriter.exe) and then compile it.

6.7.1 The class ID

The class definition on line 1 of Listing 6.4 contains an ’id’ attribute. This class identifier is
required if the objects of this class are to be made persistent. It is used by the data persistency
services to make the translation between the transient and persistent representations of the
object, ising the conversoin mechanism described in Chapter 13. For this mechanism to work,
these identifiers must uniquely identify the class and no two classes may have the same
identifier. The list of currently allocated class IDs is available from the web at
http://cern.ch/lhcb-comp/Frameworks/EventModel/CLID.htm. This web page also describes the
procedure for allocating new class IDs.

Types which are derived from ContainedObject must have a class ID in the range of an
unsigned short. Contained objects may only reside in the store when they belong to a
container, e.g. an ObjectVector<T> which is registered into the store. The class identifier of
a concrete object container class is calculated (at run time) from the type of the objects which it
contains, by setting bit 16.

Listing 6.4 Part of the XML description of the MCParticle class

1: <class name=’MCParticle’ author=’Pavel Binko’ id=’210’ desc=’The Monte
Carlo particle kinematics information’>

2: <base name=’ContainedObject’/>
3: <attribute name=’subEvtID’ type=’short’ desc=’Sub-event ID’/>
4: <relation name=’originMCVertex’ multiplicity=’1’ type=’MCVertex’

desc=’Pointer to origin vertex’/>
5: <relation name=’decayMCVertices’ multiplicity=’M’ type=’MCVertex’

desc=’Vector of pointers to decay vertices’/>
6: </class>

document obj2doth LHCbEventObj2Doth ../xml/LHCbEvent.xml
page 54

http://cern.ch/lhcb-comp/Frameworks/EventModel/CLID.htm
http://cern.ch/lhcb-comp/Frameworks/DataDictionary/

Gaudi Users Guide
Chapter 6 Accessing data Version/Issue: 9/0
6.8 The SmartDataPtr/SmartDataLocator utilities

The usage of the data services is simple, but extensive status checking and other things tend to
make the code difficult to read. It would be more convenient to access data items in the store
in a similar way to accessing objects with a C++ pointer. This is achieved with smart pointers,
which hide the internals of the data services.

6.8.1 Using SmartDataPtr/SmartDataLocator objects

The SmartDataPtr and a SmartDataLocator are smart pointers that differ by the access
to the data store. SmartDataPtr first checks whether the requested object is present in the
transient store and loads it if necessary (similar to the retrieveObject method of
IDataProviderSvc). SmartDataLocator only checks for the presence of the object but
does not attempt to load it (similar to findObject).

Both SmartDataPtr and SmartDataLocator objects use the data service to get hold of the
requested object and deliver it to the user. Since both objects have similar behaviour and the
same user interface, in the following only the SmartDataPtr is discussed.

An example use of the SmartDataPtr class is shown in Listing 6.5.

The SmartDataPtr class can be thought of as a normal C++ pointer having a constructor. It
is used in the same way as a normal C++ pointer.

The SmartDataPtr and SmartDataLocator offer a number of possible constructors and
operators to cover a wide range of needs when accessing data stores. Check the online
reference documentation [2] for up-to date information concerning the interface of these
utilities.

Listing 6.5 Use of a SmartDataPtr object.

1: StatusCode myAlgo::execute() {
2: MsgStream log(msgSvc(), name());
3: SmartDataPtr<Event> evt(eventSvc(),”/Event”);
4: if (evt) {
5: // Print the event number
6: log << MSG::INFO << “ Run:” << evt->run()
7: << “ Event:” << evt->event() << endreq;
8: }
9: else {
10: log << MSG::ERROR << “Error accessing event” << endreq;
11: return StatusCode::FAILURE;
12: }
13: }
 page 55

Gaudi Users Guide
Chapter 6 Accessing data Version/Issue: 9/0
6.9 Smart References and Smart Reference Vectors

It is foreseen that data objects in the transient data stores can reference other objects in the
same data store. This relationship can be described in the XML data description using the
’relation’ attribute of the class definition, as shown on line 4 of Listing 6.4

The current implementation of these relationships use ’Smart References’ and ’Smart
Reference Vectors’. These are similar to smart pointers, they provide safe data access and
automate the loading on demand of referenced data, and are used instead of C++ pointers.
For example, suppose that MCParticles are already loaded but MCVertices are not, and
that an algorithm dereferences a variable pointing to the origin vertex: if a smart reference is
used, the MCVertices would be loaded automatically and only after that would the variable
be dereferenced. If a C++ plain pointer were used instead, the program would crash. Smart
references provide an automatic conversion to a pointer to the object and load the object from
the persistent medium during the conversion process.

The XML code in Listing 6.4 will generate Smart Reference and Smart Reference Vector
declarations as shown below:

The syntax of usage of smart references is identical to plain C++ pointers. The Algorithm only
sees a pointer to the MCVertex object:

SmartRef offers a number of possible constructors and operators, see the online reference
documentation [2].

#include "/GaudiKernel/SmartRef.h"
#include "/GaudiKernel/SmartRefVector.h"
class MCParticle {

private:
/// Smart reference to origin vertex
SmartRef<MCVertex> m_originMCVertex;

 /// Vector of smart references to decay vertices
 SmartRefVector<MCVertex> m_decayMCVertices;

 public:
 /// Access the origin Vertex
 /// Note: When the smart reference is converted to MCVertex* the object
 /// will be loaded from the persistent medium.
 MCVertex* originMCVertex() { return m_originMCVertex; }
}

#include "GaudiKernel/SmartDataPtr.h"

// Use a SmartDataPtr to get the MC particles from the event store
SmartDataPtr<MCParticleVector> particles(eventSvc(),"/Event/MC/MCParticles");
MCParticleVector::const_iterator iter;

// Loop over the particles to access the MCVertex via the SmartRef
for(iter = particles->begin(); iter != particles->end(); iter++) {

MCVertex* originVtx = (*iter)->originMCVertex();
if(0 != originVtx) {

std::cout << "Origin vertex = " << *(*iter) << std::endl; }
}

page 56

Gaudi Users Guide
Chapter 6 Accessing data Version/Issue: 9/0
6.10 Persistent storage of data

6.10.1 Saving event data to a persistent store

Suppose that you have defined your own data type as discussed in section 6.7. Suppose
futhermore that you have an algorithm which creates instances of your object type which you
then register into the transient event store. How can you save these objects for use at a later
date?

You must do the following:

• Write the appropriate converter (see Chapter 13)

• Put some instructions (i.e. options) into the job option file (see Listing 6.6)

• Register your object in the store us usual, typically in the execute() method of your
algorithm.

In order to actually trigger the conversion and saving of the objects at the end of the current
event processing it is necessary to inform the application manager. This requires some options
to be specified in the job options file:

The first option tells the application manager that you wish to create an output stream called
“DstWriter”. You may create as many output streams as you like and give them whatever
name you prefer.

For each output stream object which you create you must set several properties. The
ItemList option specifies the list of paths to the objects which you wish to write to this
output stream. The number after the “#” symbol denotes the number of directory levels below
the specified path which should be traversed. The (optional) EvtDataSvc option specifies in

// myAlg implementation file

StatusCode myAlg::execute() {
// Create a UDO object and register it into the event data store
UDO* p = new UDO();
eventSvc->registerObject(“/Event/myStuff/myUDO”, p);

}

Listing 6.6 Job options for output to persistent storage

ApplicationMgr.OutStream = { "DstWriter" };

DstWriter.ItemList = { "/Event#1", "/Event/MyTracks#1"};
DstWriter.EvtDataSvc = "EventDataSvc";
DstWriter.Output = "DATAFILE='RootDst.root' TYP='ROOT'";

ApplicationMgr.DLLs += { "GaudiDb", "GaudiRootDb"};
ApplicationMgr.ExtSvc += { "DbEventCnvSvc/RootEvtCnvSvc" };
EventPersistencySvc.CnvServices += { "RootEvtCnvSvc" };
RootEvtCnvSvc.DbType = "ROOT";
 page 57

Gaudi Users Guide
Chapter 6 Accessing data Version/Issue: 9/0
which transient data service the output stream should search for the objects in the ItemList,
the default is the standard transient event data service EventDataSvc. The Output option
specifies the name of the output data file and the type of persistency technology, ROOT in this
example. The last three options are needed to tell the Application manager to instantiate the
RootEvtCnvSvc and to associate the ROOT persistency type to this service.

An example of saving data to a ROOT persistent data store is available in the RootIO
example distributed with the framework.

6.10.2 Reading event data from a persistent store

Suppose you want to read back the file written out in the previous section. To do this, your job
options would look something like those described in Section 4.4.2 on page 28.

To read SICB files, please refer to Chapter 18.
page 58

Gaudi Users Guide
Chapter 7 Modelling Event Data Version/Issue: 9/0
Chapter 7

Modelling Event Data

The LHCb event data model is currently under review and discussion. Up to date information
on the status of the discussions is available at http://cern.ch/lhcb-comp/Frameworks/EventModel/

The current recommendations and conventions for LHCb event data classes are described in
reference [8]. Classes containing event data should be defined according to the procedure
described in Section 6.7 on page 53.

The table at http://cern.ch/lhcb-comp/Frameworks/EventModel/EventModelClasses.html shows the
current implementation status of the event data classes.
 page 59

http://cern.ch/lhcb-comp/Frameworks/EventModel/EventModelClasses.html
http://cern.ch/lhcb-comp/Frameworks/EventModel/

Gaudi Users Guide
Chapter 7 Modelling Event Data Version/Issue: 9/0
page 60

Gaudi Users Guide
Chapter 8 Detector Description Version/Issue: 9/0
Chapter 8

Detector Description

8.1 Overview

In this chapter we describe how we make available to the physics application developed
using the framework the information related to the detector that resides in the detector
description database (DDDB). The DDDB is the persistent storage for all the versions of the
detector data needed to describe and qualify the detecting apparatus in order to interpret the
event data.

The final clients of the detector description are the algorithms that need this information in
order to perform their job (reconstruction, simulation, etc.). To provide this information, there
needs to be a sub-detector specific part that understands the sub-detector in question and uses
a set of common services. The detector description we are providing in Gaudi is nothing else
than a framework for developers to provide the specific detector information to algorithms by
using as much as possible common or generic services. A brief introduction to this framework
can be found in reference [9].

In the following sections we begin with an overview of the DDDB. We then discuss how to
access the detector description data in the Gaudi transient detector data store. This is followed
by a discussion of the features of the Gaudi detector description and of its structure. We then
describe in detail how the detector description can be built and made persistent using the
XML markup language and continue with an introduction to an XML editing tool which
allows browsing and modification of the DDDB. Finally we describe some features of the so
called Conditions Database, where the time-dependent elements of the DDDB can be stored.

8.2 Detector Description Database

The detector description database (DDDB), see Figure 8.1, includes a physical and a logical
description of the detector. The physical description covers dimensions, shape and material of
the different types of elements from which the detector is constructed. There is also
 page 61

Gaudi Users Guide
Chapter 8 Detector Description Version/Issue: 9/0
information which corresponds to each element which is actually manufactured and
assembled into a detector, for example the positioning of each element. Both active and
passive elements should be included. The description of active elements should allow for the
specification of deficiencies (dead channels), alignment corrections, etc. and also detector
response characteristics, e.g. energy normalization in calorimeters, drift velocity in gas
chambers.

The logical description provides two main functions. The first is a simplified access to
particular parts of a physical detector description. This could be a hierarchical description
where a given detector setup is composed of various sub-detectors, each of which is made up
of a number stations, modules or layers, etc. and there would be a simple way for a client to
use this description to navigate to the information of interest. The second function of the
logical description is to provide a means of detector element identification. This allows for
different sets of information which are correlated to specific detector elements to be correctly
associated with each other

In a detector description, the definition of the detector elements and of the data associated to
their physical description may vary over time, for instance due to real or hypothetical changes
to the detector. Each such change should be recorded as a different version of the detector
element. Additionally, it should be possible to capture, for an entire description, a version of
each of the elements and to associate a name to that set. This is similar to the way CVS allows
one to tag a set of files so that one does not need to know the independent version numbers
for each file in the set.

The present version of the DDDB includes only the logical description of the detector and the
physical description of its geometry and all required materials. This information is described
using the XML language and stored in XML text files. The rest of the time varying "detector
condition" data (alignment, calibration, readout, slow control and fast control) will eventually

Figure 8.1 Overview of the Detector Description model.
page 62

Gaudi Users Guide
Chapter 8 Detector Description Version/Issue: 9/0
be stored in the so called Conditions Database. This database is meant to record the validity
range of each data element, allowing algorithms to process events using the detector
description data valid at the given event time. Some features of the Conditions Database are
described in Section 8.6.

8.3 Detector Data Transient Store

8.3.1 Structure of the transient store

The transient representation of the detector description is implemented as a standard Gaudi
data store. Refer to Chapter 6 for general information on how to access data in stores. The
structure of the detector transient store is represented in Figure 8.2.

In the present production version of the DDDB (package Det/XmlDDDB) there are three top
level catalogs in the transient store. The main catalog, called “Structure” contains the logical
structure of the detector identified by the “setup name” i.e. “LHCb” containing the
description of the detector and this catalog is used for identification and navigation purposes.
Other catalogs are the palette of logical volumes and solids, called “Geometry”, used for the
geometry description and the palette of materials, called “Materials”, used to describe the
material properties of the solids needed for the detector simulation, etc.

Five more top level catalogs are foreseen in the transient store as palettes for the additional
time varying information about the detector. The "Alignment" catalog will contain the
geometrical data coming from regular surveys and necessary to determine the precise
position of each subdetector. The "Calibration" catalog should be used to store the list of dead
channels and the response parameters of each subdetector, such as energy normalization in
calorimeters and drift velocity in gas chambers, while the "Readout" catalog is meant to
contain the mapping of active detector elements to readout channels. Finally, the

Figure 8.2 The structure of part of the LHCb detector data transient store.
 page 63

Gaudi Users Guide
Chapter 8 Detector Description Version/Issue: 9/0
"SlowControl" and "FastControl" catalogs will be used to store, respectively, online
measurements of quantities such as pressures and temperatures, and information about the
fast control system. A prototype implementation of this extended transient detector store can
be found in package Ex/DetCondExample.

8.3.2 Accessing detector data

An algorithm that needs to access a given detector part uses the detector data service to locate
the relevant DetectorElement. This operation can be generally done during the
initialization phase of the algorithm. Contrary to the Event Data, the Detector Data store is not
cleared for each event and the references to detector elements remain valid and are updated
automatically during the execution of the program. Locating the relevant detector element is
done using the standard IDataProviderSvc interface via the detSvc() accessor as shown
in Listing 8.1

Remember that data are only loaded on demand, when they are used for the first time. The
test on vertex not only tests if the data are present but also ensures that the data are loaded.1

The user can retrieve an array of references to detector elements in a similar way. The code in
Listing 8.2 can be used to prepare an array with pointers to all of the Muon stations. Here we
use an STL vector of pointers to DeMuonStation objects to store the retrieved Muon stations.

Listing 8.1 Retrieving a detector element by using smart pointers

SmartDataPtr<DetectorElement> vertex(detSvc(), "Structure/Velo/VStation01");
if(!vertex) {

// Error, detector element has not been retrieved
}

1. Note that, by comparison with Figure 8.2, the leading "/dd/" has been omitted from the full path name
"/dd/Structure/Velo/VStation01" of the detector element. Either form is accepted; the short form must
never begin with a "/" character.

Listing 8.2 Retrieving a vector of detector elements using smart references

std::vector<DeMuonStation*> d_stations;

SmartDataPtr<DetectorElement> stations(detSvc(),
"Structure/LHCb/Muon/Stations");

if(!stations) return StatusCode::FAILURE;

/// Loop over all the muon stations found in the detector model
for (DataObject::DirIterator d = stations->dirBegin();

d != stations->dirEnd(); d++)
{

SmartDataPtr<DeMuonStation> s(detSvc(),(*d)->fullpath());
if(!s) return StatusCode::FAILURE;

 d_stations.push_back(s);
}

page 64

Gaudi Users Guide
Chapter 8 Detector Description Version/Issue: 9/0
Once more, don’t forget to test each DataObject. Also note that you are not obliged to
retrieve DetectorElements, you can actually retrieve whatever object inherits from it,
provided that the corresponding converter exists (see Section 8.5 for a discussion on the
persistent representation and converters). Here some DeMuonStations are converted

8.3.3 Using the DetectorElement class

The DetectorElement class implements the IDetectorElement interface, as shown in
Figure 8.3.

This interface offers six accessor methods to the different types of condition data for each
detector element: geometry(), alignment(), calibration(), readOut(),
slowControl() and fastControl(). In addition, DetectorElement implements the
IValidity interface. This interface is used to check if the detector element is synchronized
with the current event. If the detector element is no longer valid at the time the current event
was generated, the corresponding DataObject in the Structure tree of the transient store must
be updated from the persistent storage. In the current implementation it is not foreseen for
end users to use this interface directly.

The accessor method geometry() gives access to geometry information offered by the
interface of type IGeometryInfo. This interface allows the retrieval of a reference to a logical
volume associated with the given detector element, its material property, the position in the
geometrical hierarchy. In addition to that you can ask it questions like:

1. Transformation matrix from the Global to the Local Reference system

2. Transformation matrix from the Local to the Global Reference system

3. Perform transformation of point from the Global to Local Reference system

4. Perform transformation of point from the Local to Global Reference system

5. Name of daughter volume (of current volume) which contains given (global) point

Figure 8.3 Simplified class diagram for the transient detector description

'HWHFWRU(OHPHQW'HWHFWRU(OHPHQW

0XRQ6WDWLRQ0XRQ6WDWLRQ

*HRPHWU\
,QIR

,*HRPHWU\,QIR

5HDG2XW5HDG2XW

+LHUDUFK\

&DOLEUDWLRQ&DOLEUDWLRQ

,5HDG2XW

,&DOLEUDWLRQ

6SHFLILF�GHWHFWRU�
GHVFULSWLRQ�

TXHVWLRQV�IURP�
DOJRULWKPV

/9ROXPH/9ROXPH

39ROXPH39ROXPH

'DWD2EMHFW'DWD2EMHFW

6ROLG6ROLG

,6ROLG

0DWHULDO0DWHULDO

(OHPHQW(OHPHQW0L[WXUH0L[WXUH

,0DWHULDO

'HWHFWRU�'HVFULSWLRQ *HRPHWU\ 0DWHULDO

,'HWHFWRU(OHPHQW
,/9ROXPH

6ROLG6ROLG6ROLG6ROLG6ROLG%R[6ROLG%R[

,VRWRSH,VRWRSH

,39ROXPH

$VVRFLDWLRQ�
UHVROYHG�RQ�
GHPDQG
 page 65

Gaudi Users Guide
Chapter 8 Detector Description Version/Issue: 9/0
6. Get a pointer to daughter volume which contains given (global) point

7. Name of daughter volume (at deeper hierarchical level) which contains given point

8. Get a pointer to daughter volume (on deeper level) to which contains given point

9. Get the exact full geometry location1

10. Whether the given point is inside the associated logical volume or not

11. A pointer to the associated logical volume

As an example, the code fragment in Listing 8.3 shows how to obtain a number of geometrical
objects from a given detector element:

The remaining five accessor methods to the condition information of a detector element
return pointers to the five corresponding interfaces of type IAlignment, ICalibration,
IReadOut, ISlowControl and IFastControl, respectively. In the present implementation
of the detector description package Det/DetDesc, these interfaces are much simpler than
IGeometryInfo and do not yet offer specialized methods to handle the data they refer to. In
particular, they are presently all equivalent to the interface from which they are derived,
IConditionInfo, a simple interface which allows to retrieve a pointer to one "Condition"
data object, containing all relevant condition data of the given type. Each Condition data
object is meant to be loaded in the corresponding tree of the detector transient store: for
instance, the slow control condition for Ecal may be be stored in
/dd/SlowControl/Ecal/scEcal, just like the main logical volume for Ecal is stored in
/dd/Geometry/Ecal/lvEcal.

A Condition is simply a DataObject implementing the IValidity and IUserParameter
interfaces. It contains an arbitrary number of user-defined parameters and parameter vectors,
taking numerical or string values and identified by their names, which can be retrieved
through the IUserParameter interface. The IValidity interface deals with the validity
range of a Condition object, allowing it to be updated when it becomes invalid.

1. This operation can be time consuming!

Listing 8.3 Getting pointer to a logical volume and retrieving its various properties

SmartDataPtr<DetectorElement> vs(detSvc(), "Structure/LHCb/Velo/VStation01");
if(!vs) { return StatusCode::FAILURE; }

/// Report the material and its radiation length
ILVolume* stvol = vs->geometry()->lvolume();
log << MSG::INFO << vs->fullpath() << " is made of " << stvol->materialName()

<< " with radiation length " << stvol->material()->radiationLength()
<< endreq;

/// Retrieve the shape information
const ISolid* stsolid = stvol->solid();

/// Get the rotation and translation
HepTransform3D sttrans = vs->geometry()->matrixInv();
HepRotation strot = sttrans.getRotation();
Hep3Vector stvec = sttrans.getTranslation();
page 66

Gaudi Users Guide
Chapter 8 Detector Description Version/Issue: 9/0
As an example, the code fragment in Listing 8.4 shows how to retrieve and print the
parameters of the alignment Condition for a given detector element. Remember that also
Conditions, like all other DataObjects, are only loaded on demand, when they are used for the
first time: the test on alEcal not only tests if the data are present but also ensures that the
data are loaded. Eventually, the framework will also take care to automatically keep
up-to-date all Condition objects used by the algorithms; this is discussed more in detail in
Section 8.6. The test on ecalAlignmentInfo, instead, is only necessary because a valid
pointer to an IAlignment interface is currently retrieved only for those DetectorElements for
which a test version of the alignment information has been defined.:

8.3.4 Extending the DetectorElement class

As you can see in Listing 8.2, the transient store allows you to retrieve either
DetectorElement objects or your own object, extending DetectorElement.The
definition of your objects is fully free as you can see in Listing 8.5.

There are a few important things to know here :

• you have to define a new classID for the new object. This one must be unique and
will be used to distinguish this object from the default DetectorElement. ClassIDs
can be requested using the same procedure as for event data, as described at
http://cern.ch/lhcb-comp/Frameworks/EventModel/CLID.htm.

Listing 8.4 Getting a pointer to a Condition for alignment data and retrieving its various properties

// Retrieve the Hcal detector element
SmartDataPtr<DetectorElement> hcal(detSvc(), "Structure/LHCb/Hcal");
if(0 == hcal) return StatusCode::FAILURE;

// Retrieve the slow control information for the Hcal detector
IAlignment* hcalSCInfo = hcal->slowControl();
// Presently, a test version exists only in package Det/DetCondExample
if(0 != hcalSCInfo) {

 // Retrieve slow control Condition for the Hcal detector
 Condition* scHcal = hcalSCInfo->condition();
 if(0 != scHcal) {

 // Retrieve the names of its parameters and parameter vectors
 std::vector<std::string> paramNames;
 std::vector<std::string> paramVectorNames;
 paramNames = scHcal->params();
 paramVectorNames = scHcal->paramVectors();

 // Print all user parameters
 std::vector<std::string>::iterator it;
 for(it = paramNames.begin(); paramNames.end() != it; ++it) {
 log << MSG::INFO << "\"" << *it << "\" = "
 << scHcal->paramAsString(*it) << endreq;
 }
 }
}

 page 67

http://cern.ch/lhcb-comp/Frameworks/EventModel/CLID.htm

Gaudi Users Guide
Chapter 8 Detector Description Version/Issue: 9/0
• the usage of a new object instead of the default DetectorElement supposes that
the user writes a new converter for this new object. This is described in a dedicated
document : "Extending detector elements and implications", by Sebastien Ponce,
available at
http://cern.ch/lhcb-comp/Frameworks/DetDesc/Documents/detElemExtension.pdf.

• the new object, as extension of DetectorElement, has an initialize method.
This method is called by the conversion service at the end of the object creation, when
every contained object has been computed. This is the place where some computation
could be done. Once more, see the dedicated document for further details and
examples.

8.3.5 Configuring the Gaudi framework to access the detector description

Applications accessing the detector description have to provide a number of job options to the
framework. For convenience, these have been collected together in the file DetDesc.opts of
the GaudiConf package. The user simply needs to add the line below to his job options file:

Listing 8.5 Extending DetectorElement class

class DeMuonStation: public DetectorElement {
public:
 // constructors and destructors
 DeMuonStation();
 DeMuonStation(double t, double x, double y);
 ~DeMuonStation();

 // new classID
 const CLID& clID();

 // Get/Set thickness
 double thickness();
 void setThickness(double t);

 // Get/Set pad dimensions
 double padx();
 double pady();
 void setPadx(double x);
 void setPady(double y);

private:
 double m_thickness; // Aluminium plate thickness
 double m_padx; // Pad X dimension
 double m_pady; // Pad Y dimension
};

#include "$STDOPTS/DetDesc.opts"
page 68

http://cern.ch/lhcb-comp/Frameworks/DetDesc/Documents/detElemExtension.pdf

Gaudi Users Guide
Chapter 8 Detector Description Version/Issue: 9/0
In addition, the application must use a number of CMT packages, as shown below,

Package Det/XmlDDDB contains the XML files for the production version of the persistent
DDDB, including all detector elements with their geometry and materials, while package
Det/DetDesc contains the DetectorElement class and all generic XML services and
converters. Of course, any sub-detector specific packages containing the sub-detector specific
converters should also be used, with the corresponding job options for loading the
sub-detector specific DLLs.

8.4 General features of the detector description

As explained in Section 8.3.1, the detector description is divided into three main parts,
Structure, Geometry and Materials. We describe here the features and meaning of the
elements present in each of these parts. Five other catalogs are also foreseen for Alignment,
Calibration, ReadOut, SlowControl and FastControl, although these are not present in the
current production version of the DDDB. A brief description of these catalogs is also given.

8.4.1 Structure

The structure of the detector is described as a tree of detector elements. These could also be
user defined types that inherit from the class DetectorElement.

Each node of the tree, being a detector element, has the following characteristics:

• a class identifier : this tells the framework which converter should be used for this
element.

• a geometry info object where all its geometry is described

• five additional condition info objects allowing to access and manipulate its
alignment, calibration, readout, slow control and fast control data

• a set of user parameters, each one defined by a name, a comment, a type and a value

8.4.2 Geometry

The geometry in the Gaudi detector description is a bit more than just solids and surfaces. It
has to include a way of structuring the geometry in order to avoid repetitions and to facilitate
the placement of subparts into their parents.

After giving some general considerations concerning the description of the geometry, we
describe here the two classes LVolume and PVolume that build the structure of the geometry.
Finally, solids and surfaces are quickly described.

use DetDesc v7 Det
use XmlDDDB v6r1 Det
 page 69

Gaudi Users Guide
Chapter 8 Detector Description Version/Issue: 9/0
You can find more information in the Gaudi web pages, especially at
http://cern.ch/lhcb-comp/Frameworks/DetDesc/default.htm, in the "Detector geometry model"
section.

8.4.2.1 General considerations

The Gaudi geometry description was based on some postulates :

• The geometry is a tree of volumes, where each child describes a subpart of its parent
volume.

• There are no "up-links" in the geometry tree. This means that each volume has no
information about its parent’s volume. Of course, each volume has information about
its children.

• No volume has any information about its absolute position. The only spatial
information in the whole tree is local: each volume is placed into its parent.

• The geometry (description of shapes and surfaces) and material information is kept
by each volume via a Solid, a Surfaces and a Material object. Thus the
information can be retrieved at several levels: the top-most volume may contain a
global shape and an average material and the leaves of the tree contain the most
precise material and geometry.

• All boolean operations on volumes are strictly forbidden1. Boolean operations should
be performed at the level of Solids. This is one of the most essential postulates of the
Gaudi geometry structure.

The geometry tree which fulfils all these postulates represents a very effective, simple and
convenient tool for description of the geometry. Such a tree is easily formalized. It has many
features which are similar to the features of the geometry tree used within the Geant4 toolkit
and could easily be transformed to the Geant4 geometry description.

Some consequences of these postulates are:

• The top-level volume (presumably the experimental hall, or cave, or the whole LHCb
detector) defines the absolute coordinate reference system. In other words, the
null-point (0,0,0) in the so called Global Reference System is just the center of the top
volume.

• All geometry calculations, computations, inputs and outputs, performed with the
usage of a volume are in the local reference system of this volume.

Sometimes one needs a more efficient way of extracting information from the geometry tree or
to compute the unique location of a point in the geometry tree. For these purposes, a
simplified detector description tree is introduced into the Gaudi framework2.

1. This is equivalent to the absence of the 'MANY' flag in the GEANT3 toolkit.
2. Within the Geant4 toolkit there exist two approaches for solving the same problem:
Read-Out-Geometry Tree and Navigator. Our approach is quite close to the combined usage of
both.
page 70

http://cern.ch/lhcb-comp/Frameworks/DetDesc/default.htm

Gaudi Users Guide
Chapter 8 Detector Description Version/Issue: 9/0
8.4.2.2 LVolume and PVolume

Up to now, we only talked about volumes. This term is mapped to a class called LVolume
which stands for Logical Volume. In this class, you can find a Solid describing the shape of
the volume, a list of Surfaces associated to it and the Material of the volume.

On top of that, LVolume is an identifiable object and therefore inherits from class
DataObject and can be identified in the transient data store by a unique name (its “path” in
the geometry tree). It implements the ILVolume and IValidity interfaces.

As we said before, this LVolume has a set of children. These are actually PVolumes, which
stands for Physical Volume but should stand for Placed Volume. The notion of Physical Volume
in the Gaudi geometry is extremely primitive, it is just a Logical volume which is positioned
inside its mother Logical Volume. It consists of the name of the Logical Volume to be positioned,
together with the transformation matrix from the local reference system of the mother Logical
Volume to the local reference system of the daughter Logical Volume. PVolume is not
identifiable and implements the IPVolume interface.

The important point here is that a given logical volume can have several times the same
logical volume as a child, using several different physical volumes. This is the way volumes
can be replicated without replicating the objects in memory.

More detail, especially concerning the implementation can be found in "Volumes", by I.
Belyaev at http://cern.ch/lhcb-comp/Frameworks/DetDesc/Documents/volumes.pdf

8.4.2.3 Solids and surfaces

All solids implement the ISolid interface. Currently, seven types of “primitive” solid are
implemented: Boxes, Simple Trapezoids, Tube segments, Conical tube segments, Polyconical tube
segments, Sphere segments and General trapezoids. Here is a very quick overview of each of them:

• box is obvious.

• trd is a simple trapezoid defined by two rectangles, orthogonal to the Z axis and
centered on it, and a Z size.

• trap is a more generic trapezoid defined by a direction (theta, phi), that replaces the
previous Z axis, a length along this axis and two faces orthogonal to the axis, which
are kinds of trapezes. Actually, the faces are defined by two segments parallel to what
replaces the X axis, the distance between them and the angle between the orthogonal
line to these segments and the line joining the middle of both segments.

• tubs is a part of a section of tube. The tube is centered on the Z axis and defined by its
inner and outer radius. It is then cut to keep a section of a given length centered at the
origin. Last, only the part between phi and phi + deltaPhi is kept.

• cons is a part of a section of cone. The cone is defined along the Z axis and its section
is defined by the inner and outer radius at each extremity plus the height of the
section. Last, only the part between phi and phi + deltaPhi is kept.

• polycone is a part of several cone sections. The cone is defined along Z and the
sections are defined by a number of triplets giving for several location in z the inner
and outer radiuses of the polycone in these places. At last, only the part between phi
phi deltaPhi is kept.
 page 71

http://cern.ch/lhcb-comp/Frameworks/DetDesc/Documents/volumes.pdf

Gaudi Users Guide
Chapter 8 Detector Description Version/Issue: 9/0
• sphere is a kind of sphere part but with a thickness. The thick sphere is defined by an
inner and an outer radius. Then only a portion of the whole sphere is kept, defined by
its theta and phi angles.

These solids were chosen from the most frequently used shapes in the GEANT3 and Geant4
toolkits - more shapes can be implemented if necessary. In addition, Boolean Solids have been
defined, which allow Subtraction, Union and Intersection operations on solids, to build complex
shapes. Details concerning the implementation are available in "Solids" by I. Belayaev at
http://cern.ch/lhcb-comp/Frameworks/DetDesc/Documents/Solids.pdf

The class Surface handles surfaces. Details are available in "Optical properties & Surfaces"
available at http://cern.ch/lhcb-comp/Frameworks/DetDesc/Documents/Optical.pdf

8.4.3 Materials

The description of materials is actually the description of their chemical composition plus
some parameters.

The parameters are the same for all kinds of materials, they are radiation length, density,
lambda, temperature, pressure and state. On top of that, tabulated properties can be added.

Concerning the chemical composition, three kinds of materials are distinguished, each of
them corresponding to a given class. Here is a short description of each :

• Isotope : this is the definition of a given isotope of a given atom. It has an atomic mass,
an atomic number and a number of nucleons.

• Element : this is a real life element, that is in general a mixture of several isotopes with
given proportions. It has an effective atomic mass, an effective atomic number and an
effective number of nucleons.

• Mixtures : this defines a mixture of several elements or even several other mixtures
with given proportions.

8.4.4 Alignment, Calibration, Readout, SlowControl, FastControl

The description of these time varying detector "conditions", as previously stated, has so far
only been implemented in a very simple way. For each of these five categories, the
corresponding data for a detector element is foreseen to be encapsulated in one Condition
object of the given type, containing only the following:

• a set of user defined parameters and parameter vectors, each one defined by a name,
a comment, a type and a value (just like those for a detector element).

For all five categories of conditions, it is important to distinguish between the actual
measured data and all other quantities which can be derived as a function of it: while the first
kind of data must be stored in the persistent DDDB and retrieved by the framework from its
persistent storage every time it becomes invalid, the second type of data should not, in
general, be stored in the persistent DDDB. For instance, if the gain of a detector was a function
of its temperature, only the coefficients of that functional dependence and the temperature of
page 72

http://cern.ch/lhcb-comp/Frameworks/DetDesc/Documents/Solids.pdf
http://cern.ch/lhcb-comp/Frameworks/DetDesc/Documents/Optical.pdf

Gaudi Users Guide
Chapter 8 Detector Description Version/Issue: 9/0
the detector should be read from the persistent storage, while its actual gain should be
computed within the framework at processing time.

Similarly to class DetectorElement, it is foreseen that users may define their own types of
Condition objects. This is however not recommended unless strictly necessary as, in general,
an arbitrary list of parameters and parameter vectors should be sufficient for most uses.
Specific questions concerning condition data should be answered by the interfaces like
IAlignment and not by the Conditions themselves: it is then better to identify specific
methods to extend these interfaces, rather than extend the Condition class.

8.5 Persistent representation based on XML files

The Gaudi detector description is based on text files whose structure is described in XML
(eXtendable Markup Language). XML files are understandable by humans as well as
computers. Data in XML are self-descriptive so that by looking at the XML data one can easily
guess what the data mean. An advantage of XML is that there exists plenty of software which
can be used for processing and manipulating data, as it is an industry standard.

In the future we expect to replace the XML files by an object persistency service, based on a
database. However, the data may continue to be described in XML from the user point of
view. These issues ar described in more detail in Section 8.6.

This part first gives a quick introduction to the XML langage and to the document type
definitions (DTDs). The DTD used in the particular case of the LHCb detector description is
deacribed. Then, the conversion from the persistent to the transient representation is
presented as well as its specialization to address particular user cases. Finally, we give some
ideas and references concerning the numerical expression parser used during the conversion
process and the XMLEditor tool that could be used to edit the persistent representation.

8.5.1 Brief introduction to XML

8.5.1.1 XML Basics

XML is one example of what is called markup languages. Another well-know example of it is
HTML. The specificity of this class of langages is the usage of "tags" to structure the code. A
tag is actually a marker (or a pair of them, one for opening and one for closing) that delimits a
given part of the code. In the case of both XML and HTML, they look like <...> for opening
tags or </...> for closing tags.

The very basic and mandatory rule of markup langages is that all tags must nest properly.
Proper nesting means that each opening tag has its corresponding closing tag and that this
one must appear before the parent’s tag closing tag, as shown in Listing 8.6.

Listing 8.6 Properly nesting in markup languages

<ProperNesting> <Something>In</Something> </ProperNesting>
<WRONGNESTING> <BADTHING>huhu </WRONGNESTING> </BADTHING>
 page 73

Gaudi Users Guide
Chapter 8 Detector Description Version/Issue: 9/0
The specificity of XML among other markup languages is that it is extendible. This means that
a user can define his own tags. For example, Listing 8.7 shows the XML file which describes
an e-mail (Forget the first two lines and the TimeStamp item, we will describe them later).

At first sight this markup language looks like screwed-up HTML. This is because HTML is
only a subset of XML (with a fixed set of tags). Unlike HTML, you cannot guess from the
example above how to present the data described there nor how to visualize them. What is
clear however is the meaning of the data items encoded in XML. Thus one can easily
recognize the data items and guess what they mean. On the other hand it is relatively easy to
instruct a computer program what to do with the given data item according to the XML
markup elements it is encapsulated in. Let us analyse the example shown in Listing 8.7.

8.5.1.2 XML components

XML declaration must be at the beginning of each XML document. It is the first line in the
example. It says that this file is an XML file conforming to the XML standard version 1.0 and is
encoded in UTF-8 encoding. The encoding is very important because XML has been designed
to describe data using the Unicode standard for text encoding. This means that all XML
documents are treated as 16-bit Unicode characters instead of usual ASCII. So, even if you
write your XML files using 7- or 8-bit ASCII, all the XML applications will work with it as
with 16-bit Unicode XML data. The encoding information is important, for example when an
XML document is transferred over the Internet to some other country where a different
encoding is used. If the receiving application can guess the XML encoding from the received
file, it can apply transcoding methods to convert the file into proper local encoding, thus
preserving readability of the data.

XML comments look like comments in SGML or HTML. They start with <!-- and end with
-->. Comments in XML cannot be nested. This means you cannot open comments inside
comments, as you can open a tag inside another tag.

XML elements are the tags. In the example we had the following XML elements: Email,
TimeStamp, Sender, Recipient, Subject, Body, Signature. The very basic and
mandatory rule of XML is that all XML element tags must nest properly (this is a markup
lanagage) and that there must be only one root XML element at the top level of each XML
document, which contains all the others. An XML document that follows these rules is called
well-formed. An example is the XML document in Listing 8.7.

Listing 8.7 Simple XML file describing an e-mail

<?xml version=‘1.0’ encoding=‘UTF-8’?>
<!-- This is an example of XML -->
<Email>

<TimeStamp time=”11:38:43” date=”22/11/1999” />
<Sender>sender@cern.ch</Sender>
<Recipient>recipient@cern.ch</Recipient>
<Subject>Lunch...</Subject>
<Body> Could we meet at 14:00?

<Signature>Sender’s signature</Signature>
</Body>

</Email>
page 74

Gaudi Users Guide
Chapter 8 Detector Description Version/Issue: 9/0
XML elements are actually a bit more complex than regular tags. They can contain what is
called attributes. These are pairs of the form name=value that are embedded inside the
opening part of the tag. This is the case in the TimeStamp tag in Listing 8.7. Two attributes are
defined there : date and time. Attributes usually describe the properties of the given
element. The value of an attribute is a string and it has to be enclosed inside quotes (single or
double, it doesn’t matter). In the content of a given tag, raw text can appear among nested
XML elements. This is called text data.

8.5.1.3 Document type definitions (DTDs)

The XML documents described up to now are well formed since they follow the syntax rules
of XML. This is a first step but one may want to add some grammar inside an XML document
so that you are not allowed to use any XML element you could imagine in any place.

This is possible by writing a document type definition (DTD). It can be integrated inside the
XML file itself (internal DTD) or can be given in a separated file (external DTD). The external
case is the most used since the external file can be reused by many XML files and thus ensure
consistency between them.

The DTDs are actually written using a markup langage too. The main features of a DTD are:

• the definition of an XML element (ELEMENT tag of the DTD) : this specifies the
name of the XML element and its possible children

• the definition of the attributes of an XML element (ATTLIST tag of the DTD): this
specifies the attributes of a given XML element, as well as their usage (required,
default value, ...)

We will not describe here further the syntax of the DTD file since it would be too long but it is
pretty obvious to understand.

Listing 8.8 gives an example of the definition and usage of an external DTD for an XML file.
Another example is the HTML langage. It can be seen (with small exceptions) as the definition
of a given DTD, that is used to describe a hypertext document and the way it should be
displayed.

Now that the XML file has a grammar, it is called valid if it fulfils the grammar requirements.
Otherwise, it is not valid, even if well-formed. The process by which the grammar of a given
XML file is checked is called "validation process".

Listing 8.8 Document type Definition

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT Email (TimeStamp, Sender, Recipient, Subject, Body)>
<!ELEMENT TimeStamp EMPTY>
<!ATTLIST TimeStamp time CDATA #IMPLIED date CDATA #REQUIRED">
<!ELEMENT SENDER #PCDATA>
<!ELEMENT Recipient #PCDATA>
<!ELEMENT Subject #PCDATA>
<!ELEMENT Body (#PCDATA|Signature)*>
<!ELEMENT Signature #PCDATA>
 page 75

Gaudi Users Guide
Chapter 8 Detector Description Version/Issue: 9/0
8.5.2 DTD of the LHCb detector description

In the case of the LHCb detector description, several DTDs have been defined in order to
describe the structure, geometry and materials of the detector. These are detailed in a
dedicated document : "The LHCb Detector Description DTD", by Sebastien Ponce, available at
http://cern.ch/lhcb-comp/Frameworks/DetDesc/Documents/lhcbdtd.pdf. Thus, we will only give
here a very short presentation of it.

You will find in the next few sections UML schemas of the different DTDs. For those who
don’t know this notation, here are the basics:

• every entity here is an XML element, with all the possible attributes enumerated

• following the arrows getting out of an element, you can know which elements could
be children of it.

8.5.2.1 Some prerequisites

Some of the elements of the LHCb DTDs are defined in each of the three DTDs. Thus, we
describe them here.

Expressions Every numerical value required by an attribute or an element in any of the DTDs
of LHCb is an expression. This means that the value will be evaluated by the numerical
expressions parser (see Section 8.5.5)

Thus, most of the current units and constants are already known. You can safely use degree,
rad or pi for angles for instance. On top of that, many mathematical functions are also known,
such as sin, or exp but also arctan and many others.

Parameters A special tag called parameter is defined in all DTDs of LHCb. This element
allows the user to define his own parameters that can be then reused in any expression or
value in the rest of the XML code. It has a name, a type, a value and a comment.

The parameter element is actually a kind of macro since at parsing time it will be replaced by
its value wherever it appears.

References In the description of the LHCb DTD, you will see a lot of nodes with names
finishing by "ref". Each time there is a corresponding node without the "ref". The "ref" nodes
are actually references on the "without ref" ones. All of them have almost the same usage and
syntax. The common things they have are attributes for class ID and hyperlink reference. The
hyperlink is in general specified using the format:

protocol://hostname/path/to/the/file.xml#ObjectID or #ObjectID

The protocol and hostname parts can be omitted if the file resides on the local host. It is
possible to write a hyperlink without the full path name in case one needs to refer to an XML
object residing inside another file. In this case the relative path will be appended to the
location of the currently parsed XML file.

For example having the current file location /full/path/to/current.xml and inside this
file a hyperlink as href="next/file.xml#NextOID" the hyperlink will be resolved as
/full/path/to/next/file.xml#NextOID.
page 76

http://cern.ch/lhcb-comp/Frameworks/DetDesc/Documents/lhcbdtd.pdf

Gaudi Users Guide
Chapter 8 Detector Description Version/Issue: 9/0
If the hyperlink has the form #ObjectID this means that the referred object is located in the
current file.

Note that relative paths are strongly encouraged for every file except the top-most one, since
the whole set of files may be copied to several different locations one day.

8.5.2.2 The structure DTD

The schema of the DTD that should be used for every file describing the structure of the LHCb
detector is shown in Figure 8.4. Presently, this DTD is also used for the files containing the
description of all kinds of generic condition data such as alignment, although a simpler DTD
would be enough.

Let’s describe quickly some of the elements (the others are trivial) :

• DDDB : this is to fulfill the XML basic rule that each XML document must have only
one root XML element This is the root element.

• catalog : this is simply a list of elements, with a given name. This is a way to classify
detector elements.

• detelem : detector elements are the essential part of the structure of the detector
description. They fully describe a given part of the detector by holding data on the
geometry of this part as well as on the subparts constituting it.

• userParameter and userParameterVector: this allows the user to add a
parameter or a vector of parameters for a given detector element. This is intended
to be used for specific parameters appearing in the subdetector descriptions. Their
usage is described deeper in another document : "Extending detector Elements and
implications", by Sebastien Ponce, available at

Figure 8.4 The Structure DTD

DDDB

version : CDATA = 3.2

<<DTDElement>> parameter

name : CDATA
value : CDATA

specific

geometryinfo

lvname : CDATA
support : CDATA
npath : CDATA
rpath : CDATA

userParameter

type : CDATA = double
name : CDATA
comment : CDATA

<<DTDElement>>

userParameterVector

type : CDATA = double
name : CDATA
comment : CDATA

<<DTDElement>>

author
<<DTDElement>>

version
<<DTDElement>>

catalogref

classID : CDATA = 3
href : CDATA

detelemref

classID : CDATA = 2
href : CDATA

catalog

name : ID
classID : CDATA = 3

<<DTDElement>>

|
0..n0..n

|

detelem

name : ID
classID : CDATA = 2
type : (active | passive) = passive

<<DTDElement>>

0..n0..n

|

1..n1..n
 page 77

Gaudi Users Guide
Chapter 8 Detector Description Version/Issue: 9/0
http://cern.ch/lhcb-comp/Frameworks/DetDesc/Documents/detElemExtension.pdf

• condition: a condition is simply a container of parameters and parameter vectors.

• geometryinfo: this tag describes the geometry of a given detector element.

• alignmentinfo, calibrationinfo, readoutinfo, slowcontrolinfo, fastcontrolinfo:
these tags, when present, contain the name of the corresponding condition for a
given detector element; if absent, no condition info of that type will be available.

• specific: this is the place where a user can extend the default detector description
language and introduce new tags for his own needs. It is foreseen that the new
XML elements be defined in a local DTD section of the XML data file or in a
specific DTD file. Its usage is described deeper in "Extending detector Elements
and implications", by Sebastien Ponce (See location above).

8.5.2.3 The geometry DTD

We schema of the DTD that should be used for every file describing the geometry of the LHCb
detector is shown in Figure 8.5.and Figure 8.6.

Let’s describe quickly some of the elements (the others are trivial or explained in the
specialized documentation, see Section 8.5.2) :

Figure 8.5 Geomety DTD (part 1)

entry

x : CDATA
y : CDATA

text : CDATA

#PCDATA

DDDB

version : CDATA = 3.2

<<DTDElement>>

parameter

name : CDATA
value : CDATA

tabpropertyref

href : CDATA
classID : CDATA = 1300

surfaceref

href : CDATA
classID : CDATA = 1110

logvolref

href : CDATA
classID : CDATA = 1100

catalog

name : ID
classID : CDATA = 3

<<DTDElemen...

catalogref

classID : CDATA = 3
href : CDATA

|

1..n1..n

tabproperty

name : ID
classID : CDATA = 1300
type : CDATA
xaxis : CDATA = xAxis
yaxis : CDATA = yAxis
xunit : CDATA = 1.0
yunit : CDATA = 1.0

<<DTDElement>>

|

0..n0..n

tabprops

address : CDATA

surface

name : ID
classID : CDATA = 1110
model : CDATA
finish : CDATA
type : CDATA
value : CDATA
volfirst : CDATA
volsecond : CDATA = \0

<<DTDElement>>
0..*0..*

|

logvol

name : ID
classID : CDATA = 1100
material : CDATA
sensdet : CDATA
magfield : CDATA

<<DTDElement>>

|

0..n0..n
page 78

http://cern.ch/lhcb-comp/Frameworks/DetDesc/Documents/detElemExtension.pdf

Gaudi Users Guide
Chapter 8 Detector Description Version/Issue: 9/0
• DDDB : this is to fulfill the XML basic rule that each XML document must have only
one root XML element This is the root element.

• catalog : this is simply a list of elements, with a given name. This is a way to classify
the logical volumes.

• tabproperty : this defines a tabulated property. This is used to describe optical
properties of materials and surfaces. See "Optical properties & Surfaces" available
at http://cern.ch/lhcb-comp/Frameworks/DetDesc/Documents/Optical.pdf.

• surface : this defines a surface, see Section 8.4.2.3.

• transformation : this defines a new transformation, by composition of several
others

• logvol, physvol : these are the mapping of the C++ classes described in
Section 8.4.2.2

• paramphysvol, paramphysvol2D, paramphysvol3D : these are ways to define many
physical volumes in one shot, by replicating a given volume and applying a given
transformation between each replica.

• posXYZ , posRPhiZ , posRThPhi : these are 3 ways of defining a translation :
cartesian, cylindrical and spherical coordinate systems.

• rotXYZ , rotAxis : these are two ways of defining a rotation. Either along X, Y or
Z axis, or along a user-defined axis.

Figure 8.6 Geometry DTD (part 2)

posXYZ

x : CDATA
y : CDATA
z : CDATA

posRPhiZ

r : CDATA
phi : CDATA
z : CDATA

posRThPhi

r : CDATA
theta : CDATA
phi : CDATA

rotXYZ

rotX : CDATA
rotY : CDATA
rotZ : CDATA

rotAxis

axTheta : CDATA
axPhi : CDATA
angle : CDATA

union

name : ID

<<DTDElemen...

subtraction

name : ID

<<DTDElemen...

intersection

name : ID

<<DTDElemen...

|

|

&

box

name : ID
sizeX : CDATA
sizeY : CDATA
sizeZ : CDATA

trap

name : ID
sizeZ : CDATA
theta : CDATA
phi : CDATA

sizeY1 : CDATA
sizeX1 : CDATA
sizeX2 : CDATA

alp1 : CDATA
sizeY2 : CDATA
sizeX3 : CDATA
sizeX4 : CDATA

alp2 : CDATA

tubs

name : ID
sizeZ : CDATA

outerRadius : CDATA
innerRadius : CDATA

startPhiAngle : CDATA
deltaPhiAngle : CDATA

cons

name : ID
sizeZ : CDATA

outerRadiusPZ : CDATA
outerRadiusMZ : CDATA
innerRadiusPZ : CDATA
innerRadiusMZ : CDATA
startPhiAngle : CDATA
deltaPhiAngle : CDATA

sphere

name : ID
outerRadius : CDATA
innerRadius : CDATA

startPhiAngle : CDATA
deltaPhiAngle : CDATA

startThetaAngle : CDATA
deltaThetaAngle : CDATA

trd

name : ID
sizeZ : CDATA

sizeX1 : CDATA
sizeY1 : CDATA
sizeX2 : CDATA
sizeY2 : CDATA

&
{1}

0..10..1

{2}

transformation
<<DTDElemen...

&
&

{1}

1..*1..*

{2}

logvol

name : ID
classID : CDATA = 1100
material : CDATA
sensdet : CDATA
magfield : CDATA

<<DTDElement>>

&

surf

address : CDATA

&

0..10..1

{1}

|

{1}

1..*1..*

{2}0..10..1
{2}

|

0..n0..n

{2}

physvol

name : ID
logvol : CDATA

<<DTDElemen...

0..10..1

paramphysvol

number : CDATA

<<DTDElemen...

{2}

paramphysvol2D

number1 : CDATA
number2 : CDATA

<<DTDElement>>

{2, 3}

paramphysvol3D

number1 : CDATA
number2 : CDATA
number3 : CDATA

<<DTDElement>>

{2, 3, 4}

|

{1}

{1}

|
{1}

polycone

name : CDATA
startPhiAngle : CDATA
deltaPhiAngle : CDATA

&

zplane

z : CDATA
outerRadius : CDATA
innerRadius : CDATA1..n1..n

{1}

{2}
 page 79

http://cern.ch/lhcb-comp/Frameworks/DetDesc/Documents/Optical.pdf

Gaudi Users Guide
Chapter 8 Detector Description Version/Issue: 9/0
• box, trd, trap, cons, polycone, tub, sphere : these are all kinds of solids. They are
described in Section 8.4.2.3 on page 71. Note that polycone uses a subelement called
zplane to define the different sections of the polycone.

• union, subtraction, intersection : these are boolean operations on solids.

8.5.2.4 The material DTD

We the schema of the DTD that should be used for every file describing materials of the LHCb
detector is shown in Figure 8.7.

Let’s describe quickly some of the elements (the others are trivial) :

• materials : this is to fulfill the XML basic rule that each XML document must have
only the one root XML element This is the root element.

• catalog : this is simply a list of elements, with a given name. This is a way to classify
materials.

• tabproperty : this defines a tabulated property. This is used to describe optical
properties of materials and surfaces. See "Optical properties & Surfaces" available
at http://cern.ch/lhcb-comp/Frameworks/DetDesc/Documents/Optical.pdf.

• isotope, element, material : this maps to the three classes Isotope, Element
and Mixture described in Section 8.4.3.

• atom : this is used to define an element when it is not a mixture of isotopes.

Figure 8.7 Material DTD

entry

x : CDATA
y : CDATA

text : CDATA

#PCDATA

component

name : CDATA
natoms : CDATA = -1

fractionmass : CDATA = -1

|

&

0..*
{1}

0..*

tabpropertyref

href : CDATA
classID : CDATA = 1300

materialref

href : CDATA
fractionmass : CDATA

classID : CDATA = 1203catalogref

classID : CDATA = 3
href : CDATA

elementref

href : CDATA
natoms : CDATA = -1

fractionmass : CDATA = -1
classID : CDATA = 1202

tabproperty

name : ID
classID : CDATA = 1300
type : CDATA
xaxis : CDATA = xAxis
yaxis : CDATA = yAxis
xunit : CDATA = 1.0
yunit : CDATA = 1.0

<<DTDElement>>

0..n0..n

element

name : ID
symbol : CDATA
density : CDATA
radlen : CDATA
lambda : CDATA
temperature : CDATA
pressure : CDATA
state : (solid | liquid | gas | undefined) = undefined

<<DTDElement>>

material

name : ID
Aeff : CDATA
Zeff : CDATA
density : CDATA
radlen : CDATA
lambda : CDATA
temperature : CDATA
pressure : CDATA
state : (solid | liquid | gas | undefined) = undefined

<<DTDElement>>

|

materials

DTD_Version : CDATA = v5

<<DTDElement>>

catalog

name : ID
classID : CDATA = 3

<<DTDElement>>

0..n0..n

parameter

name : CDATA
value : CDATA

|

1..n1..n

|

tabprops

address : CDATA

0..*

{2}

0..*

isotope

name : ID
A : CDATA
Z : CDATA
N : CDATA
density : CDATA
radlen : CDATA
lambda : CDATA
temperature : CDATA
pressure : CDATA
state : (solid | liquid | gas | undefined) = undefined

<<DTDElement>>

atom

A : CDATA
Zeff : CDATA

&

0..*0..*

{2}

isotoperef

href : CDATA
fractionmass : CDATA

classID : CDATA = 1201

|
11

{1}

0..*0..*
page 80

http://cern.ch/lhcb-comp/Frameworks/DetDesc/Documents/Optical.pdf

Gaudi Users Guide
Chapter 8 Detector Description Version/Issue: 9/0
• component : this is used to define mixtures. It associates a material and a
proportion.

8.5.3 Conversion to transient representation

We describe here the conversion of data from the persistent to the transient world. This matter
is actually the main topic of Chapter 13. Please refer to it for an explanation of how the
conversion process works and is implemented into Gaudi. Here we give additional
information on the special case of detector description data.

8.5.3.1 Overview

The main aim of the conversion process is to populate the transient store with C++ objects,
using XML files. If you look at the description of the C++ objects in Section 8.3 and at the
description of the XML files in Section 8.5.2, you will notice that there is almost a one to one
mapping between the two, where XML elements become objects and XML attributes become
members of these objects.

Thus, the conversion service (called XmlCnvSvc in our case) uses more or less one converter
per XML element, or per kind of C++ object stored in the transient store. Here is the list of
existing converters and the list of objects they are creating :

• XmlTabulatedPropertyCnv : deals with tabulated properties and creates
TabulatedProperty objects.

• XmlSurfaceCnv : deals with surfaces and creates Surface objects.

• XmlMixtureCnv : deals with mixtures and creates Mixture objects.

• XmlLVolumeCnv : deals with logical volumes and creates LVolume objects. This is
also the place where all the geometry is parsed and stored, including physical
volumes, solids (simple and booleans), transformations and parametrized physical
volumes. These last ones do not exist in the C++ world since they are expanded in a
set of regular physical volumes.

• XmlIsotopeCnv : deals with isotopes and creates Isotope objects.

• XmlElementCnv : deals with elements and creates Element objects.

• XmlBaseDetElemCnv and XmlUserDetElemCnv: deal with detector elements and
create DetectorElement objects.

• XmlBaseConditionCnv and XmlUserConditionCnv: deal with condition data
and create Condition objects.

• XmlCatalogCnv : deals with catalogs and creates DataObject objects containing a
list of references on other objects in the store.

8.5.3.2 XmlCnvSvc

The XmlCnvSvc is the service responsible for converting XML code into C++ objects. It
implements the IXmlSvc interface and essentially provides two sets of methods:
 page 81

Gaudi Users Guide
Chapter 8 Detector Description Version/Issue: 9/0
• parser related methods : parse, clearCache and allowGenericCnv which
respectively parses an XML file, clears the cache of parsed files and says whether user
defined detector elements are converted using dedicated convertors or the generic
converter. This last method is related to the job option property
AllowGenericConversion.

• expression evaluator related methods : eval, addParameter, removeParameter
which respectively computes the value of a given expression, adds a new parameter
and remove a given parameter. Parameters can be used in any expression, as soon as
they are defined. For more details, the expression evaluator is presented in
Section 8.5.5.

8.5.3.3 XmlParserSvc

The XmlParserSvc is actually used by the XmlCnvSvc for parsing XML files. We will not
describe it in detail here but just give some usefull hints.

This service is not only responsible for parsing XML files but also for implementing a cache on
parsed files. This cache is very useful due to the behaviour of the transient store.
As a matter of fact, the transient store calls the XmlCnvSvc and thus, indirectly, the
XmlParserSvc, every time an object is missing. When this occurs, an XML file is parsed and
the object is created and put into the store. But all the objects contained in the XML file are not
created and put into the store, only the ones needed. Thus, if the next missing object is defined
in the same XML file, this one will be read again and parsed again.
That’s where the cache is very useful: it avoids opening and parsing the same file again and
again. A recent example showed that the cache could speed up the parsing with a factor 180
under certain conditions (1300 objects in the same file, read one by one).

The important point is that this cache can be configured in order to be efficient for every
special case. The two configuration parameters are :

• the maximum number of cached files. This is given by the MaxDocNbInCache
property in the job options file. The default value is 10.

• the behavior of the cache. This is given by the CacheBehavior property in the job
options file. The default is 2. The meaning of this parameter is a bit complicated. It is
explained below.

8.5.3.3.1 CacheBehavior usage

The quick explanation is :

• set CacheBehavior to 0 to have a FIFO (First in, first out) behavior

• put it to more to keep files that are reused. In this second case, the value of the
parameter gives you the frequency of usage a given file should have to stay in the
cache. Eg, for the default value, a file reused once every two file usages will stay
forever in the cache.

The complete explanation is the following :
page 82

Gaudi Users Guide
Chapter 8 Detector Description Version/Issue: 9/0
• for each item in the cache, its birthDate and its utility are stored. The
birthDate is the age of the cache at the time the item was added to it and the age
grows by 1 each time a file is requested, be it in the cache or not. The utility is the
number of times the cached item is accessed, once it is in the cache.

• when the cache is full, the following value is computed for every item:
birthDate + CacheBehavior * utility. The item with the smallest score is
removed from the cache.

So, if CacheBehavior = 0, the item with the smallest birthDate is removed, which means
the oldest. So it is a FIFO. If not, the thing is a bit more tricky but imagine that you request the
same file every CacheBehavior requested files. The utility of this file will be
(cacheAge - birthDate) / CacheBehavior and thus, its score will be cacheDate,
which is the best possible score for a new arriving file. So this file will be kept. Files that are
less often used will have a score further and further from the one of the last arrived file and
will eventually be deleted. Files more often accessed have better scores and will be kept.

8.5.3.4 Converters implementation overview

We give here a quick overview of the converters implementation to give an idea of what to do
if you want to extend them. This process of extension will be anyway detailed for the case of
detector elements in Section 8.5.4.

Figure 8.8 gives an overview of the tree of classes defining the whole set of converters. As
explained in Chapter 13, every converter inherits from the class Converter and implements
the methods initialize, finalize, createObj, updateObj, createRep and

Figure 8.8 C++ class hierarchy for converters

XmlBaseDetElemCnv

DeType

XmlUserDetElemCnv

Converter

XmlCatalogCnv

XmlDetectorElementCnv

XmlElementCnvXmlIsotopeCnv

XmlLVolumeCnvXmlSurfaceCnv
XmlTabulatedPropertyCnv

XmlDeCalorimeterCnvXmlMuonStationCnv

(XmlUserDetElemCnv< DeMuonStation >)

XmlVertexCnv

(XmlUserDetElemCnv< DeVertexDetector >)

XmlGenericCnv

XmlMixtureCnv
 page 83

Gaudi Users Guide
Chapter 8 Detector Description Version/Issue: 9/0
updateRep. In the case of the XML converters, the method createObj (the only currently
implemented one among the create* and update* methods) is pretty much always the
same: retrieve the right XML file, parse it, check the version, find the element to retrieve,
create the corresponding C++ object, fill it with its children if needed, make some computation
on it and store it.

The only three points where things are converter specific are thus the creation of the object, its
filling and the computation made on it. The rest of the code is common and it was put into
XmlGenericCnv. Only three virtual methods have to overriden to implement a new
converter from the generic one : i_createObj, i_fillObj and i_processObj.

In the case of detector elements, it is a bit more tricky since we want users to be able to extend
easily the default converter to add their own stuff. This is done by putting all the default code
inside XmlBaseDetElemCnv and defining a new method, called i_fillSpecificObj, that
has to be implemented by the user in case he adds some stuff. The default converter
XmlDetectorElementCnv only gives an empty implementation for this method.

See 8.5.4 for more details.

8.5.4 Customizing a detector element

This topic is developed in a dedicated documentation : "Extending detector elements and
implications", by Sebastien Ponce, available at
http://cern.ch/lhcb-comp/Frameworks/DetDesc/Documents/detElemExtension.pdf. Thus, we will
only give here a quick overview of the possibilities without any explanation on how to
practically do the job.

There are three ways of customizing a detector element, from the simplest but less flexible
one to the most complicated, but most flexible one :

• the first one only allows the user to add parameters (or vectors of parameters) to the
default DetectorElement object in C++.

• the second one allows the user to define a new C++ object, inheriting from the default
DetectorElement. He can thus do some computation inside the object, using the
parameters defined in the first case.

• the last method allows the user to redefine the DTD used in the XML files and to
manage structured data instead of just parameters.

8.5.4.1 UserParameters

This is the simplest way to add specific information to a detector element without having to
write too much code. It is based on the userParameter and userParameterVector tags
defined in the structure DTD of the LHCb detector description files.

The userParameter and userParameterVector tags are children of the detelem tag.
They can appear anywhere in the definition of a detector element. Listing 8.9 shows some
examples of the usage of user parameters:
page 84

http://cern.ch/lhcb-comp/Frameworks/DetDesc/Documents/detElemExtension.pdf

Gaudi Users Guide
Chapter 8 Detector Description Version/Issue: 9/0
Once user parameters are defined in XML, they are converted by the regular converter for
detector elements and are then reachable in the C++ code using the following methods of the
class DetectorElement : userParameters, userParameterVectors,
userParameter, userParameterAsString, userParameterAsInt,
userParameterAsDouble, userParameterType, userParameterComment,
userParameterVector, userParameterVectorAsString,
userParameterVectorAsInt, userParameterVectorAsDouble,
userParameterVectorType and userParameterVectorComment

The method name should be self-descriptive. For more details, go to the dedicated
documentation.

8.5.4.2 Customizing the detector element

The preceeding section showed us how to define user parameters inside a regular detector
element. We describe here how it is possible to define new C++ classes, inheriting from the
original DetectorElement class. This has for consequence that the generic converter
provided with Gaudi can no longer do the job, since it is not aware of the existence of this new
class. Thus, we have to create a new converter, by customizing a bit the default one.

This is done by using the templated class XmlUserDetElemCnv<DeType> which allows the
users to define his own converter for his own type of detector element. It actually inherits the
behavior of the default converter and avoids the user to rewrite existing code. The only
difference here is that it creates an object of type DeType instead of a regular
DetectorElement.

The parameter class DeType has only few constraints: it must inherit from
DetectorElement, it must have a default constructor with no parameters and it must have
a new classID, which has to be unique in whole LHCb software. Appart from that, you have
full freedom to use you own class and to add whatever methods or members you may want to
the default DetectorElement.

In addition, one could override the methods of DetectorElement. This is not recommended
at all except for the method initialize(). This one is a kind of hook for the user. It is called
by the converter just after the creation of the object and before its first use. It allows the user to
initialize some members using the values parsed from the XML, for example user parameters.

Listing 8.9 Example of usage of user parameters

 <detelem name="Ecal">

 <userParameter name="CodingBit" type="int"> 6 </userParameter>
 <userParameterVector name="aVector" type="int">
 10 20 30
 40 50 60
 </userParameterVector>
</detelem>
 page 85

Gaudi Users Guide
Chapter 8 Detector Description Version/Issue: 9/0
8.5.4.3 Extending the DTD

This last way of extending a detector element is the most flexible one. It allows to define new
XML children tags for the detelem tag. This is actually the goal of the specific tag. It
allows the user to extend the default DTD of the XML file where his detector element resides
and to use the new tags to add structured data. These data will then be used by a user defined
converter to build a detector element.

The extension of the DTD and the use of the specific tag are not explained here since they
are straightforward for someone who knows XML. More details are available in the dedicated
documentation.

Concerning the C++ part, the situation is pretty much the same as before: a new converter
must be defined. This looks like the previous one except that it has one more method
implemented (actually overridden from XmlUserDetElemCnv) :

This method uses the DOM interface, which is an interface to XML parsers. If you don’t know
it and thus don’t know what a DOM_Element is, please refer to the dedicated documentation.

The principle of the i_fillSpecificObj method is pretty simple : it is called by the XML
parser service everytime a tag is found directly inside a specific tag. The parameters are then
the DOM_Element corresponding to the tag found and the C++ detector element object being
built when this occured.

Thus, for the XML code in Listing 8.10 the method will be called twice, once for
Al_plate_thickness and once for pad_dimensions. It will not be called for padX or
padY.

This method is thus the place where the XML code can be browsed and data extracted to be
put inside the detector element object.

 StatusCode i_fillSpecificObj(DOM_Element childElement,
 DeType* dataObj);

Listing 8.10 Extending the DTD

<detelem classID="9990" name="MStation01">
 <author> Sebastien Ponce </author>
 <geometryinfo ... />
 <specific>
 <Al_plate_thickness value="1.1111*mm"/>
 <pad_dimensions>
 <padX length="2*mm"/>
 <padY length="4*mm"/>
 </pad_dimensions>
 </specific>
</detelem>
page 86

Gaudi Users Guide
Chapter 8 Detector Description Version/Issue: 9/0
8.5.5 Numerical expressions parser

The framework provides a simple evaluator of numerical expressions based on the CLHEP
expression evaluator. It is available for Gaudi framework converters as well as for the user
defined converters. The only difference is that in user defined converters the parser is not
instantiated explicitly by the user but is accessed through the IXmlSvc interface instead.

The numerical expressions recognized by the parser can be composed of integers and floating
point numbers assuming one of the formats:

100 100. .05 0.1 1.34-e12 -23

Supported operations are: + - * / unary +|- exponent ^

Parenthesized expressions: 1.4 * (23.4-e12 / 1.8)

Operator precedence is: () unary +|- ^ *|/ +|-

In addition, the parser understands CLHEP units. The result is always evaluated to double
value. The check for the presence of CLHEP units inside expressions is enabled by default. To
suppress this behaviour the call of the eval() method must look like:

xmlSvc->eval("2*(34.5 + 1.23-e4)", false);

For further information about this expression parser, please go to the CLHEP documentation
at http://wwwinfo.cern.ch/asd/lhc++/clhep/manual/UserGuide/index.html

8.5.6 XML Editor

The XML editor is a tool provided to edit the XML files of the detector description database
without having to learn the XML syntax. It is provided as a separate Gaudi package and was
written in Java. Documentation is available at http://cern.ch/lhcb-comp/Frameworks/DetDesc.

8.6 Persistent storage in a Conditions Database

While the current implementation of the Gaudi detector description, based on text files in the
XML language, is perfectly adequate to describe detector data for which only one or at most a
few versions exist (as in the case of the detector logical structure, geometry or materials), a
file-based persistent storage is not adequate to describe detector data which is rapidly
changing in time, such as slow control measurements of temperature and pressure. It is
therefore foreseen that this data will be stored in a database, the so called Conditions Database
(or CondDB). Once this storage system is fully functional, it could also be used to store the
description of the structure and geometry of the detector, keeping track of its possible time
variation due to the installation or removal of subdetector elements between different years.
 page 87

http://wwwinfo.cern.ch/asd/lhc++/clhep/manual/UserGuide/index.html
http://cern.ch/lhcb-comp/Frameworks/DetDesc

Gaudi Users Guide
Chapter 8 Detector Description Version/Issue: 9/0
8.6.1 Generalities on the Conditions Database

The main user requirements and abstract interfaces for the CondDB have beed described in
the document "Conditions Database for LHCb: Interface Specification Proposal", by Pere
Mato, available at http://cern.ch/lhcb-comp/Frameworks/DetCond/conddataspecs.pdf: only a quick
overview of the system will be given here. In summary, each block of condition data stored in
the CondDB, indipendently from its data content, has the following three characteristics, as
shown in Figure 8.9:

• the name of the data type it refers to (such as "/SlowControl/Hcal");

• the time range during which it is valid, i.e. an interval of the form [since, till];

• a version number (such as the version of the alignment algorithm used).

The collection of all data blocks referring to the same data type, for any given validity time
and version number, will be called a "condition folder" in the following, while a collection of
condition folders will be referred to as a "condition folderset": in the example above,
"/SlowControl" is the name of the folderset containing folder "SlowControl/Hcal". Instead of
a version number, a "tag" name will most often be used to indicate a consistent set of condition
data blocks of a given folder, such that at every given time only one such data block within the
folder has the given tag. In addition to "local" tag names defined for a given folder, "global"
tag names defined over a collection of many folders of the CondDB can also be used. As a
consequence, a block of condition data can be retrieved from the CondDB by specifying three
variables: a folder name, a validity time and a (local or global) tag name.

The actual data content of each condition block is required to consist of a byte stream, which
may be taken to represent a string. This may be used, for instance, to store XML documents as
strings in the CondDB, rather than as text files like in the present implementation of the LHCb
DDDB. Eventually, other possibilities may be investigated, such as storing C++ objects

Figure 8.9 The three axes for identifying uniquely each block of data stored in the conditions database.
page 88

http://cern.ch/lhcb-comp/Frameworks/DetDesc/Documents/detElemExtension.pdf

Gaudi Users Guide
Chapter 8 Detector Description Version/Issue: 9/0
serialized as byte streams, or storing a string containing an object identifier in an Objectivity
database or a table identifier in an Oracle database.

8.6.2 Conditions Database prototype implementation and examples

In collaboration with LHCb and other experiments, a conditions database system with these
characteristics has recently been developed by the CERN IT/DB group (see online
documentation at http://wwwinfo.cern.ch/db/objectivity/docs/conditionsdb).The current
implementation of this product is based on the Objectivity object database system, but
another implementation based on the Oracle relational database is being developed by the
same group. It has been decided that the production version of the LHCb conditions database
will be based on the Oracle implementation of this package, a first prototype of which might
be ready to be used by the next Gaudi software release. In the meantime, the package based
on Objectivity has been used to prototype the relevant services of the Gaudi framework.

8.6.2.1 Relevant CMT packages

An example of an algorithm retrieving time-varying condition data from the CondDB exists in
package DetCondExample v2r0. This uses a number of CMT packages, as shown below,

In addition to the generic detector description code from DetDesc, the example makes use of
package DetCond, containing the relevant conversion service for DataObjects stored in the
CondDB, class ConditionsDBCnvSvc, described later on. Package DetCond, in turn, depends
on package CONDDB which allows to use Objectivity and the corresponding implementation
of the CondDB package from the IT/DB group.

Package DetCondExample does not use the production version of the DDDB from XmlDDDB,
as it contains its own simplified private version of the DDDB. Two examples are actually
contained in this package: one tests the retrieval of Condition objects, stored in XML files,
through the specialised interfaces of a detector element such as IAlignment; another tests the
retrieval of Condition objects, stored in XML strings in the Objectivity based CondDB, using
the ConditionsDBCnvSvc. In this second example, a third job options file allows to populate
an Objectivity conditions database using sample data.

While the first example works under both Linux and Windows, the second example only
works under Linux, as Objectivity is currently not supported under Windows at CERN. The
two examples test different branches of the same DDDB tree, showing that file-based and
CondDB-based persistency systems can be used at the same time. The following will
concentrate on the description of the CondDB example.

8.6.2.2 Condition objects in the Gaudi store and data blocks in the CondDB

While user algorithms are only meant to retrieve Condition objects by a request to the
corresponding interface of a DetectorElement (for instance, the Hcal slow control Condition is

use DetCond v2r0 Det
use DetDesc v9* Det
 page 89

http://wwwinfo.cern.ch/db/objectivity/docs/conditionsdb

Gaudi Users Guide
Chapter 8 Detector Description Version/Issue: 9/0
accessible as hcal->slowControl()->condition(), as described in Listing 8.4), it is
important to understand the underlying mechanism to retrieve them into the transient store
from their persistent representation in the CondDB.

To start with, it is assumed in the following that all parameters and parameter vectors which
refer to the same detector element and share the same time validity range should be grouped
together into the same Condition object, and that one and only one such Condition should be
stored in each data block in the CondDB. While more than one Condition could be stored in
the same data block (just like two different elements can be stored in the same XML file), two
such Conditions would be forced to share the same validity range, folder name and tag, and
are best thought of as two different subsets of parameters of the same Condition. This
one-to-one correspondence between the granularity of transient Condition objects and
persistent data blocks in the CondDB can be relevant for time performance reasons.

In the design of the framework services for Condition data in the CondDB, it is further
assumed that, for every condition folder in the CondDB, only one Condition object from that
folder can be loaded in the Gaudi transient data store, i.e. that which is valid at the time of the
current event, and for a given global tag specified by the user in the job options. This allows to
set a one-to-one correspondence between a folder name, and a path name in the Gaudi store.

In summary, in response to a statement like hcal->slowControl()->condition(), the
three variables necessary to retrieve a block of condition data from the CondDB, the folder
name, the tag name and the validity time, are determined as follows.

• The validity time is a property of the DetectorDataSvc. While in the example it is set
by an external "clock" using the IDetDataSvc special interface, eventually the
DetectorDataSvc should read it from the current event data whenever it is
interrupted by an Incident signalling the start of a new event.

• The default global tag is a property of the ConditionsDBCnvSvc, set in the job options

• Last, the folder name of the requested data block in the CondDB is dictated by two
distinct associations: that of the Hcal interface for slow control information to the
path name in the transient store where its Condition must be loaded, and that of this
path name to a folder name in the CondDB (which requires the use of a specially
defined protocol "conddb:/folderset/folder#entryName"). In the example,
both these associations are defined in file-based XML part of the DDDB, as follows.

// Production version of detector conditions
ConditionsDBCnvSvc.condDBGlobalTag = "PRODUCTION";

From file LHCb/structure.xml:
 <detelem name="LHCb" type="passive">
 <geometryinfo lvname="/dd/Geometry/LHCb/lvLHCb"/>
 <slowcontrolinfo condition="/dd/SlowControl/LHCb/scLHCb"/>
 <detelemref href = "../Hcal/structure.xml#Hcal"/>
 </detelem>

From file Hcal/slowcontrol.xml:
 <catalog name="Hcal">
 <conditionref href="conddb:/SlowControl/Hcal/scHcal#scHcal"/>
 </catalog>
page 90

Gaudi Users Guide
Chapter 8 Detector Description Version/Issue: 9/0
It should also be mentioned that special users of the CondDB may need to use condition data
in a different way: for instance, one may want to compare two versions of the alignment,
accessing at the same time data blocks from the same folder and valid at the same time, but
for different global tags. Whenever one needs to access two Condition objects corresponding
to the same condition folder, but valid at different times, or differently tagged, this is still
possible by direct access to the ConditionsDBCnvSvc through the methods of its special
IConditionsDBCnvSvc interface. In other words, Condition objects may be created for
arbitrary folder names, tag names and validity times, but they only exist in C++ memory
while they are not loaded into the Gaudi data store.

8.6.2.3 Creation of Condition objects in the ConditionsDBCnvSvc

The conversion of condition data from their persistent storage as XML strings in the CondDB
into transient C++ objects of class Condition in the Gaudi data store is more complex than a
typical conversion process, such as that of detector elements stored in XML files. The
difference is that two persistency mechanisms are used here, the storage of objects as XML
strings and the storage of these strings in the CondDB. As a consequence, the conversion
service responsible to retrieve Condition objects from the CondDB, the ConditionsDBCnvSvc,
is a special type of conversion service. While it has no converters of its own, it is responsible to
retrieve XML strings from the CondDB, then send them to another conversion service, the
XmlCnvSvc described in Section 8.5.3.2, which in turn sends them for conversion to the
appropriate converter (an XmlUserConditionCnv, in this case). After the creation of a
Condition object, the XmlCnvSvc returns it to the ConditionsDBCnvSvc, which before
returning control sets the appropriate validity range of the Condition, using the information
retrieved from the CondDB.

While the example in the DetCondExample package stores and retrieves XML strings from
the CondDB, the behaviour of the ConditionsDBCnvSvc does not assume that the data strings
retrieved are written in XML. The "secondary" storage type for data blocks in the CondDB,
which in this case is XML, is also discovered at runtime in the CondDB, by reading it off from
the "description" of the corresponding CondDB folder, a single string which is meant to refer
to all data blocks in the folder, independently of their validity ranges and version numbers.

8.6.2.4 Update of Condition objects

Eventually, it is foreseen that the DetectorDataSvc would automatically update all Condition
objects loaded in the transient store it manages, whenever they become invalid. In the present
implementation, this functionality is not yet provided, and Condition objects must be
explicitly updated inside the algorithms before they are used, as in the following example.
This will be modified by the time of the next release..

Condition* scHcal = hcal->slowControl()->condition();
StatusCode sc = detSvc()->updateObject(scHcal);
if(!sc.isSuccess()) {
 log << MSG::ERROR << "Can’t update Condition" << endreq;
 return StatusCode::FAILURE;
}

 page 91

Gaudi Users Guide
Chapter 8 Detector Description Version/Issue: 9/0
When requested to update a DataObject, the DetectorDataSvc does nothing if the requested
objected does not implement IValidity or if it is still valid at the time of the current event.
Otherwise, the request is propagated through the DetPersistencySvc to the appropriate
conversion service, i.e. the ConditionsDBCnvSvc for data stored in the CondDB.

The ConditionsDBCnvSvc handles update requests for data objects in the following way. In
principle, it should propagate an update request to the secondary conversion service, from
where in turn it would be dispatched to the appropriate converter. However, this requires that
the updateObject() method of the appropriate converter (XmlUserConditionCnv for a
Condition object) is properly implemented, while currently this is not the case. Eventually, all
converters of data that implements the IValidity interface (including DetectorElements, if
these are to be stored in the CondDB) should implement this method: for Xml converters, this
could be done by moving the parsing of Xml strings from the createObject() to the
updateObject() method, calling the latter from inside the former. In the present
implementation, update requests are handled by creating a new object of the given type, then
copying its contents into the location referred to by the pointer to the old object. This "deep"
copy of a Condition is actually not a complete deep copy, as the data members of the old
DataObject which concern its location in the Gaudi store should not be changed. Rather than
by an overloaded operator=, the update of the contents of the old Condition using selected
contents of the new Condition is performed using the virtual void method
Condition::update(Condition& obj). This method needs to be properly overloaded
by all users desiring to write derived Conditions, to perform a deep copy of any additional
data members.
page 92

Gaudi Users Guide
Chapter 9 Histogram facilities Version/Issue: 9/0
Chapter 9

Histogram facilities

9.1 Overview

The histogram data store is one of the data stores discussed in Chapter 2. Its purpose is to
store statistics based data and user created objects that have a lifetime of more than a single
event (e.g. histograms).

As with the other data stores, all access to data is via a service interface. In this case it is via the
IHistogramSvc interface, which is derived from the IDataProviderSvc interface
discussed in Chapter 6. The user asks the Histogram Service to book a histogram and register
it in the histogram data store. The service returns a pointer to the histogram, which can then
be used to fill and manipulate the histogram, using the methods defined in the
IHistogram1D and IHistogram2D interfaces and documented on the AIDA (Abstract
Interfaces for Data Analysis) project web pages: http://wwwinfo.cern.ch/asd/lhc++/AIDA/.

Internally, Gaudi uses the transient part of HTL (Histogram Template Library,
http://wwwinfo.cern.ch/asd/lhc++/HTL/) to implement histograms.

Examples of histogram usage are available in $LHCBSOFT/Ex/HistogramsExample, and in
section 5 of the Basic Gaudi Tutorial
(http://cern.ch/lhcb-comp/Frameworks/Gaudi/Tutorial/5_Histogramming_and_N_tuples.pdf)

9.2 The Histogram service.

An instance of the histogram data service is created by the application manager. After the
service has been initialised, the histogram data store will contain a root directory, always
called “/stat”, in which users may book histograms and/or create sub-directories (for
example, in the code fragment below, the histogram is stored in the subdirectory
“/stat/simple“). A suggested naming convention for the sub-directories is given in
 page 93

http://wwwinfo.cern.ch/asd/lhc++/AIDA/
http://wwwinfo.cern.ch/asd/lhc++/HTL/
http://cern.ch/lhcb-comp/Frameworks/Gaudi/Tutorial/5_Histogramming_and_N_tuples.pdf

Gaudi Users Guide
Chapter 9 Histogram facilities Version/Issue: 9/0
Section 1.2.3. Note that the string "/stat/" can be omitted when referring to a histogram in
the data store: "/stat/simple" is equivalent to "simple", without a leading "/".

As discussed in Section 5.2, the Algorithm base class defines a member function which
returns a pointer to the IHistogramSvc interface of the standard histogram data service .

Access to any other non-standard histogram data service (if one exists) must be sought via the
ISvcLocator interface of the application manager as discussed in section 11.2.

9.3 Using histograms and the histogram service

The code fragment below shows how to book a 1D histogram and place it in a directory
within the histogram data store, followed by a simple statement which fills the histogram.

The parameters of the book function are the directory in which to store the histogram in the
data store, the histogram identifier, the histogram title, the number of bins and the lower and
upper limits of the X axis. 1D histograms with fixed and variable binning are available. In the
case of 2D histograms, the book method requires in addition the number of bins and lower
and upper limits of the Y axis.

If using HBOOK for persistency, the histogram identifier should be a valid HBOOK histogram
identifier (number) and must be unique within the RZ directory the histogram is assigned to.
The name of the RZ directory is given by the directory and parent directories in the transient
histogram store. Please note that HBOOK accepts only directory names, which are shorter
than 16 characters and that HBOOK internally converts any directory name into upper case.
Even if using another persistency solution (e.g. ROOT) it is recommended to comply with the
HBOOK constraints in order to make the code independent of the persistency choice.

The call to histoSvc()->book(...) returns a pointer to an object of type IHistogram1D
(or IHistogram2D in the case of a 2D histogram). All the methods of this interface can be
used to further manipulate the histogram, and in particular to fill it, as shown in the example.
Note that this pointer is guaranteed to be non-null, the algorithm would have failed the
initialisation step if the histogram data service could not be found. On the contrary the user
variable particles may be null (in case of absence of tracks in the transient data store and in

IHistogramSvc* histoSvc()

#include "AIDA/IHistogram1d.h"
...
// Book 1D histogram in the histogram data store
IHistogram1d* m_hTrackCount= histoSvc()->

book("simple", 1, “TrackCount“, 100, 0., 3000.);
SmartDataPtr<MyTrackVector> particles(eventSvc(),“/Event/MyTracks”)
if (0 != particles) {

// Filling the track count histogram
m_hTrackCount->fill(particles->size(), 1.);

}

page 94

Gaudi Users Guide
Chapter 9 Histogram facilities Version/Issue: 9/0
the persistent storage), and the fill statement would fail - so the value of particles must be
checked before using it.

Algorithms that create histograms will in general keep pointers to those histograms, which
they may use for filling operations. However it may be that you wish to share histograms
between different algorithms. Maybe one algorithm is responsible for filling the histogram
and another algorithm is responsible for fitting it at the end of the job. In this case it may be
necessary to look for histograms within the store. The mechanism for doing this is identical to
the method for locating event data objects within the event data store, namely via the use of
smart pointers, as discussed in section 6.8.

9.4 Persistent storage of histograms

By default, Gaudi does not produce a persistent histogram output. The options exist to write
out histograms either in HBOOK or in ROOT format. The choice is made by giving the job
option ApplicationMgr.HistogramPersistency, which can take the values "NONE" (no
histograms saved, default), "HBOOK" or "ROOT". Depending on the choice, additional job
options are needed, as described below.

9.4.1 HBOOK persistency

The HBOOK conversion service converts objects of types IHistogram1D and
IHistogram2D into a form suitable for storage in a standard HBOOK file. In order to use it
you first need to tell Gaudi where to find the HbookCnv shared library. This is done by adding
the following line to the CMT requirements file:

You then have to tell the application manager to load this shared library and to create the HBOOK
conversion service, by adding the following line to your job options file:

Finally, you have to tell the histogram persistency service the name of the output file:

SmartDataPtr<IHistogram1D> hist1D(histoSvc(), "simple/1");
if(0 != hist1D) {

// Print the found histogram
histoSvc()->print(hist1D);

}

use HbookCnv v*

#include "$STDOPTS/Hbook.opts"

HistogramPersistencySvc.OuputFile = "histo.hbook";
 page 95

Gaudi Users Guide
Chapter 9 Histogram facilities Version/Issue: 9/0
Note that it is also possible to print the histograms to the standard output destination
(HISTDO) by setting the following job option (default is false).

9.4.2 ROOT persistency

The ROOT conversion service converts objects of types IHistogram1D and IHistogram2D
into a form suitable for storage in a standard ROOT file. In order to use it you first need to tell
Gaudi where to find the RootHistCnv shared library. This is done by adding the following
line to the CMT requirements file:

You then have to tell the application manager to load this shared library and to create the ROOT
histograms conversion service, by adding the following line to your job options file:

Finally, you have to tell the histogram persistency service the name of the output file:

HistogramPersistencySvc.PrintHistos = true;

use RootHistCnv v*

#include "$STDOPTS/RootHist.opts"

HistogramPersistencySvc.OuputFile = "histo.rt";
page 96

Gaudi Users Guide
Chapter 10 N-tuple and Event Collection facilities Version/Issue: 9/0
Chapter 10

N-tuple and Event Collection facilities

10.1 Overview

In this chapter we describe facilities available in Gaudi to create and retrieve N-tuples. We
discuss how Event Collections, which can be considered an extension of N-tuples, can be used
to make preselections of event data. Finally, we explore some possible tools for the interactive
analysis of N-tuples.

10.2 N-tuples and the N-tuple Service

User data - so called N-tuples - are very similar to event data. Of course, the scope may be
different: a row of an N-tuple may correspond to a track, an event or complete runs.
Nevertheless, user data must be accessible by interactive tools such as PAW or ROOT.

Gaudi N-tuples allow to freely format structures. Later, during the running phase of the
program, data are accumulated and written to disk.

The transient image of an N-tuple is stored in a Gaudi data store which is connected to the
N-tuple service. Its purpose is to store user created objects that have a lifetime of more than a
single event.

As with the other data stores, all access to data is via a service interface. In this case it is via the
INTupleSvc interface which extends the IDataProviderSvc interface. In addition the
interface to the N-tuple service provides methods for creating N-tuples, saving the current
row of an N-tuple or retrieving N-tuples from a file. The N-tuples are derived from
DataObject in order to be storable, and are stored in the same type of tree structure as the
event data. This inheritance allows to load and locate N-tuples on the store with the same
smart pointer mechanism as is available for event data items (c.f. Chapter 6).
 page 97

Gaudi Users Guide
Chapter 10 N-tuple and Event Collection facilities Version/Issue: 9/0
10.2.1 Access to the N-tuple Service from an Algorithm.

The Algorithm base class defines a member function which returns a pointer to the
INTupleSvc interface .

The N-tuple service provides methods for the creation and manipulation of N-tuples and the
location of N-tuples within the persistent store.

The top level directory of the N-tuple transient data store is always called “/NTUPLES”. The
next directory layer is connected to the different output streams: e.g. “/NTUPLES/FILE1”,
where FILE1 is the logical name of the requested output file for a given stream. There can be
several output streams connected to the service. In case of persistency using HBOOK, “FILE1”
corresponds to the top level RZ directory of the file (...the name given to HROPEN). From
then on the tree structure is reflected with normal RZ directories (caveat: HBOOK only
accepts directory names with less than 8 characters! It is recommended to keep directory
names to less than 8 characters even when using another technology (e.g. ROOT) for
persistency, to make the code independent of the persistency choice.). Note that the top level
directory name "/NTUPLES/" can be omitted when referring to an N-tuple in the transient
data store - in the example above the name could start with "FILE1" (without a leading "/").

10.2.2 Using the N-tuple Service.

This section explains the steps to be performed when defining an N-tuple:

• The N-tuple tags must be defined.

• The N-tuple must be booked and the tags must be declared to the N-tuple.

• The N-tuple entries have to be filled.

• The filled row of the N-tuple must be committed.

• Persistent aspects are steered by the job options.

10.2.2.1 Defining N-tuple tags

When creating an N-tuple it is necessary to first define the tags to be filled in the N-tuple, as
shown for example in Listing 10.1:

INTupleSvc* ntupleSvc()

Listing 10.1 Definition of N-tuple tags from the Ntuples.WriteAlg.h example header file.

1: NTuple::Item<long> m_ntrk; // A scalar item (number)
2: NTuple::Array<bool> m_flag; // Vector items
3: NTuple::Array<long> m_index;
4: NTuple::Array<float> m_px, m_py, m_pz;
5: NTuple::Matrix<long> m_hits; // Two dimensional tag
page 98

Gaudi Users Guide
Chapter 10 N-tuple and Event Collection facilities Version/Issue: 9/0
Typically the tags belong to the filling algorithm and hence should be provided in the
Algorithm’s header file. Currently the supported data types are: bool, long, float and
double. double types (Fortran REAL*8) are not recommened if using HBOOK for
persistency: HBOOK will complain if the N-tuple structure is not defined in a way that aligns
double types to 8 byte boundaries. In addition PAW cannot understand double types.

10.2.2.2 Booking and Declaring Tags to the N-tuple

Listing 10.2 shows how to book a column-wise N-Tuple. The first directory specifier (FILE1
in the example) must correspond to an open output stream (see Section 10.2.3.2); lower
directory levels are created automatically. After booking, the previously defined tags must be
declared to the N-tuple; if not, they are invalid and will cause an access violation at run-time.

In previous versions of Gaudi (up to v8), indexed items were added with the addItem
function, causing confusion for users. For this reason the calls to add indexed arrays and
matrices were changed, these should now be added using the member function
addIndexedItem. Please consult the doxygen code documentation for further details. The
old calls still exist, however they are deprecated.

Row wise N-tuples are booked in the same way, but giving the type CLID_RowWiseTuple.
However, only individual items (class NTuple::Item) can be filled, no arrays and no
matrices. Clearly this excludes the usage of indexed items. For row-wise N-tuples to be saved
in HBOOK format, it is recommended to use only float type, for the reasons explained in
Section 10.2.3.3.

When using HBOOK for persistency, the N-tuple identifier ("1" in this example) must be a
number and must be unique in a given directory. This is a limitation imposed by HBOOK RZ

Listing 10.2 Creation of a column-wise N-tuple in a specified directory and file.

1: #include "GaudiKernel/NTuple.h"
2: ..
3: NTuplePtr nt1(ntupleSvc(), "FILE1/MC/1");
4: if (!nt1) { // Check if already booked
5: nt1=ntupleSvc()->book("FILE1/MC/1",CLID_ColumnWiseTuple,"Hello World");
6: if (0 != nt1) {
7: // Add an index column
8: status = nt1->addItem ("Ntrack", m_ntrk, 0, 5000);
9: // Add a variable size column, type float (length=length of index col)
10: status = nt1->addIndexedItem ("px", m_ntrk, m_px);
11: status = nt1->addIndexedItem ("py", m_ntrk, m_py);
12: status = nt1->addIndexedItem ("pz", m_ntrk, m_pz);
13: // Another one, but this time of type bool
14: status = nt1->addIndexedItem ("flg",m_ntrk, m_flag);
15: // Another one, type integer, numbers must be within [0, 5000]
16: status = nt1->addIndexedItem ("idx",m_ntrk, m_index, 0, 5000);
17: // Add 2-dim column: [0:m_ntrk][0:2]; numerical numbers within [0, 8]
18: status = nt1->addIndexedItem ("hit",m_ntrk, 2, m_hits, 0, 8);
19: }
20: else { // did not manage to book the N tuple....
21: return StatusCode::FAILURE;
22: }
23: }
 page 99

Gaudi Users Guide
Chapter 10 N-tuple and Event Collection facilities Version/Issue: 9/0
directories. It is recommended to keep this number unique even when using another
technology (e.g. ROOT) for persistency, to make the code independent of the persistency
choice.

10.2.2.3 Filling the N-tuple

Tags are usable just like normal data items, where

• Items<TYPE> are the equivalent of numbers: bool, long, float.

• Array<TYPE> are equivalent to 1 dimensional arrays: bool[size], long[size],
float[size]

• Matrix<TYPE> are equivalent to an array of arrays or matrix: bool[dim1][dim2].

Implicit bounds checking is not possible without a rather big overhead at run-time. Hence it is
up to the user to ensure the arrays do not overflow.

When all entries are filled, the row must be committed, i.e. the record of the 7N-tuple must be
written.

10.2.2.4 Reading N-tuples

Although N-tuples intended for interactive analysis, they can also be read by a regular
program. An example of reading back such an N-tuple is given in Listing 10.4.

Listing 10.3 Filling an N-tuple.

1: m_ntrk = 0;
2: for(MyTrackVector::iterator i = mytracks->begin(); i !=

mytracks->end(); i++) {
3: const HepLorentzVector& mom4 = (*i)->fourMomentum();
4: m_px[m_ntrk] = mom4.px();
5: m_py[m_ntrk] = mom4.py();
6: m_pz[m_ntrk] = mom4.pz();
7: m_index[m_ntrk] = cnt;
8: m_flag[m_ntrk] = (m_ntrk%2 == 0) ? true : false;
9: m_hits[m_ntrk][0] = 0;
10: m_hits[m_ntrk][1] = 1;
11: m_ntrk++;
12: // Make sure the array(s) do not overflow.
13: if (m_ntrk > m_ntrk->range().distance()) break;
14: }
15: // Commit N tuple row. See Listing 10.2 for initialisation of m_ntuple
16: status = m_ntuple->write();
17: if (!status.isSuccess()) {
18: log << MSG::ERROR << "Cannot fill id 1" << endreq;
19: }
page 100

Gaudi Users Guide
Chapter 10 N-tuple and Event Collection facilities Version/Issue: 9/0
10.2.3 N-tuple Persistency

10.2.3.1 Choice of persistency technology

N-tuples are of special interest to the end-user, because they can be accessed using commonly
known tools such as PAW, ROOT or Java Analysis Studio (JAS). In the past it was not a
particular strength of the software used in HEP to plug into many possible persistent data
representations. Except for JAS, only proprietary data formats are understood. For this reason
the choice of the output format of the data depends on the preferred analysis tool/viewer.

HBOOK This data format is used by PAW. PAW can understand this and only this data
format. Files of this type can be converted to the ROOT format using the h2root data
conversion program. The use of PAW in the long term is deprecated.

ROOT This data format is used by the interactive ROOT program.

In the current implementation, N-tuples must use the same persistency technology as
histograms. The choice of technology is therefore made in the same way as for histograms, as
described in Section 9.4. Obviously the options have to be given only once and are valid for
both histograms and N-tuples. The only difference is that histograms are saved to a different
output file (defined by the job option HistogramPersistencySvc.OuputFile), a different
output file (or set of output files) must be defined for the N-tuples.

10.2.3.2 Input and Output File Specification

Conversion services exist to convert N-tuple objects into a form suitable for persistent storage
in a number of storage technologies. In order to use this facility it is necessary to add the
following line in the job options file:

Listing 10.4 Reading an N-tuple.

1: NTuplePtr nt(ntupleSvc(), "FILE1/ROW_WISE/2");
2: if (nt) {
3: long count = 0;
4: NTuple::Item<float> px, py, pz;
5: status = nt->item("px", px);
6: status = nt->item("py", py);
7: status = nt->item("pz", pz);
8: // Access the N tuple row by row and print the first 10 tracks
9: while (nt->read().isSuccess()) {
10: log << MSG::INFO << " Entry [" << count++ << "]:";
11: log << " Px=" << px << " Py=" << py << " Pz=" << pz << endreq;
12: }
13: }

NTupleSvc.Output = {"FILE1 DATAFILE=’tuples.hbook’ OPT=’NEW’",
 "FILE2 ...",
 ...
 "FILEN ..."};
 page 101

Gaudi Users Guide
Chapter 10 N-tuple and Event Collection facilities Version/Issue: 9/0
where <tuples.hbook> should be replaced by the name of the file to which you wish to
write the N-tuple. FILE1 is the logical name of the output file, which must be the same as the
data store directory name described in Section 10.2.1. Several files are possible, corresponding
to different data store directories whose name can be chosen at will.

The detailed syntax of the options is as follows. In each case only the three leading characters
are significant: DATAFILE=<...>, DATABASE=<...> or simply DATA=<...> would lead to the
same result.

• DATAFILE=’<file-specs>’
Specifies the datafile (file name) of the output stream.

• OPT=’<opt-spec>’

• NEW, CREATE, WRITE: Create a new data file. Not all implementations
allow to over-write existing files.

• OLD, READ: Access an existing file for read purposes

• UPDATE: Open an existing file and add records. It is not possible to update
already existing records.

A similar option NTupleSvc.Input exists for N-tuple input.

10.2.3.3 Saving row wise N-tuples in HBOOK

Since the persistent representation of row wise N-tuples in HBOOK is done by floats only, a
convention is needed to access the proper data type. By default the float type is assumed,
i.e. all data members are of float type. This is the recommended format.

It is possible to define row wise N-tuples in Gaudi containing data types other than float.
This was the default in Gaudi versions previous to v8, where the first row of the N-tuple
contained the type information. This possibility can be switched on by using the option

HistogramPersistencySvc.RowWiseNTuplePolicy = "USE_DATA_TYPES";

which also provides backwards compatibility for reading back old N-tuples produced with
old Gaudi versions. Remember however that when using PAW to read N-tuples produced
using this option, you must skip the first row and start with the second event.

10.3 Event Collections

Event collections or, to be more precise, event tag collections, are used to minimize data access
by performing preselections based on small amounts of data. Event tag data contain flexible
event classification information according to the physics needs. This information could either
be stored as flags indicating that the particular event has passed some preselection criteria, or
as a small set of parameters which describe basic attributes of the event. Fast access is required
for this type of event data.

Event tag collections can exist in several versions:
page 102

Gaudi Users Guide
Chapter 10 N-tuple and Event Collection facilities Version/Issue: 9/0
• Collections recorded during event processing stages from the online, reconstruction,
reprocessing etc.

• Event collections defined by analysis groups with pre-computed items of special
interest to a given group.

• Private user defined event collections.

Starting from this definition an event tag collection can be interpreted as an N-tuple which
allows to access the data used to create the N-tuple. Using this approach any N-tuple which
allows access to the data is an event collection.

Event collections allow pre-selections of event data. These pre-selections depend on the
underlying storage technology.

First stage pre-selections based on scalar components of the event collection. First stage
preselection is not necessarily executed on your computer but on a database server e.g. when
using ORACLE. Only the accessed columns are read from the event collection. If the criteria
are fulfilled, the N-tuple data are returned to the user process. Preselection criteria are set
through a job options, as described in section 10.3.2.3.

The second stage pre-selection is triggered for all items which passed the first stage
pre-selection criteria. For this pre-selection, which is performed on the client computer, all
data in the N-tuple can be used. The further preselection is implemented in a user defined
function object (functor) as described in section 10.3.2.3. Gaudi algorithms are called only
when this pre-selector also accepts the event, and normal event processing can start.

10.3.1 Writing Event Collections

Event collections are written to the data file using a Gaudi sequencer. A sequencer calls a
series of algorithms, as discussed in section 5.2. The execution of these algorithms may
terminate at any point of the series (and the event not selected for the collection) if one of the
algorithms in the sequence fails to pass a filter.

10.3.1.1 Defining the Address Tag

The event data is accessed using a special N-tuple tag of the type

It is defined in the algorithm’s header file in addition to any other ordinary N-tuple tags, as
described in section 10.2.2.1. When booking the N-tuple, the address tag must be declared like
any other tag, as shown in Listing 10.5. It is recommended to use the name "Address" for this
tag.

The usage of this tag is identical to any other tag except that it only accepts variables of type
IOpaqueAddress - the information necessary to retrieve the event data.

NTuple::Item<IOpaqueAddress*> m_evtAddress
 page 103

Gaudi Users Guide
Chapter 10 N-tuple and Event Collection facilities Version/Issue: 9/0
Please note that the event tuple service necessary for writing event collections is not
instantiated by default and hence must be specified in the job options file:

It is up to the user to locally remember within the algorithm writing the event collection tuple
the reference to the corresponding service. Although the TagCollectionSvc looks like an
N-tuple service, the implementation is different.

10.3.1.2 Filling the Event Collection

At fill time the address of the event must be supplied to the Address item. Otherwise the
N-tuple may be written, but the information to retrieve the corresponding event data later
will be lost. Listing 10.7 also demonstrates the setting of a filter to steer whether the event is
written out to the event collection.

10.3.2 Event Collection Persistency

10.3.2.1 Output File Specification

Conversion services exist to convert event collection objects into a form suitable for persistent
storage in a number of storage technologies. In order to use this facility it is necessary to add
the following line in the job options file:

Listing 10.5 Connecting an address tag to an event collection N-tuple.

1: StatusCode status = service("EvtTupleSvc", m_evtTupleSvc);
2: if (status.isSuccess()) {
3: NTuplePtr nt(m_evtTupleSvc, "/NTUPLES/EvtColl/Collection");
4: ... Book N-tuple
5: // Add an event address column
6: status = nt->addItem ("Address", m_evtAddress);

Listing 10.6 Adding the event tag collection service to the job options.

1: ApplicationMgr.ExtSvc += { "TagCollectionSvc/EvtTupleSvc" };

Listing 10.7 Fill the address tag of an N-tuple at execution time:

1: SmartDataPtr<Event> evt(eventSvc(),"/Event");
2: if (evt) {
3: ... Some data analysis deciding whether to keep the event or not
4: // keep_event=true if event should be written to event collection
5: setFilterPassed(keep_event);
6: m_evtAddrColl = evt->address();
7: }

EvtTupleSvc.Output = {"FILE1 DATAFILE=’coll.root’ TYP=’ROOT’ OPT=’NEW’",
 "FILE2 ...",
 ...
 "FILEN ..."};
page 104

Gaudi Users Guide
Chapter 10 N-tuple and Event Collection facilities Version/Issue: 9/0
where <coll.root> should be replaced by the name of the file to which you wish to write
the event collection. FILE1 is the logical name of the output file - it could be any other string.

The options are the same as for N-tuples (see Section 10.2.3.2) with the following additions:

• TYP=’<typ-spec>’
Specifies the type of the output stream. Currently supported types are:

• ROOT: Write as a ROOT tree.

• MS Access: Write as a Microsoft Access database.

• There is also weak support for the following database types1:

• SQL Server

• MySQL

• Oracle ODBC

These database technologies are supported through their ODBC
interface. They were tested privately on local installations. However
all these types need special setup to grant access to the database.

You need to specify the use of the technology specific persistency package
(i.e. GaudiRootDb) in your CMT requirements file and to load explicitly in
the job options the DLLs containing the generic (GaudiDb) and technology
specific (e.g. GaudiRootDb) implementations of the database access drivers:

ApplicationMgr.DLLs += { "GaudiDb", "GaudiRootDb" };

• SVC=’<service-spec>’ (optional)

Connect this file directly to an existing conversion service. This option however
needs special care. It should only be used to replace default services.

• AUTHENTICATION=’<authentication-specs>’ (optional)

For protected datafiles (e.g. Microsoft Access) it can happen that the file is password
protected. In this case the authentication string allows to connect to these databases.
The connection string in this case is the string that must be passed to ODBC, for
example: AUTH=’SERVER=server_host;UID=user_name;PWD=my_password;’

• All other options are passed without any interpretation directly to the conversion
service responsible to handle the specified output file.

For all options at most three leading characters are significant: DATAFILE=<...>,
DATABASE=<...> or simply DATA=<...> would lead to the same result. Additional options
are availible when accessing events using an event tag collection.

10.3.2.2 Writing out the Event Collection

The event collection is written out by an EvtCollectionStream, which is the last member
of the event collection Sequencer. Listing 10.8 (which is taken from the job options of
EvtCollection example), shows how to set up such a sequence consisting of a user written
Selector algorithm (which could for example contain the code in Listing 10.7), and of the
EvtCollectionStream.
 page 105

Gaudi Users Guide
Chapter 10 N-tuple and Event Collection facilities Version/Issue: 9/0
10.3.2.3 Reading Events using Event Collections

Reading event collections as the input for further event processing in Gaudi is transparent.
The main change is the specification of the input data to the event selector:

The tags that were not already introduced earlier are:

• COLLECTION
Specifies the sub-path of the N-tuple used to write the collection. If the N-tuple which
was written was called e.g. "/NTUPLES/FILE1/Collection", the value of this tag
must be "Collection".

• ADDRESS (optional)
Specifies the name of the N-tuple tag which was used to store the opaque address to
be used to retrieve the event data later. This is an optional tag, the default value is
"Address". Please use this default value when writing, conventions are useful!

• SELECTION (optional):
Specifies the selection string used for the first stage pre-selection. The syntax depends
on the database implementation; it can be:

• SQL like, if the event collection was written using ODBC.
Example: (NTrack>200 AND Energy>200)

• C++ like, if the event collection was written using ROOT.
Example: (NTrack>200 && Energy>200).
Note that event collections written with ROOT also accept the SQL operators
’AND’ instead of ’&&’ as well as ’OR’ instead of ’||’. Other SQL operators are
not supported.

• FUNCTION (optional)
Specifies the name of a function object used for the second-stage preselection. An
example of a such a function object is shown in Listing 10.10. Note that the factory
declaration on line 16 is mandatory in order to allow Gaudi to instantiate the function
object.

Listing 10.8 Job options for writing out an event collection

1: ApplicationMgr.OutStream = { "Sequencer/EvtCollection" };
2: ApplicationMgr.ExtSvc += { "TagCollectionSvc/EvtTupleSvc" };
3: EvtCollection.Members = { "EvtCollectionWrite/Selector",

"EvtCollectionStream/Writer"};
4: Writer.ItemList = { "/NTUPLES/EvtColl/Collection" };
5: Writer.EvtDataSvc = "EvtTupleSvc";
6: EvtTupleSvc.Output = { "EvtColl DATAFILE=’MyEvtCollection.root’

OPT=’NEW’ TYP=’ROOT’" };

Listing 10.9 Connecting an address tag to an N-tuple.

1: EventSelector.Input = {
2: "COLLECTION='Collection' ADDRESS=’Address’

DATAFILE='MyEvtCollection.root' TYP='ROOT' SEL='(Ntrack>80)'
FUN='EvtCollectionSelector'"

3: };
page 106

Gaudi Users Guide
Chapter 10 N-tuple and Event Collection facilities Version/Issue: 9/0
• The DATAFILE and TYP tags, as well as additional optional tags, have the same
meaning and syntax as for N-tuples, as described in section 10.2.3.2.

10.3.3 Interactive Analysis using Event Tag Collections

Event tag collections are very similar to N-tuples and hence allow within limits some
interactive analysis.

10.3.3.1 Interactive Access to Event Tag Collections written with ROOT

This data format is used by the interactive ROOT program. Using the helper library TBlob
located in the package GaudiRootDb it is possible to interactively analyse the N-tuples
written in ROOT format. However, access is only possible to scalar items (int, float, ...) not
to arrays.

Analysis is possible through directly plotting variables:

root [1] gSystem->Load("D:/mycmt/GaudiRootDb/v3/Win32Debug/TBlob");
root [2] TFile* f = new TFile("tuple.root");
root [3] TTree* t = (TTree*)f->Get("<local>_MC_ROW_WISE_2");
root [4] t->Draw("pz");

or using a ROOT macro interpreted by ROOT’s C/C++ interpreter (see for example the code
fragment interactive.C shown in Listing 10.11):

root [0] gSystem->Load("D:/mycmt/GaudiRootDb/v3/Win32Debug/TBlob");
root [1] .L ./v8/NTuples/interactive.C
root [2] interactive("./v8/NTuples/tuple.root");

More detailed explanations can be found in the ROOT tutorials (http://root.cern.ch).

Listing 10.10 Example of a function object for second stage pre-selections.

1: class EvtCollectionSelector : public NTuple::Selector {
2: NTuple::Item<long> m_ntrack;
3: public:
4: EvtCollectionSelector(IInterface* svc) : NTuple::Selector(svc) { }
5: virtual ~EvtCollectionSelector() { }
6: /// Initialization
7: virtual StatusCode initialize(NTuple::Tuple* nt) {
8: return nt->item("Ntrack", m_ntrack);
9: }
10: /// Specialized callback for NTuples
11: virtual bool operator()(NTuple::Tuple* nt) {
12: return m_ntrack>cut;
13: }
14: };
15:
16: ObjectFactory<EvtCollectionSelector> EvtCollectionSelectorFactory
 page 107

http://root.cern.ch

Gaudi Users Guide
Chapter 10 N-tuple and Event Collection facilities Version/Issue: 9/0
10.3.3.2 Interactive Access to Event Tag Collections written with ODBC

Open DataBase Connectivity (ODBC) developed by Microsoft allows to access a very wide
range of relational databases using the same callable interface. A Gaudi interface to store and
retrieve data from ODBC tables was developed and offers the entire range of MS Office
applications to access these data. The small Visual Basic program in Listing 10.12 shows how
to fill an Excel spreadsheet using n-tuple data from an Access database. Apparently access to
ODBC compliant databases using ROOT is also possible, but this was not tested.

Listing 10.11 Interactive analysis of ROOT N-tuples: interactive.C

1: void interactive(const char* fname) {
2: TFile *input = new TFile(fname);
3: TTree *tree = (TTree*)input->Get("<local>_MC_ROW_WISE_2");
4: if (0 == tree) {
5: printf("Cannot find the requested tree in the root file!\n");
6: return;
7: }
8: Int_t ID, OBJSIZE, NUMLINK, NUMSYMB;
9: TBlob *BUFFER = 0;
10: Float_t px, py, pz;
11: tree->SetBranchAddress("ID",&ID);
12: tree->SetBranchAddress("OBJSIZE",&OBJSIZE);
13: tree->SetBranchAddress("NUMLINK",&NUMLINK);
14: tree->SetBranchAddress("NUMSYMB",&NUMSYMB);
15: tree->SetBranchAddress("BUFFER", &BUFFER);
16: tree->SetBranchAddress("px",&px);
17: tree->SetBranchAddress("py",&py);
18: tree->SetBranchAddress("pz",&pz);
19: Int_t nbytes = 0;
20: for (Int_t i = 0, nentries = tree->GetEntries(); i<nentries;i++) {
21: nbytes += tree->GetEntry(i);
22: printf("Trk#=%d PX=%f PY=%f PZ=%f\n",i,px,py,pz);
23: }
24: printf("I have read a total of %d Bytes.\n", nbytes);
25: delete input;
26: }
page 108

Gaudi Users Guide
Chapter 10 N-tuple and Event Collection facilities Version/Issue: 9/0
10.4 Known Problems

Nothing is perfect and there are always things to be sorted out....

• When building the GaudiRootDb package on Linux using CMT you must first set
up the ROOT environment, by sourcing the setup.csh file

Listing 10.12 Feed event tag data from MS Access into an Excel spreadsheet using Visual Basic:

27: Sub FillSpreadSheet()
28: Dim dbs As Database, rst As Recordset
29: Dim sqlString as String
30: Const conPath = "D:\mycmt\GaudiExamples\v8\Visual\tuple.mdb"
31: the_sheet_name = ActiveSheet.Name
32: Sheets(the_sheet_name).Select
33: If (IsEmpty(Selection)) Then
34: GoTo Done
35: End If
36: ’ Open database and return reference to Database object.
37: Set dbs = DBEngine.Workspaces(0).OpenDatabase(conPath)
38: sqlString = "SELECT px, py, pz FROM lclMCRWWS2 ORDER BY ID;"
39: ’ Open dynaset-type recordset.
40: Set rst = dbs.OpenRecordset(sqlString, dbOpenDynaset)
41: bin = 1
42: Do Until rst.EOF
43: Cells(bin, "A:A") = rst!px
44: Cells(bin, "B:B") = rst!py
45: Cells(bin, "C:C") = rst!pz
46: bin = bin + 1
47: rst.MoveNext
48: Loop
49: rst.Close ’ Close recordset and database.
50: dbs.Close
51: Done:
52: End Sub
 page 109

Gaudi Users Guide
Chapter 10 N-tuple and Event Collection facilities Version/Issue: 9/0
page 110

Gaudi Users Guide
Chapter 11 Framework services Version/Issue: 9/0
Chapter 11

Framework services

11.1 Overview

Services are generally sizeable components that are setup and initialized once at the
beginning of the job by the framework and used by many algorithms as often as they are
needed. It is not desirable in general to require more than one instance of each service.
Services cannot have a “state” because there are many potential users of them so it would not
be possible to guarantee that the state is preserved in between calls.

In this chapter we describe how services are created and accessed, and then give an overview
of the various services, other than the data access services, which are available for use within
the Gaudi framework. The Job Options service, the Message service, the Particle Properties
service, the Chrono & Stat service, the Auditor service, the Random Numbers service, the Incident
service and the Introspection service are available in this release. The Tools service is described
in Chapter 12.

We also describe how to implement new services for use within the Gaudi environment. We
look at how to code a service, what facilities the Service base class provides and how a
service is managed by the application manager.

11.2 Requesting and accessing services

The Application manager only creates by default the JobOptionsSvc and MessageSvc.
Other services are created on demand the first time they are accessed, provided the
corresponding DLL has been loaded. The services in the GaudiSvc package are accessible in
this way by default - these are the default data store services (EventDataSvc,
DetectorDataSvc, HistogramDataSvc, NTupleSvc) and many of the framework
services described in this chapter and in Chapter 12 (ToolSvc, ParticlePropertySvc,
ChronoStatSvc, AuditorSvc, RndmGenSvc, IncidentSvc).
 page 111

Gaudi Users Guide
Chapter 11 Framework services Version/Issue: 9/0
Additional services can be made accessible by loading the appropriate DLL, using the
property ApplicationMgr.DLLs in the job options file, as shown for example in Listing 6.6
on page 57.

Sometimes it may be necessary to force the Application Manager to create a service at
initialisation (for example if the order of creation is important). This can be done using the
property ApplicationMgr.ExtSvc. In the example below this option is used to create a
specific type of persistency service.:

Once created, services must be accessed via their interface. The Algorithm base class
provides a number of accessor methods for the standard framework services, listed on lines 25
to 36 of Listing 5.1 on page 38. Other services can be located using the templated service
function. In the example below we use this function to return the IParticlePropertySvc
interface of the Particle Properties Service: The third argument is optional: when set to true,

the service will be created if it does not already exist; if it is missing, or set to false, the
service will not be created if it is not found, and an error is returned.

In components other than Algorithms and Services (e.g. Tools, Converters), which do not
provide the service function, you can locate a service using the serviceLocator function:

Listing 11.1 Job Option to create additional services

ApplicationMgr.ExtSvc += { "DbEventCnvSvc/RootEvtCnvSvc" };

Listing 11.2 Code to access the IParticlePropertySvc interface from an Algorithm

#include "GaudiKernel/IParticlePropertySvc.h"
...
IParticlePropertySvc* m_ppSvc;
StatusCode sc = service("ParticlePropertySvc", m_ppSvc, true);
if (sc.isFailure) {
...

#include "GaudiKernel/IParticlePropertySvc.h"
...
IParticlePropertySvc* m_ppSvc;
IService* theSvc;

StatusCode sc=serviceLocator()->getService("ParticlePropertySvc",theSvc,true);
if (sc.isSuccess()) {
 sc = theSvc->queryInterface(IID_IParticlePropertySvc, (void**)&m_ppSvc);
}
if (sc.isFailure) {
...
page 112

Gaudi Users Guide
Chapter 11 Framework services Version/Issue: 9/0
11.3 The Job Options Service

The Job Options Service is a mechanism which allows to configure an application at run time,
without the need to recompile or relink. The options, or properties, are set via a job options
file, which is read in when the Job Options Service is initialised by the Application Manager.
In what follows we describe the format of the job options file, including some examples.

11.3.1 Algorithm, Tool and Service Properties

In general a concrete Algorithm, Service or Tool will have several data members which are
used to control execution. These data members (properties) can be of a basic data type (int,
float, etc.) or class (Property) encapsulating some common behaviour and higher level of
functionality. Each concrete Algorithm, Service, Tool declares its properties to the framework
using the declareProperty templated method as shown for example on line 12 of Listing
11.4 (see also Section 5.3.2 on page 40). The method setProperties() is called by the
framework in the initialization phase; this causes the job options service to make repeated
calls to the setProperty() method of the Algorithm, Service or Tool (once for each
property in the job options file), which actually assigns values to the data members.

11.3.1.1 SimpleProperties

Simple properties are a set of classes that act as properties directly in their associated
Algorithm, Tool or Service, replacing the corresponding basic data type instance. The primary
motivation for this is to allow optional bounds checking to be applied, and to ensure that the
Algorithm, Tool or Service itself doesn’t violate those bounds. Available SimpleProperties are:

• int ==> IntegerProperty or SimpleProperty<int>

• double ==> DoubleProperty or SimpleProperty<double>

• bool ==> BooleanProperty or SimpleProperty<bool>)

• std::string ==> StringProperty or SimpleProperty<std::string>

and the equivalent vector classes

• std::vector<int> ==> IntegerArrayProperty or
SimpleProperty<std::vector<int>>

• etc.

The use of these classes is illustrated by the EventCounter class (Listings 11.3 and 11.4).

In the Algorithm constructor, when calling declareProperty, you can optionally set the
bounds using any of:

 setBounds(const T& lower, const T& upper);
 setLower (const T& lower);
 setUpper (const T& upper);
 page 113

Gaudi Users Guide
Chapter 11 Framework services Version/Issue: 9/0
There are similar selectors and modifiers to determine whether a bound has been set etc., or to
clear a bound.

 bool hasLower()
 bool hasUpper()
 T lower()
 T upper()
 void clearBounds()
 void clearLower()
 void clearUpper()

Listing 11.3 EventCounter.h

1: #include "GaudiKernel/Algorithm.h"
2: #include "GaudiKernel/Property.h"
3: class EventCounter : public Algorithm {
4: public:
5: EventCounter(const std::string& name, ISvcLocator* pSvcLocator);
6: ~EventCounter();
7: StatusCode initialize();
8: StatusCode execute();
9: StatusCode finalize();
10: private:
11: IntegerProperty m_frequency;
12: int m_skip;
13: int m_total;
14: };

Listing 11.4 EventCounter.cpp

1: #include "GaudiAlg/EventCounter.h"
2: #include "GaudiKernel/MsgStream.h"
3: #include "GaudiKernel/AlgFactory.h"
4:
5: static const AlgFactory<EventCounter> Factory;
6: const IAlgFactory& EventCounterFactory = Factory;
7:
8: EventCounter::EventCounter(const std::string& name, ISvcLocator*
9: pSvcLocator) :
10: Algorithm(name, pSvcLocator),
11: m_skip (0), m_total(0) {
12: declareProperty("Frequency", m_frequency=1); // [1]
13: m_frequency.setBounds(0, 1000); // [2]
14: }
15:
16: StatusCode EventCounter::initialize() {
17: MsgStream log(msgSvc(), name());
18: log << MSG::INFO << "Frequency: " << m_frequency << endreq; // [3]
19: return StatusCode::SUCCESS;
20: }

Notes:
1. A default value may be specified when the property is declared.
2. Optional upper and lower bounds may be set (see later).
3. The value of the property is accessible directly using the property itself.
page 114

Gaudi Users Guide
Chapter 11 Framework services Version/Issue: 9/0
You can set the value using the "=" operator or the set functions

 bool set(const T& value)
 bool setValue(const T& value)

The function value indicates whether the new value was within any bounds and was
therefore successfully updated. In order to access the value of the property, use:

 m_property.value();

In addition there’s a cast operator, so you can also use m_property directly instead of
m_property.value().

11.3.1.2 CommandProperty

CommandProperty is a subclass of StringProperty that has a handler that is called
whenever the value of the property is changed. Currently that can happen only during the job
initialization so it is not terribly useful. Alternatively, an Algorithm could set the property of
one of its sub-algorithms. However, it is envisaged that Gaudi will be extended with a
scripting language such that properties can be modified during the course of execution.

The relevant portion of the interface to CommandProperty is:

 class CommandProperty : public StringProperty {
 public:
 [...]
 virtual void handler(const std::string& value) = 0;
 [...]
 };

Thus subclasses should override the handler() member function, which will be called
whenever the property value changes. A future development is expected to be a
ParsableProperty (or something similar) that would offer support for parsing the string.

11.3.2 Accessing and modifiying properties

Properties are private data which are initialised by the framework using the default values
given when they are declared in constructors, or the values read from the job options file. On
occasions it may be necessary for components to access (or even modify) the values of
properties of other components. This can be done by using the getProperty() and
setProperty() methods of the IProperty interface. In the example below,,an algorithm
stores the default value of a cut of its sub-algorithm, then executes the sub-algorithm with a
different cut, before resetting the cut back to its default value. Note that in the example we
begin with a pointer to an Algorithm object, not an IAlgorithm interface. This means that
we have access to the methods of both the IAlgorithm and IProperty interfaces and can
therefore call the methods of the IProperty interface. In the general one may need to
navigate to the IProperty interface first, as explaned in Section 16.3.2.
 page 115

Gaudi Users Guide
Chapter 11 Framework services Version/Issue: 9/0
11.3.3 Job options file format

An example of a job options file was shown in Listing 4.2 on page 28. The job options file has
a well-defined syntax (similar to a simplified C++-Syntax) without data types. The data types
are recognised by the “Job Options Compiler”, which interprets the job options file according
to the syntax (described in Appendix C together with possible compiler error codes).

The job options file is an ASCII-File, composed logically of a series of statements. The end of a
statement is signalled by a semicolon “;“ - as in C++.

Comments are the same as in C++, with ’//’ until the end of the line, or between ’/*’ and ’*/’.

There are four constructs which can be used in a job options file:

• Assignment statement

• Append statement

• Include directive

• Platform dependent execution directive

11.3.3.1 Assignment statement

An assignment statement assigns a certain value (or a vector of values) to a property of an
object or identifier. An assignment statement has the following structure:

The first token (Object / Identifier) specifies the name of the object whose property is
to be set. This must be followed by a dot (’.’)

The next token (Propertyname) is the name of the option to be set, as declared in the
declareProperty() method of the IProperty interface. This must be followed by an
assign symbol (’=’).

The final token (value) is the value to be assigned to the property. It can be a vector of values,
in which case the values are enclosed in array brackets (’{‘,’}‘), and separated by commas (,).
The token must be terminated by a semicolon (’;’).

Algorithm* myAlg;
...
std:string dfltCut;
StatusCode sc = myAlg->getProperty("TheCut", dfltCut);
if (sc.isSuccess()) {
 msgAlg->setProperty("TheCut", "0.8");
 StatusCode sc1 = myAlg->execute();
 ...
}
if(scl.isSuccess()) msgProp->setProperty("The Cut", dfltCut);

<Object / Identifier> . < Propertyname > = < value >;
page 116

Gaudi Users Guide
Chapter 11 Framework services Version/Issue: 9/0
The type of the value(s) must match that of the variable whose value is to be set, as declared in
declareProperty(). The following types are recognised:

Boolean-type, written as true or false.
e.g. true; false;

Integer-type, written as an integer value (containing one or more of the digits ’0’, ’1’, ’2’, ’3’, ’4’,
’5’, ’6’, ’7’, ’8’, ’9’)

e.g.: 123; -923; or in scientific notation, e.g.: 12e2;

Real-type (similar to double in C++), written as a real value (containing one or more of the
digits ’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’ followed by a dot ’.’ and optionally one or more of digits
again)

e.g.: 123.; -123.45; or in scientific notation, e.g. 12.5e7;

String type, written within a pair of double quotes (‘ ” ’)
e.g.: “I am a string”; (Note: strings without double quotes are not allowed!)

Vector of the types above, within array-brackets (’{’, ’}’), separated by a comma (’,’)
e.g.: {true, false, true};
e.g.: {124, -124, 135e2};
e.g.: {123.53, -23.53, 123., 12.5e2};
e.g.: {“String 1”, “String 2”, “String 3”};

A single element which should be stored in a vector must be within
array-brackets without a comma

e.g. {true};
e.g. {“String”};

A vector which has already been defined earlier in the file (or in included files)
can be reset to an empty vector
e.g. {};

11.3.3.2 Append Statement

Because of the possibility of including other job option files (see below), it is sometimes
necessary to extend a vector of values already defined in the other job option file. This
functionality is provided be the append statement.

An append statement has the following syntax:

The only difference from the assignment statement is that the append statement requires the
’+=’ symbol instead of the ‘=’ symbol to separate the Propertyname and value tokens.

<Object / Identifier> . < Propertyname > += < value >;
 page 117

Gaudi Users Guide
Chapter 11 Framework services Version/Issue: 9/0
The value must be an array of one or more values

e.g. {true};
e.g. {“String”};
e.g.: {true, false, true};
e.g.: {124, -124, 135e2};
e.g.: {123.53, -23.53, 123., 12.5e2};
e.g.: {“String 1”, “String 2”, “String 3”};

The job options compiler itself tests if the object or identifier already exists (i.e. has already
been defined in an included file) and the type of the existing property. If the type is
compatible and the object exists the compiler appends the value to the existing property. If the
property does not exist then the append operation "+=" behaves as assignment operation “=”.

11.3.3.3 Including other Job Option Files

It is possible to include other job option files in order to use pre-defined options for certain
objects. This is done using the #include directive:

The “filename” can also contain the path where this file is located. By convention we use
".opts" as the file extension for job options. The include directive can be placed anywhere in
the job option file, usually at the top (as in C++). Note that the value of a property defined
earlier in the file may be over-ridden by assigning a new value to the same property: the last
value assigned is the valid value! This makes it possible to over-ride the value of a property
defined in a previously included file without changing the include file.

It is possible to use environment variables in the #include statement, either standalone or as
part of a string. Both Unix style (“$environmentvariable”) and Windows style
(“%environmentvariable%”) are understood (on both platforms!). For example, in line 2:
of Listing 4.2 the logical name $STDOPTS, which is defined in the GaudiExamples package,
points to a directory containing a number of standard job options include files that can be
used by applications.

As mentioned above, you can append values to vectors defined in an included job option file.
The interpreter creates these vectors at the moment he interprets the included file, so you can
only append elements defined in a file included before the append-statement!

As in C/C++, an included job option file can include other job option files. The compiler
checks itself whether the include file has already been included, so there is no need for
#ifndef statements as in C or C++ to check for multiple inclusion.

#include “filename.opts”
page 118

Gaudi Users Guide
Chapter 11 Framework services Version/Issue: 9/0
11.3.3.4 Platform dependent execution

The possibility exists to execute statements only according to the used platform. Statements
within platform dependent clauses are only executed if they are asserted to the current used
platform.:

Only the variable WIN32 is defined! An #ifdef WIN32 will check if the used platform is a
Windows platform. If so, it will execute the statements until an #endif or an optional #else.
On non-Windows platforms it will execute the code within #else and #endif. Alternatively
one directly can check for a non-Windows platform by using the #ifndef WIN32 clause.

11.3.3.5 Switching on/off printing

By default, the Job Options Service prints out the contents of the Job Options files to the
standard output destination. The possibility exists to switch off this printing, and to toggle
between the two states, as shown below:

In the example above, all lines between line 2 and line 5 will not be printed.

#ifdef WIN32
(Platform-Dependent Statement)
#else (optional)
(Platform-Dependent Statement)
#endif

1: // Switch off printing
2: #pragma print off
3: ..(some job options)
4: //Switch printing back on
5: #pragma print on
 page 119

Gaudi Users Guide
Chapter 11 Framework services Version/Issue: 9/0
11.4 The Standard Message Service

One of the components directly visible to an algorithm object is the message service. The
purpose of this service is to provide facilities for the logging of information, warnings, errors
etc. The advantage of introducing such a component, as opposed to using the standard
std::cout and std::cerr streams available in C++ is that we have more control over
what is printed and where it is printed. These considerations are particularly important in an
online environment.

The Message Service is configurable via the job options file to only output messages if their
“activation level” is equal to or above a given “output level”. The output level can be
configured with a global default for the whole application:

and/or locally for a given client object (e.g. myAlgorithm):

Any object wishing to print some output should (must) use the message service. A pointer to
the IMessageSvc interface of the message service is available to an algorithm via the
accessor method msgSvc(), see section 5.2. It is of course possible to use this interface
directly, but a utility class called MsgStream is provided which should be used instead.

11.4.1 The MsgStream utility

The MsgStream class is responsible for constructing a Message object which it then passes
onto the message service. Where the message is ultimately sent to is decided by the message
service.

In order to avoid formatting messages which will not be sent because the verboseness level is
too high, a MsgStream object first checks to see that a message will be printed before actually
constructing it. However the threshold for a MsgStream object is not dynamic, i.e. it is set at
creation time and remains the same. Thus in order to keep synchronized with the message
service, which in principle could change its printout level at any time, MsgStream objects
should be made locally on the stack when needed. For example, if you look at the listing of the
HelloWorld class (see also Listing 11.5 below) you will note that MsgStream objects are
instantiated locally (i.e. not using new) in all three of the IAlgorithm methods and thus are
destructed when the methods return. If this is not done messages may be lost, or too many
messages may be printed.

The MsgStream class has been designed to resemble closely a normal stream class such as
std::cout, and in fact internally uses an ostrstream object. All of the MsgStream
member functions write unformatted data; formatted output is handled by the insertion
operators.

// Set output level threshold
//(1=VERBOSE, 2=DEBUG, 3=INFO, 4=WARNING, 5=ERROR, 6=FATAL, 7=ALWAYS)
MessageSvc.OutputLevel = 4;

myAlgorithm.OutputLevel = 2;
page 120

Gaudi Users Guide
Chapter 11 Framework services Version/Issue: 9/0
An example use of the MsgStream class is shown below.

When using the MsgStream class just think of it as a configurable output stream whose
activation is actually controlled by the first word (message level) and which actually prints
only when “endreq” is supplied. For all other functionality simply refer to the C++ ostream
class.

The “activation level” of the MsgStream object is controlled by the first expression, e.g.
MSG::ERROR or MSG::DEBUG in the example above. Possible values are given by the
enumeration below:

Thus the code in Listing 11.5 will produce NO output if the print level of the message service
is set higher than MSG::ERROR. In addition if the service’s print level is lower than or equal to
MSG::DEBUG the “Finalize completed successfully” message will be printed
(assuming of course it was successful).

 User interface

What follows is a technical description of the part of the MsgStream user interface most often
seen by application developers. Please refer to the header file for the complete interface.

Insertion Operator

The MsgStream class overloads the ’<<‘ operator as described below.

MsgStream& operator <<(TYPE arg);

Insertion operator for various types. The argument is only formatted by the
stream object if the print level is sufficiently high and the stream is active.
Otherwise the insertion operators simply return. Through this mechanism
extensive debug printout does not cause large run-time overheads. All common
base types such as char, unsigned char, int, float, etc. are supported

Listing 11.5 Use of a MsgStream object.

1: #include “GaudiKernel/MgsStream.h”
2:
3: StatusCode myAlgo::finalize() {
4: StatusCode status = Algorithm::finalise();
5: MsgStream log(msgSvc(), name());
6: if (status.isFailure()) {
7: // Print a two line message in case of failure.
8: log << MSG::ERROR << “ Finalize failed” << endl
9: << “Error initializing Base class.” << endreq;
10: }
11: else {
12: log << MSG::DEBUG << “Finalize completed successfully” << endreq;
13: }
14: return status;
15: }

enum MSG::Level { VERBOSE, DEBUG, INFO, WARNING, ERROR, FATAL, ALWAYS };
 page 121

Gaudi Users Guide
Chapter 11 Framework services Version/Issue: 9/0
MsgStream& operator <<(MSG::Level level);

This insertion operator does not format any output, but rather (de)activates the
stream’s formatting and forwarding engine depending on the value of level.

Accepted Stream Manipulators

The MsgStream specific manipulators are presented below, e.g. endreq: MsgStream&
endreq(MsgStream& stream). Besides these, the common ostream and ios manipulators
such as std::ends, std::endl,... are also accepted.

endl Inserts a newline sequence. Opposite to the ostream behaviour this manipulator does
not flush the buffer. Full name: MsgStream& endl(MsgStream& s)

ends Inserts a null character to terminate a string. Full name: MsgStream&
ends(MsgStream& s)

flush Flushes the stream's buffer but does not produce any output! Full name: MsgStream&
flush(MsgStream& s)

endreq Terminates the current message formatting and forwards the message to the message
service. If no message service is assigned the output is sent to std::cout. Full name:
MsgStream& endreq(MsgStream& s)

endmsg Same as endreq
page 122

Gaudi Users Guide
Chapter 11 Framework services Version/Issue: 9/0
11.5 The Particle Properties Service

The Particle Property service is a utility to find information about a named particle’s Geant3
ID, Jetset/Pythia ID, Geant3 tracking type, charge, mass or lifetime. The database used by the
service can be changed, but by default is the same as that used by the LHCb SICB program.
Note that the units conform to the CLHEP convention, in particular MeV for masses and ns
for lifetimes. Any comment to the contrary in the code is just a leftover which has been
overlooked!

11.5.1 Initialising and Accessing the Service

This service is created by adding the following line in the Job Options file::

 Listing 11.2 on page 112 shows how to access this service from within an algorithm.

11.5.2 Service Properties

The Particle Property Service currently only has one property: ParticlePropertiesFile.
This string property is the name of the database file that should be used by the service to build
up its list of particle properties. The default value of this property, on all platforms, is
$LHCBDBASE/cdf/particle.cdf1

11.5.3 Service Interface

The service implements the IParticlePropertySvc interface. In order to use it, clients
must include the file GaudiKernel/IParticlePropertySvc.h.

The service itself consists of one STL vector to access all of the existing particle properties, and
three STL maps, one to map particles by name, one to map particles by Geant3 ID and one to
map particles by stdHep ID.

Although there are three maps, there is only one copy of each particle property and thus each
property must have a unique particle name and a unique Geant3 ID. Particles that are known
to Geant but not to stdHep, such as Deuteron, have an artificial stdHep ID using unreserved
(>7) digits. Although retrieving particles by name should be sufficient, the second and third
maps are there because most often generated data stores a particle’s Geant3 ID or stdHep ID,
and not the particle’s name. These maps speed up searches using the IDs.

// Create the particle properties service
ApplicationMgr.ExtSvc += { "ParticlePropertySvc" };

1. This is an LHCb specific file. A generic implementation will be available in a future release of Gaudi
 page 123

Gaudi Users Guide
Chapter 11 Framework services Version/Issue: 9/0
The IParticlePropertySvc interface provides the following functions:

Listing 11.6 The IParticlePropertySvc interface.

// IParticlePropertySvc interface:
// Create a new particle property.
// Input: particle, String name of the particle.
// Input: geantId, Geant ID of the particle.
// Input: jetsetId, Jetset ID of the particle.
// Input: type, Particle type.
// Input: charge, Particle charge (/e).
// Input: mass, Particle mass (MeV).
// Input: tlife, Particle lifetime (ns).
// Return: StatusCode - SUCCESS if the particle property was added.
virtual StatusCode push_back(const std::string& particle, int geantId, int
jetsetId, int type, double charge, double mass, double tlife);

// Create a new particle property.
// Input: pp, a particle property class.
// Return: StatusCode - SUCCESS if the particle property was added.
virtual StatusCode push_back(ParticleProperty* pp);

// Get a const reference to the begining of the map.
virtual const_iterator begin() const;

// Get a const reference to the end of the map.
virtual const_iterator end() const;

// Get the number of properties in the map.
virtual int size() const;

// Retrieve a property by geant id.
// Pointer is 0 if no property found.
virtual ParticleProperty* find(int geantId);

// Retrieve a property by particle name.
// Pointer is 0 if no property found.
virtual ParticleProperty* find(const std::string& name);

// Retrieve a property by StdHep id
// Pointer is 0 if no property found.
virtual ParticleProperty* findByStdHepID(int stdHepId);

// Erase a property by geant id.
virtual StatusCode erase(int geantId);

// Erase a property by particle name.
virtual StatusCode erase(const std::string& name);

// Erase a property by StdHep id
virtual StatusCode eraseByStdHepID(int stdHepId);
page 124

Gaudi Users Guide
Chapter 11 Framework services Version/Issue: 9/0
The IParticlePropertySvc interface also provides some typedefs for easier coding:

11.5.4 Examples

Below are some extracts of code from the LHCb ParticleProperties example to show
how one might use the service:

typedef ParticleProperty* mapped_type;
typedef std::map< int, mapped_type, std::less<int> > MapID;
typedef std::map< std::string, mapped_type, std::less<std::string> > MapName;
typedef std::map< int, mapped_type, std::less<int> > MapStdHepID;
typedef IParticlePropertySvc::VectPP VectPP;
typedef IParticlePropertySvc::const_iterator const_iterator;
typedef IParticlePropertySvc::iterator iterator;

Listing 11.7 Code fragment to find particle properties by particle name.

 // Try finding particles by the different methods
 log << MSG::INFO << "Trying to find properties by Geant3 ID..." << endreq;
 ParticleProperty* pp1 = m_ppSvc->find(1);
 if (pp1) log << MSG::INFO << *pp1 << endreq;
 log << MSG::INFO << "Trying to find properties by name..." << endreq;
 ParticleProperty* pp2 = m_ppSvc->find("e+");
 if (pp2) log << MSG::INFO << *pp2 << endreq;
 log << MSG::INFO << "Trying to find properties by StdHep ID..." << endreq;
 ParticleProperty* pp3 = m_ppSvc->findByStdHepID(521);
 if (pp3) log << MSG::INFO << *pp3 << endreq;

Listing 11.8 Code fragment showing how to use the map iterators to access particle properties.

// List all properties
log << MSG::DEBUG << "Listing all properties..." << endreq;
for(IParticlePropertySvc::const_iterator i = m_ppSvc->begin();

i != m_ppSvc->end(); i++) {
if (*i) log << *(*i) << endreq;

}

 page 125

Gaudi Users Guide
Chapter 11 Framework services Version/Issue: 9/0
11.6 The Chrono & Stat service

The Chrono & Stat service provides a facility to do time profiling of code (Chrono part) and to
do some statistical monitoring of simple quantities (Stat part). The service is created by
default by the Application Manager, with the name “ChronoStatSvc” and service ID
extern const CLID& IID_IChronoStatSvc To access the service from inside an
algorithm, the member function chronoSvc() is provided. The job options to configure this
service are described in Appendix B, Table B.28.

11.6.1 Code profiling

Profiling is performed by using the chronoStart() and chronoStop() methods inside
the codes to be profiled, e.g:

The profiling information accumulates under the tag name given as argument to these
methods. The service measures the time elapsed between subsequent calls of
chronoStart() and chronoStop() with the same tag. The latter is important, since in the
sequence of calls below, only the elapsed time between lines 3 and 5 lines and between lines 7
and 9 lines would be accumulated.:

The profiling information could be printed either directly using the chronoPrint() method
of the service, or in the summary table of profiling information at the end of the job.

Note that this method of code profiling should be used only for fine grained monitoring
inside algorithms. To profile a complete algorithm you should use the Auditor service, as
described in section 11.7.

/// ...
IChronoStatSvc* svc = chronoSvc();
/// start
svc->chronoStart("Some Tag");
/// here some user code are placed:
...
/// stop
svc->chronoStop("SomeTag");

1: svc->chronoStop("Tag");
2: svc->chronoStop("Tag");
3: svc->chronoStart("Tag");
4: svc->chronoStart("Tag");
5: svc->chronoStop("Tag");
6: svc->chronoStop("Tag");
7: svc->chronoStart("Tag");
8: svc->chronoStart("Tag");
9: svc->chronoStop("Tag");
page 126

Gaudi Users Guide
Chapter 11 Framework services Version/Issue: 9/0
11.6.2 Statistical monitoring

Statistical monitoring is performed by using the stat() method inside user code:

The statistical information contains the "accumulated" flag, which is the sum of all Flags for the
given tag, and the "accumulated" weight, which is the product of all Weights for the given tag.
The information is printed in the final table of statistics.

In some sense the profiling could be considered as statistical monitoring, where the variable
Flag equals the elapsed time of the process.

11.6.3 Chrono and Stat helper classes

To simplify the usage of the Chrono & Stat Service, two helper classes were developed: class
Chrono and class Stat. Using these utilities, one hides the communications with Chrono
& Stat Service and provides a more friendly environment.

11.6.3.1 Chrono

Chrono is a small helper class which invokes the chronoStart() method in the constructor
and the chronoStop() method in the destructor. It must be used as an automatic local object.

It performs the profiling of the code between its own creation and the end of the current
scope, e.g:

If the Chrono & Stat Service is not accessible, the Chrono object does nothing

1: /// ... Flag and Weight to be accumulated:
2: svc->stat(" Number of Tracks " , Flag , Weight);

1: #include GaudiKernel/Chrono.h
2: /// ...
3: { // begin of the scope
4: Chrono chrono(chronoSvc() , "ChronoTag") ;
5: /// some codes:
6: ...
7: ///
8: } // end of the scope
9: /// ...
 page 127

Gaudi Users Guide
Chapter 11 Framework services Version/Issue: 9/0
11.6.3.2 Stat

Stat is a small helper class, which invokes the stat() method in the constructor.

If the Chrono & Stat Service is not accessible, the Stat object does nothing.

11.6.4 Performance considerations

The implementation of the Chrono & Stat Service uses two std::map containers and could
generate a performance penalty for very frequent calls. Usually the penalty is small relative to
the elapsed time of algorithms, but it is worth avoiding both the direct usage of the Chrono &
Stat Service as well as the usage of it through the Chrono or Stat utilities inside internal
loops:

1: GaudiKernel/Stat.h
2: /// ...
3: Stat stat(chronoSvc() , "StatTag" , Flag , Weight) ;
4: /// ...

1: /// ...
2: { /// begin of the scope
3: Chrono chrono(chronoSvc() , "Good Chrono"); /// OK
4: long double a = 0 ;
5: for(long i = 0 ; i < 1000000 ; ++i)
6: {
7: Chrono chrono(svc , "Bad Chrono"); /// not OK
8: /// some codes :
9: a += sin(cos(sin(cos((long double) i))));
10: /// end of codes
11: Stat stat (svc , "Bad Stat", a); /// not OK
12: }
13: Stat stat (svc , "Good Stat", a); /// OK
14: } /// end of the scope!
15: /// ...
page 128

Gaudi Users Guide
Chapter 11 Framework services Version/Issue: 9/0
11.7 The Auditor Service

The Auditor Service provides a set of auditors that can be used to provide monitoring of
various characteristics of the execution of Algorithms. Each auditor is called immediately
before and after each call to each Algorithm instance, and can track some resource usage of
the Algorithm. Calls that are thus monitored are initialize(), execute() and
finalize(), although monitoring can be disabled for any of these for particular Algorithm
instances. Only the execute() function monitoring is enabled by default.

Several examples of auditors are provided. These are:

• NameAuditor. This just emits the name of the Algorithm to the Standard Message
Service immediately before and after each call. It therefore acts as a diagnostic tool to
trace program execution.

• ChronoAuditor. This monitors the cpu usage of each algorithm and reports both the
total and per event average at the end of job.

• MemoryAuditor. This monitors the state of memory usage during execution of each
Algorithm, and will warn when memory is allocated within a call without being
released on exit. Unfortunately this will in fact be the general case for Algorithms that
are creating new data and registering them with the various transient stores. Such
Algorithms will therefore cause warning messages to be emitted. However, for
Algorithms that are just reading data from the transient stores, these warnings will
provide an indication of a possible memory leak. Note that currently the
MemoryAuditor is only available for Linux.

• MemStatAuditor. The same as MemoryAuditor, but prints a table of memory usage
statistics at the end.

11.7.1 Enabling the Auditor Service and specifying the enabled Auditors

The Auditor Service is enabled by the following line in the Job Options file:

Specifying which auditors are enabled is illustrated by the following example:

// Enable the Auditor Service
ApplicationMgr.DLLs += { "GaudiAud" };

// Enable the NameAuditor and ChronoAuditor
AuditorSvc.Auditors = { "NameAuditor", "ChronoAuditor" };
 page 129

Gaudi Users Guide
Chapter 11 Framework services Version/Issue: 9/0
11.7.2 Overriding the default Algorithm monitoring

By default, only monitoring of the Algorithm execute() function is enabled by default. This
default can be overridden for individual Algorithms by use of the following Algorithm
properties:

11.7.3 Implementing new Auditors

The relevant portion of the IAuditor abstract interface is shown below:

A new Auditor should inherit from the Auditor base class and override the appropriate
functions from the IAuditor abstract interface. The following code fragment is taken from the
ChronoAuditor:

// Enable initialize and finalize auditing & disable execute auditing
// for the myAlgorithm Algorithm
myAlgorithm.AuditInitialize = true;
myAlgorithm.AuditExecute = false;
myAlgorithm.AuditFinalize = true;

virtual StatusCode beforeInitialize(IAlgorithm* theAlg) = 0;
virtual StatusCode afterInitialize (IAlgorithm* theAlg) = 0;

virtual StatusCode beforeExecute (IAlgorithm* theAlg) = 0;
virtual StatusCode afterExecute (IAlgorithm* theAlg) = 0;

virtual StatusCode beforeFinalize (IAlgorithm* theAlg) = 0;
virtual StatusCode afterFinalize (IAlgorithm* theAlg) = 0;

#include "GaudiKernel/Auditor.h"

class ChronoAuditor : virtual public Auditor {
public:
 ChronoAuditor(const std::string& name, ISvcLocator* pSvcLocator);
 virtual ~ChronoAuditor();
 virtual StatusCode beforeInitialize(IAlgorithm* alg);
 virtual StatusCode afterInitialize(IAlgorithm* alg);
 virtual StatusCode beforeExecute(IAlgorithm* alg);
 virtual StatusCode afterExecute(IAlgorithm* alg);
 virtual StatusCode beforeFinalize(IAlgorithm* alg);
 virtual StatusCode afterFinalize(IAlgorithm* alg);
};
page 130

Gaudi Users Guide
Chapter 11 Framework services Version/Issue: 9/0
11.8 The Random Numbers Service

When generating random numbers two issues must be considered:

• reproducibility and

• randomness of the generated numbers.

In order to ensure both, Gaudi implements a single service ensuring that these criteria are
met. The encapsulation of the actual random generator into a service has several advantages:

• Random seeds are set by the framework. When debugging the detector simulation,
the program could start at any event independent of the events simulated before.
Unlike the random number generators that were known from CERNLIB, the state of
modern generators is no longer defined by one or two numbers, but rather by a fairly
large set of numbers. To ensure reproducibility the random number generator must
be initialized for every event.

• The distribution of the random numbers generated is independent of the random
number engine behind. Any distribution can be generated starting from a flat
distribution.

• The actual number generator can easily be replaced if at some time in the future
better generators become available, without affecting any user code.

The implementation of both generators and random number engines are taken from CLHEP.
The default random number engine used by Gaudi is the RanLux engine of CLHEP with a
luxury level of 3, which is also the default for Geant4, so as to use the same mechanism to
generate random numbers as the detector simulation.

Figure 11.1 shows the general architecture of the Gaudi random number service. The client
interacts with the service in the following way:

• The client requests a generator from the service, which is able to produce a generator
according to a requested distribution. The client then retrieves the requested
generator.

• Behind the scenes, the generator service creates the requested generator and
initializes the object according to the parameters. The service also supplies the shared
random number engine to the generator.

• After the client has finished using the generator, the object must be released in order
to inhibit resource leaks

Figure 11.1 The architecture of the random number service. The client requests from the service a random
number generator satisfying certain criteria

RndmGenSvc

RndmGen RndmEngine

Distribution:
Gauss

owns & initializes

usesowns
 page 131

Gaudi Users Guide
Chapter 11 Framework services Version/Issue: 9/0
There are many different distributions available. The shape of the distribution must be
supplied as a parameter when the generator is requested by the user.

Currently implemented distributions include the following. See also the header file
GaudiKernel/RndmGenerators.h for a description of the parameters to be supplied.

• Generate random bit patterns with parameters Rndm::Bit()

• Generate a flat distribution with boundaries [min, max] with parameters:
Rndm::Flat(double min, double max)

• Generate a gaussian distribution with parameters: Rndm::Gauss(double mean,
double sigma)

• Generate a poissonian distribution with parameters: Rndm::Poisson(double
mean)

• Generate a binomial distribution according to n tests with a probability p with
parameters: Rndm::Binomial(long n, double p)

• Generate an exponential distribution with parameters:
Rndm::Exponential(double mean)

• Generate a Chi**2 distribution with n_dof degrees of freedom with parameters:
Rndm::Chi2(long n_dof)

• Generate a Breit-Wigner distribution with parameters:
Rndm::BreitWigner(double mean, double gamma)

• Generate a Breit-Wigner distribution with a cut-off with parameters:
Rndm::BreitWignerCutOff (mean, gamma, cut-off)

• Generate a Landau distribution with parameters:
Rndm::Landau(double mean, double sigma)

• Generate a user defined distribution. The probability density function is given by a
set of descrete points passed as a vector of doubles:
Rndm::DefinedPdf(const std::vector<double>& pdf, long intpol)

Clearly the supplied list of possible parameters is not exhaustive, but probably represents
most needs. The list only represents the present content of generators available in CLHEP and
can be updated in case other distributions will be implemented.

Since there is a danger that the interfaces are not released, a wrapper is provided that
automatically releases all resources once the object goes out of scope. This wrapper allows the
use of the random number service in a simple way. Typically there are two different usages of
this wrapper:
page 132

Gaudi Users Guide
Chapter 11 Framework services Version/Issue: 9/0
• Within the user code a series of numbers is required only once, i.e. not every event. In
this case the object is used locally and resources are released immediately after use.
This example is shown in Listing 11.9 .

• One or several random numbers are required for the processing of every event. An
example is shown in Listing 11.10.

There are a few points to be mentioned in order to ensure the reproducibility:

• Do not keep numbers across events. If you need a random number ask for it. Usually
caching does more harm than good. If there is a performance penalty, it is better to
find a more generic solution.

• Do not access the RndmEngine directly.

• Do not manipulate the engine. The random seeds should only be set by the
framework on an event by event basis.

Listing 11.9 Example of the use of the random number generator to fill a histogram with a Gaussian
distribution within a standard Gaudi algorithm

1: Rndm::Numbers gauss(randSvc(), Rndm::Gauss(0.5,0.2));
2: if (gauss) {
3: IHistogram1D* his = histoSvc()->book("/stat/2","Gaussian",40,0.,3.);
4: for (long i = 0; i < 5000; i++)
5: his->fill(gauss(), 1.0);
6: }

Listing 11.10 Example of the use of the random number generator within a standard Gaudi algorithm, for
use at every event. The wrapper to the generator is part of the Algorithm itself and must be initialized before
being used. Afterwards the usage is identical to the example described in Listing 11.9

1: #include "GaudiKernel/RndmGenerators.h"
2:
3: // Constructor
4: class myAlgorithm : public Algorithm {
5: Rndm::Numbers m_gaussDist;
6: ...
7: };
8:
9: // Initialisation
10: StatusCode myAlgorithm::initialize() {
11: ...
1: StatusCode sc=m_gaussDist.initialize(randSvc(), Rndm::Gauss(0.5,0.2));
2: if (!status.isSuccess()) {
3: // put error handling code here...
4: }
5: ...
6: }
 page 133

Gaudi Users Guide
Chapter 11 Framework services Version/Issue: 9/0
11.9 The Incident Service

The Incident service provides synchronization facilities to components in a Gaudi application.
Incidents are named software events that are generated by software components and that are
delivered to other components that have requested to be informed when that incident
happens. The Gaudi components that want to use this service need to implement the
IIncidentListener interface, which has only one method: handle(Incident&), and
they need to add themselves as Listeners to the IncidentSvc. The following code fragment
works inside Algorithms.

The third argument in method addListener() is for specifying the priority by which the
component will be informed of the incident in case several components are listeners of the
same named incident. This parameter is used by the IncidentSvc to sort the listeners in
order of priority.

11.9.1 Known Incidents

#include "GaudiKernel/IIncidentListener.h"
#include "GaudiKernel/IIncidentSvc.h"

class MyAlgorithm : public Algorithm, virtual public IIncidentListener {
 ...
};

MyAlgorithm::Initialize() {
 IIncidentSvc* incsvc;
 StatusCode sc = service("IncidentSvc", incsvc);
 int priority = 100;
 if(sc.isSuccess()) {
 incsvc->addListener(this, "BeginEvent", priority);
 incsvc->addListener(this, "EndEvent");
 }
}

MyAlgorithm::handle(Incident& inc) {
 log << "Got informed of incident: " << inc.type()
 << " generated by: " << inc.source() << endreq;
}

Table 11.1 Table of known named incidents

Incident Type Source Description

BeginEvent ApplicationMgr The ApplicationMgr is starting processing of a
new physics event. This incident can be use to
clear caches of the previous event in Services
and Tools.

EndEvent ApplicationMgr The ApplicationMgr has finished processing
the physics event. The Event data store is not
yet purged at this moment.
page 134

Gaudi Users Guide
Chapter 11 Framework services Version/Issue: 9/0
11.10 The GiGa Service

The GiGa service allows Gaudi applications to use the GEANT4 toolkit as a black box,
without detalied knowledge of the GEANT4 internal features.

An overview and a detailed description of GiGa are available in references [10] and [11]
respectively. The GiGaExample application demonstrates the usage of GiGa to display LHCb
events and detector geometry.

11.11 The Gaudi Introspection Service

Introspection is the ability of a programming language to interact with objects from a
meta-level. The Gaudi Introspection package defines a meta-model which gives the layout of
this meta-information.

The data to fill this meta-information (i.e. the dictionary) can be generated by the Gaudi Object
Description package (described in Section 6.7 on page 53) by adding a few lines to the CMT
requirements file, as shown for example in Listing 11.11.

The C++-code generated in this way is compiled into a dll and loaded into the Gaudi
Introspection Model at runtime.

To get a reference to information about a real object, clients have to use the Gaudi
Introspection Service (IntrospectionSvc). The service can also be used to load the
meta-information into the model. The Gaudi Introspection Service is already used in several
places in the framework (e.g. Interface to Python, Data Store Browser).

Further information about this service is available at
http://cern.ch/lhcb-comp/Frameworks/DataDictionary/default.htm.

Listing 11.11 CMT requirements for generation of data dictionary of the LHCbEvent package

#---- dictionary
document obj2dict LHCbEventObj2Dict -group=dict ../xml/LHCbEvent.xml
library LHCbEventDict -group=dict ../dict/*.cpp
macro LHCbEventDict_shlibflags "$(use_linkopts) $(libraryshr_linkopts)"
 page 135

http://cern.ch/lhcb-comp/Frameworks/DataDictionary/default.htm

Gaudi Users Guide
Chapter 11 Framework services Version/Issue: 9/0
11.12 Developing new services

11.12.1 The Service base class

Within Gaudi we use the term "Service" to refer to a class whose job is to provide a set of
facilities or utilities to be used by other components. In fact we mean more than this because a
concrete service must derive from the Service base class and thus has a certain amount of
predefined behaviour; for example it has initialize() and finalize() methods which
are invoked by the application manager at well defined times.

Figure 11.2 shows the inheritance structure for an example service called SpecificService.
The key idea is that a service should derive from the Service base class and additionally
implement one or more pure abstract classes (interfaces) such as IConcreteSvcType1 and
IConcreteSvcType2 in the figure.

As discussed above, it is necessary to derive from the Service base class so that the concrete
service may be made accessible to other Gaudi components. The actual facilities provided by
the service are available via the interfaces that it provides. For example the
ParticleProperties service implements an interface which provides methods for
retrieving, for example, the mass of a given particle. In figure 11.2 the service implements two
interfaces each of two methods.

A component which wishes to make use of a service makes a request to the application
manager. Services are requested by a combination of name, and interface type, i.e. an
algorithm would request specifically either IConcreteSvcType1 or IConcreteSvcType2.

Figure 11.2 Implementation of a concrete service class. Though not shown in the figure, both of the
IConcreteSvcType interfaces are derived from IInterface.
page 136

Gaudi Users Guide
Chapter 11 Framework services Version/Issue: 9/0
The identification of what interface types are implemented by a particular class is done via the
queryInterface method of the IInterface interface. This method must be implemented
in the concrete service class. In addition the initialize() and finalize() methods
should be implemented. After initialization the service should be in a state where it may be
used by other components.

The service base class offers a number of facilities itself which may be used by derived
concrete service classes:

• Properties are provided for services just as for algorithms. Thus concrete services
may be fine tuned by setting options in the job options file.

• A serviceLocator method is provided which allows a component to request the
use of other services which it may need.

• A message service.

11.12.2 Implementation details

The following is essentially a checklist of the minimal code required for a service.

1. Define the interfaces

2. Derive the concrete service class from the Service base class.

3. Implement the queryInterface() method.

4. Implement the initialize() method. Within this method you should make a call
to Service::initialize() as the first statement in the method and also make an
explicit call to setProperties() in order to read the service’s properties from the
job options (note that this is different from Algorithms, where the call to
setProperties() is done in the base class).
:

Listing 11.12 An interface class

#include "GaudiKernel/IInterface.h"

class IConcreteSvcType1 : virtual public IInterface {
public:
 void method1() = 0;
 int method2() = 0;
}

#include "IConcreteSvcType1.h"

const IID& IID_IConcreteSvcType1 = 143; // UNIQUE within LHCb !!
 page 137

Gaudi Users Guide
Chapter 11 Framework services Version/Issue: 9/0
Listing 11.13 A minimal service implementation

#include "GaudiKernel/Service.h"
#include "IConcreteSvcType1.h"
#include "IConcreteSvcType2.h"

class SpecificService : public Service,
virtual public IConcreteSvcType1,
virtual public IConcreteSvcType2 {

public:
 // Constructor of this form required:
 SpecificService(const std::string& name, ISvcLocator* sl);

 queryInterface(constIID& riid, void** ppvIF);
};

// Factory for instantiation of service objects
static SvcFactory<SpecificService> s_factory;
const ISvcFactory& SpecificServiceFactory = s_factory;

// UNIQUE Interface identifiers defined elsewhere
extern const IID& IID_IConcreteSvcType1;
extern const IID& IID_IConcreteSvcType2;

// queryInterface
StatusCode SpecificService::queryInterface(const IID& riid, void** ppvIF) {

if(IID_IConcreteSvcType1 == riid) {
ppvIF = dynamic_cast<IConcreteSvcType1> (this);
return StatusCode::SUCCESS;

} else if(IID_IConcreteSvcType2 == riid) {
ppvIF = dynamic_cast<IConcreteSvcType2> (this);
return StatusCode::SUCCESS;

} else {
return Service::queryInterface(riid, ppvIF);

}
}

StatusCode SpecificService::initialize() { ... }
StatusCode SpecificService::finalize() { ... }

// Implement the specifics ...
SpecificService::method1() {...}
SpecificService::method2() {...}
SpecificService::method3() {...}
SpecificService::method4() {...}
page 138

Gaudi Users Guide
Chapter 12 Tools and ToolSvc Version/Issue: 9/0
Chapter 12

Tools and ToolSvc

12.1 Overview

Tools are light weight objects whose purpose is to help other components perform their work.
A framework service, the ToolSvc, is responsible for creating and managing Tools. An
Algorithm requests the tools it needs to the ToolSvc, specifying if requesting a private
instance by declaring itself as the parent. Since Tools are managed by the ToolSvc, any
component1 can request a tool. Algorithms, Services and other Tools can declare themselves
as Tools parents.

In this chapter we first describe these objects and the difference between “private” and
“shared” tools. We then look at the AlgTool base class and how to write concrete Tools.

In section 12.3 we describe the ToolSvc and show how a component can retrieve Tools via
the service.

Finally we describe Associators, common utility GaudiTools for which we provide the
interface and base class.

12.2 Tools and Services

As mentioned elsewhere Algorithms make use of framework services to perform their work.
In general the same instance of a service is used by many algorithms and Services are setup
and initialized once at the beginning of the job by the framework. Algorithms also delegate
some of their work to sub-algorithms. Creation and execution of sub-algorithms are the
responsibilities of the parent algorithm whereas the initialize() and finalize()
methods are invoked automatically by the framework while initializing the parent algorithm.

1. In this chapter we will use an Algorithm as example component requesting tools.
 page 139

Gaudi Users Guide
Chapter 12 Tools and ToolSvc Version/Issue: 9/0
The properties of a sub-algorithm are automatically set by the framework but the parent
algorithm can change them during execution. Sharing of data between nested algorithms is
done via the Transient Event Store.

Both Services and Algorithms are created during the initialization stage of a job and live until
the jobs ends.

Sometimes an encapsulated piece of code needs to be executed only for specific events, in
which case it is desirable to create it only when necessary. On other occasions the same piece
of code needs to be executed many times per event. Moreover it can be necessary to execute a
sub-algorithm on specific contained objects that are selected by the parent algorithm or have
the sub-algorithm produce new contained objects that may or may not be put in the Transient
Store. Finally different algorithms may wish to configure the same piece of code slightly
differently or share it as-is with other algorithms.

To provide this kind of functionality we have introduced a category of processing objects that
encapsulate these “light” algorithms. We have called this category Tools.

Some examples of possible tools are single track fitters, association to Monte Carlo truth
information, vertexing between particles, smearing of Monte Carlo quantities.

12.2.1 “Private” and “Shared” Tools

Algorithms can share instances of Tools with other Algorithms if the configuration of
the tool is suitable. In some cases however an Algorithm will need to customize a tool in a
specific way in order to use it. This is possible by requesting the ToolSvc to provide a
“private” instance of a tool.

If an Algorithm passes a pointer to itself when it asks the ToolSvc to provide it with a
tool, it is declaring itself as the parent and a “private” instance is supplied. Private instances
can be configured according to the needs of each particular Algorithm.

As mentioned above many Algorithms can use a tool as-is, in which case only one instance
of a Tool is created, configured and passed by the ToolSvc to the different algorithms. This
is called a “shared” instance. The parent of “shared” tools is the ToolSvc.

12.2.2 The Tool classes

12.2.2.1 The AlgTool base class

The main responsibilities of the AlgTool base class (see Listing 12.1) are the identification of
the tools instances, the initialisation of certain internal pointers when the tool is created and
the management of the tools properties. The AlgTool base class also offers some facilities to
help in the implementation of derived tools and management of the additional tools
interfaces..
page 140

Gaudi Users Guide
Chapter 12 Tools and ToolSvc Version/Issue: 9/0
Constructor - The base class has a single constructor which takes three arguments. The first is
the type (i.e. the class) of the Tool object being instantiated, the second is the full name of the
object and the third is a pointer to the IInterface of the parent component. The name is
used for the identification of the tool instance as described below.The parent interface is used
by the tool to access for example the outputLevel of the parent.

Listing 12.1 The definition of the AlgTool Base class. Highlighted in bold are methods relevant for the
implementation of concrete tools.

1: class AlgTool : public virtual IAlgTool,
2: public virtual IProperty {
3:
4: public:
5: // Standard Constructor.
6: AlgTool(const std::string& type, const std::string& name,

const IInterface* parent);
7:
8: ISvcLocator* serviceLocator() const;
9: IMessageSvc* msgSvc() const;
10:
11: virtual StatusCode setProperty(const Property& p);
12: virtual StatusCode setProperty(std::istream& s);
13: virtual StatusCode setProperty(const std::string& n,

 const std::string& v);
14: virtual StatusCode getProperty(Property* p) const;
15: virtual const Property& getProperty(const std::string& name) const;
16: virtual StatusCode getProperty(const std::string& n,std::string& v)

const;
17: virtual const std::vector<Property*>& getProperties() const;
18:
19: StatusCode setProperties();
20:
21: template <class T>
22: StatusCode declareProperty(const std::string& name, T& property) const
23:
24: virtual const std::string& name() const;
25: virtual const std::string& type() const;
26: virtual const IInterface* parent() const;
27:
28: virtual StatusCode initialize();
29: virtual StatusCode finalize();
30:
31: virtual StatusCode queryInterface(const IID& riid, void** ppvUnknown);
32: void declInterface(const IID&, void*);
33: template <class I> class declareInterface {

public:
template <class T> declareInterface(T* tool)

}
34:
35: protected:
36: // Standard destructor.
37: virtual ~AlgTool();
 page 141

Gaudi Users Guide
Chapter 12 Tools and ToolSvc Version/Issue: 9/0
Access to Services - A serviceLocator() method is provided to enable the derived tools
to locate the services necessary to perform their jobs. Since concrete Tools are instantiated by
the ToolSvc upon request, all Services created by the framework prior to the creation of a
tool are available. In addition access to the message service is provided via the msgSvc()
method. Both pointers are retrieved from the parent of the tool.

Properties - A template method for declaring properties similarly to Algorithms is
provided. This allows tuning of data members used by the Tools via JobOptions files. The
ToolSvc takes care of calling the setProperties() method of the AlgTool base class
after having instantiated a tool. Properties need to be declared in the constructor of a Tool.
The property outputLevel is declared in the base class and is identically set to that of the
parent component, unless specified otherwise in the JobOptions. For details on Properties see
section 11.3.1.

IAlgTool Interface - It consists of three accessor methods for the identification and
managment of the tools: type(), name() and parent(). These methods are all
implemented by the base class and should not be overridden. Two additional methods,
initialize() and finalize(), allow concrete tools to be configured after creation and
orderly terminated before deletion. An empty implementation is provided by the AlgTool
base class and concrete tools need to implement these methods only when relevant for their
purpose. The ToolSvc is responsible for calling these methods at the appropriate time.

Tools Interfaces - Concrete tools must implement additional interfaces that will inherit
from IAlgTool. When a component implements more that one interface it is necessary
to "recognize" the various interfaces. This is taken care of by the AlgTool base class
once the additional interface is declared by a concrete tool (or tools’ base class). The
declaration of the additional interface must be done in the constructor of a concrete tool
and is done via the template method declareInterface.

12.2.2.2 Tools identification

A tool instance is identified by its full name. The name consist of the concatenation of the
parent name, a dot, and a tool dependent part. The tool dependent part can be specified by the
user, when not specified the tool type (i.e. the class) is automatically taken as the tool
dependent part of the name. Examples of tool names are RecPrimaryVertex.VertexSmearer
(a private tool) and ToolSvc.AddFourMom (a shared tool). The full name of the tool has to be
used in the jobOptions file to set its properties.

12.2.2.3 Concrete tools classes

Operational functionalities of tools must be provided in the derived tool classes. A concrete
tool class must inherit directly or indirectly from the AlgTool base class to ensure that it has
the predefined behaviour needed for management by the ToolSvc.

Concrete tools must implement additional interfaces, specific to the task a tool is designed to
perform. Specialised tools intended to perform similar tasks can be derived from a common
base class that will provide the common functionality and implement the common interface.
Consider as example the vertexing of particles, where separate tools can implement different
algorithms but the arguments passed are the same. The ToolSvc interacts with specialized
page 142

Gaudi Users Guide
Chapter 12 Tools and ToolSvc Version/Issue: 9/0
tools only through the additional tools interface, therefore the interface itself must inherit
from the IAlgTool interface in order for the tool to be correctly managed by the ToolSvc.

The inheritance structure of derived tools is shown in Figure 12.1. ConcreteTool1
implements one additional abstract interface while ConcreteTool2 and ConcreteTool3
derive from a base class SubTool that provides them with additional common functionality.

12.2.2.4 Implementation of concrete tools

An example minimal implementation of a concrete tool is shown in Listings 12.2, 12.3 and
12.4, taken from the LHCb ToolsAnalysis example application ..

Figure 12.1 Tools class hierarchy

$OJ7RRO

,3URSHUW\

6XE7RRO

,6XE7RRO

&RQFUHWH7RRO�

,$OJ7RRO

&RQFUHWH7RRO�

&RQFUHWH7RRO�

,&RQUHWH7RRO�

,
$
OJ
7
R
R
O

,$OJ7RRO

Listing 12.2 Example of a concrete tool additional interface

1: static const InterfaceID IID_IVertexSmearer("IVertexSmearer", 1 , 0);
2:
3: class IVertexSmearer : virtual public IAlgTool {
4: public:
5: /// Retrieve interface ID
6: static const InterfaceID& interfaceID() { return IID_IVertexSmearer; }
7: // Actual operator function
8: virtual StatusCode smear(MyAxVertex*) = 0;
9: };

Listing 12.3 Example of a concrete tool minimal implementation header file

1: #include "GaudiKernel/AlgTool.h"
2: class VertexSmearer : public AlgTool, virtual public IVertexSmearer {
3: public:
4: // Constructor
5: VertexSmearer(const std::string& type, const std::string& name,

const IInterface* parent);
6: // Standard Destructor
7: virtual ~VertexSmearer() { }
8: // specific method of this tool
9: StatusCode smear(MyAxVertex* pvertex);
 page 143

Gaudi Users Guide
Chapter 12 Tools and ToolSvc Version/Issue: 9/0
The creation of concrete tools is similar to that of Algorithms, making use of a Factory
Method. As for Algorithms, Tool factories enable their creator to instantiate new tools without
having to include any of the concrete tools header files. A template factory is provided and a
tool developer will only need to add the concrete factory in the implementation file as shown
in lines 1 to 4 of Listing 12.4

In addition a concrete tool class must specify a single constructor with the same parameter
signatures as the constructor of the AlgTool base class as shown in line 5 of Listing 12.3.

Below is the minimal checklist of the code necessary when developing a Tool:

1. Define the specific interface (inheriting from the IAlgTool interface).

2. Derive the tool class from the AlgTool base class

3. Provide the constructor

4. Declare the additional interface in the constructor.

5. Implement the factory adding the lines of code shown in Listing 12.4

6. Implement the specific interface methods.

In addition if a tool requires special initialization and termination you can implement the
initialize and finalize methods.

Listing 12.4 Example of a concrete tool minimal implementation file

1: #include "GaudiKernel/ToolFactory.h"
2: // Static factory for instantiation of algtool objects
3: static ToolFactory<VertexSmearer> s_factory;
4: const IToolFactory& VertexSmearerFactory = s_factory;
5:
6: // Standard Constructor
7: VertexSmearer::VertexSmearer(const std::string& type,

const std::string& name,
const IInterface* parent)

: AlgTool(type, name, parent) {
8:
9: // Locate service needed by the specific tool
10: m_randSvc = 0;
11: if(serviceLocator()) {
12: StatusCode sc=StatusCode::FAILURE;
13: sc = serviceLocator()->service("RndmGenSvc", m_randSvc, true);
14: }
15: // Declare additional interface
16: declareInterface<IVertexSmearer>(this);
17:
18: // Declare properties of the specific tool
19: declareProperty("dxVtx", m_dxVtx = 9 * micrometer);
20: declareProperty("dyVtx", m_dyVtx = 9 * micrometer);
21: declareProperty("dzVtx", m_dzVtx = 38 * micrometer);
22: }
23: // Implement the specific method
24: StatusCode VertexSmearer::smear(MyAxVertex* pvertex) {...}
page 144

Gaudi Users Guide
Chapter 12 Tools and ToolSvc Version/Issue: 9/0
12.3 The ToolSvc

The ToolSvc manages Tools. It is its responsibility to create tools, configure them, make
them available to Algorithms or Services and terminate them in an orderly fashion before
deleting them.

The ToolSvc verifies if a tool type is available and creates the necessary instance after having
verified if it doesn’t already exist. If a tool instance exists the ToolSvc will not create a new
identical one but pass to the algorithm the existing instance. Tools are created on a “first
request” basis: the first Algorithm requesting a tool will prompt its creation. The relationship
between an algorithm, the ToolSvc and Tools is shown in Figure 12.2.

Immediately after having created a tool, the ToolSvc will configure it by setting its
properties and calling the tool initialize() method.

The ToolSvc will “hold” a tool until it is no longer used by any component or until the
finalize() method of the tool service is called. Algorithms can inform the ToolSvc they
are not going to use a tool previously requested via the releaseTool method of the
IToolSvc interface. Before deleting the tools the ToolSvc will cleanly terminate them by
calling their finalize() method.

The ToolSvc is created by default by the ApplicationMgr and algorithms wishing to use
the service can do so via the algorithm toolSvc() accessor method. Services and AlgTools
need to retrieve it using the serviceLocator() method of their respective base classes.

12.3.1 Retrieval of tools via the IToolSvc interface

The IToolSvc interface is the ToolSvc specific interface providing methods to retrieve
tools. The interface has two retrieve methods that differ in their parameters signature, as
shown in Listing 12.5

The arguments of the method shown in Listing 12.5, line 1, are the tool type (i.e. the class),
the tool additional interface ID and the IAlgTool interface of the returned tool. In addition
there are two arguments with default values: one is the IInterface of the component

Figure 12.2 ToolSvc design diagram

,3URSHUW\

&RQFUHWH$OJRULWKP

,7RRO6YF

,7RRO)DFWRU\

,$OJ7RRO

,6HUYLFH

7RRO6YF

7RRO)DFWRU\

��7�!

$OJ7RRO

&RQFUHWH7RRO
 page 145

Gaudi Users Guide
Chapter 12 Tools and ToolSvc Version/Issue: 9/0
requesting the tool, the other a boolean creation flag. If the component requesting a tool
passes a pointer to itself as the third argument, it declares to the ToolSvc that it is asking for
a “private” instance of the tool. By default a “shared” instance is provided. In general if the
requested instance of a Tool does not exist the ToolSvc will create it. This behaviour can be
changed by setting to false the last argument of the method.

The method shown in Listing 12.5, line 2 differs from the one shown in line 1 by an extra
argument, a string specifying the tool dependent part of the full tool name. This enables a
component to request two separately configurable instances of the same tool.

When retriving concrete tools, it is recommended to use the two templated functions
provided in the IToolSvc interface file which are shown in Listing 12.6.

The two template methods correspond to the IToolSvc retrieve methods but have the tool
returned as a template parameter. Using these methods the component retrieving a tool
avoids explicit dynamic-casting to specific additional interfaces or to derived classes.

Listing 12.7 shows an example of retrieval of a shared and of a common tool.

Listing 12.5 The IToolSvc interface methods

1: virtual StatusCode retrieve(const std::string& type,
const IID&,
IAlgTool*& tool,
const IInterface* parent=0,
bool createIf=true) = 0;

2: virtual StatusCode retrieve(const std::string& type,
const IID&,
const std::string& name,
IAlgTool*& tool,
const IInterface* parent=0,
bool createIf=true) = 0;

Listing 12.6 The IToolSvc template methods

1: template <class T>
2: StatusCode retrieveTool(const std::string& type,

 T*& tool,
const IInterface* parent=0,
bool createIf=true) {...}

3: template <class T>
4: StatusCode retrieveTool(const std::string& type,

 const std::string& name,
T*& tool,
const IInterface* parent=0,
bool createIf=true) {...}
page 146

Gaudi Users Guide
Chapter 12 Tools and ToolSvc Version/Issue: 9/0
12.4 GaudiTools

In general concrete tools are specific to applications or detectors’ code but there are some tools
of common utility for which interfaces and base classes can be provided. The Associators
described below and contained in the GaudiTools package are one of such tools.

12.4.1 Associators

When working with Monte Carlo data it is often necessary to compare the results of
reconstruction or physics analysis with the original corresponding Monte Carlo quantities on
an event-by-event basis as well as on a statistical level.

Various approaches are possible to implement navigation from reconstructed simulated data
back to the Monte Carlo truth information. Each of the approaches has its advantages and
could be more suited for a given type of event data or data-sets. In addition the reconstruction
and physics analysis code should treat simulated data in an identical way to real data.

In order to shield the code from the details of the navigation procedure, and to provide a
uniform interface to the user code, a set of Gaudi Tools, called Associators, has been
introduced. The user can navigate between any two arbitrary classes in the Event Model using
the same interface as long as a corresponding associator has been implemented. Since an
Associator retrieves existing navigational information, its actual implementation depends on
the Event Model and how the navigational information is stored. For some specific
Associators, in addition, it can depend on some algorithmic choices: consider as an example a
physics analysis particle and a possible originating Monte Carlo particle where the associating
discriminant could be the fractional number of hits used in the reconstruction of the tracks.
An advantage of this approach is that the implementation of the navigation can be modified
without affecting the reconstruction and analysis algorithms because it would affect only the
associators. In addition short-cuts or complete navigational information can be provided to
the user in a transparent way. By limiting the use of such associators to dedicated monitoring
algorithms where the comparison between raw/reconstructed data and MC truth is done, one

Listing 12.7 Example of retrieval by an algortihm of a shared tool in line 4: and of a private tool in line 10:

1: // Example of tool belonging to the ToolSvc and shared between
2: // algorithms
3: StatusCode sc;
4: sc = toolsvc()->retrieveTool("AddFourMom", m_sum4p);
5: if(sc.isFailure()) {
6: log << MSG::FATAL << " Unable to create AddFourMom tool" << endreq;
7: return sc;
8: }
9: // Example of private tool
10: sc = toolsvc()->retrieveTool("ImpactPar", m_ip, this);
11: if(sc.isFailure()) {
12: log << MSG::FATAL << " Unable to create ImpactPar tool" << endreq;
13: return sc;
14: }
 page 147

Gaudi Users Guide
Chapter 12 Tools and ToolSvc Version/Issue: 9/0
could ensure that the reconstruction and analysis code treat simulated and real data in an
identical way.

Associators must implement a common interface called IAssociator. An Associator
base class providing at the same time common functionality and some facilities to help in the
implementation of concrete Associators is provided. A prototype version of these classes is
provided in the current release of Gaudi.

12.4.1.1 The IAssociator Interface

As already mentioned Associators must implement the IAssociator interface.

In order for Associators to be retrieved from the ToolSvc only via the IAssociator
interface, the interface itself inherits from the IAlgTool interface. While the implementation
of the IAlgTool interface is done in the AlgTool base class, the implementation of the
IAssociator interface is the full responsibility of concrete associators.

The four methods of the IAssociator interface that a concrete Associator must implement
are show in Listing 12.8

Two i_retrieveDirect methods must be implemented for retrieving associated classes
following the same direction as the links in the data: for example from reconstructed particles
to Monte Carlo particles. The first parameter is a pointer to the object for which the associated
Monte Carlo quantity(ies) is requested. The second parameter, the discriminating signature
between the two methods, is one or a vector of pointers to the associated Monte Carlo objects
of the type requested. Some reconstructed quantities will have only one possible Monte Carlo
associated object of a certain type, some will have many, others will have many out of which a
“best” associated object can be extracted. If one of the two methods is not valid for a concrete
associator, such method must return a failure. The third and fourth parameters are the class
IDs of the objects for which the association is requested. This allows to verify at run time if the
objects’ types are those the concrete associator has been implemented for.

Listing 12.8 Methods of the IAssociator Interface that must be implemented by concrete associators

1: virtual StatusCode i_retrieveDirect(ContainedObject* objFrom,
ContainedObject*& objTo,
const CLID idFrom,
const CLID idTo) = 0;

2: virtual StatusCode i_retrieveDirect(ContainedObject* objFrom,
std::vector<ContainedObject*>& vObjTo,

const CLID idFrom,
const CLID idTo) = 0;

3: virtual StatusCode i_retrieveInverse(ContainedObject* objFrom,
ContainedObject*& objTo,
const CLID idFrom,
const CLID idTo) = 0;

4: virtual StatusCode i_retrieveInverse(ContainedObject* objFrom,
std::vector<ContainedObject*>& vObjTo,
const CLID idFrom,
const CLID idTo) = 0;
page 148

Gaudi Users Guide
Chapter 12 Tools and ToolSvc Version/Issue: 9/0
The two i_retrieveInverse methods are complementary and are for retrieving the
association between the same two classes but in the opposite direction to that of the links in
the data: for example from Monte Carlo particles to reconstructed particles. The different
name is intended to alert the user that navigation in this direction may be a costly operation

Four corresponding template methods are implemented in IAssociator to facilitate the use
of Associators by Algorithms (see Listing 12.9). Using these methods the component
retrieving a tool avoids some explicit dynamic-casting as well as the setting of class IDs. An
example of how to use such methods is described in section 12.4.1.3.

12.4.1.2 The Associator base class

An associator is a type of AlgTool,so the Associator base class inherits from the AlgTool
base class. Thus, Associators can be created and managed as AlgTools by the ToolSvc.
Since all the methods of the AlgTool base class (as described in section 12.2.2.1) are available
in the Associator base class, only the additional functionality is described here.

Access to Event Data Service - An eventSvc() method is provided to access the Event Data
Service since most concrete associators will need to access data, in particular if accessing
navigational short-cuts.

Associator Properties - Two properties are declared in the constructor and can be set in the
jobOptions: “FollowLinks” and “DataLocation”. They are respectively a bool with
initial value true and a std::string with initial value set to “ ”. The first is foreseen to be
used by an associator when it is possible to either follow links between classes or retrieve
navigational short cuts from the data. A user can choose to set either behaviour at run time.
The second property contains the location in the data where the stored navigational
information is located. Currently it must be set via the jobOptions when necessary, as shown
in Listing 12.10 for a particular implementation provided in the Associator example. Two
corresponding methods are provided for using the information from these properties:
followLinks() and whichTable().

Inverse Association - Retrieving information in the direction opposite to that of the links in
the data is in general a time consuming operation, that implies checking all the direct
associations to access the inverse relation for a specified object. For this reason Associators
should keep a local copy of the inverse associations after receiving the first request for an
event. A few methods are provided to facilitate the work of Associators in this case. The

Listing 12.9 Template methods of the IAssociator interface

1: template <class T1, class T2>
StatusCode retrieveDirect(T1* from, T2*& to) {...}

2: template <class T1>
StatusCode retrieveDirect(T1* from,

std::vector<ContainedObject*>& objVTo,
const CLID idTo) {...}

3: template <class T1, class T2>
StatusCode retrieveInverse(T1* from, T2*& to) {...}

4: template <class T1>
StatusCode retrieveInverse(T1* from,

std::vector<ContainedObject*>& objVTo,
const CLID idTo) {...}
 page 149

Gaudi Users Guide
Chapter 12 Tools and ToolSvc Version/Issue: 9/0
methods inverseExist() and setInverseFlag(bool) help in keeping track of the status
of the locally kept inverse information.The method buildInverse() has to be overridden by
concrete associators since they choose in which form to keep the information and should be
called by the associator when receiving the first request during the processing of an event.

Locally kept information - When a new event is processed, the associator needs to reset its
status to the same conditions as those after having been created . In order to be notified of
such an incident happening the Associator base class implements the IListener interface
and, in the constructor, registers itself with the Incident Service (see section 11.9 for details of
the Incident Service). The associator’s flushCache() method is called in the implementation
of the IListener interface in the Associator base class. This method must be overridden
by concrete associators wanting to do a meaningful reset of their initial status.

12.4.1.3 A concrete example

In this section we look at an example implementation of a specific associator. The code is
taken from the LHCb Associator example, but the points illustrated should be clear even
without a knowledge of the LHCb data model.

The AxPart2MCParticleAsct provides association between physics analysis particles
(AxPartCandidate) and the corresponding Monte Carlo particles (MCParticle). The
direct navigational information is stored in the persistent data as short-cuts, and is retrieved
in the form of a SmartRefTable in the Transient Event Store. This choice is specific to
AxPart2MCParticleAsct, any associator can use internally a different navigational
mechanism. The location in the Event Store where the navigational information can be found
is set in the job options via the “DataLocation” property, as shown in Listing 12.10.

In the current LHCb data model only a single MCParticle can be associated to one
AxPartCandidate and vice-versa only one or no AxPartCandidate can be associated to
one MCParticle. For this reason only the i_retrieveDirect and i_retrieveInverse
methods providing one-to-one association are meaningful. Both methods verify that the
objects passed are of the correct type before attempting to retrieve the information, as shown
in Listing 12.11. When no association is found, a StatusCode::FAILURE is returned.

The i_retrieveInverse method providing the one-to-many association returns a failure,
while a fake implementation of the one-to-many i_retrieveDirect method is

Listing 12.10 Example of setting properties for an associator via jobOptions

ToolSvc.AxPart2MCParticleAsct.DataLocation = "/Event/Anal/AxPart2MCParticle";

Listing 12.11 Checking if objects to be associated are of the correct type

1: if (idFrom != AxPartCandidate::classID()){
2: objTo = 0;
3: return StatusCode::FAILURE;
4: }
5: if (idTo != MCParticle::classID()) {
6: objTo = 0;
7: return StatusCode::FAILURE;
8: }
page 150

Gaudi Users Guide
Chapter 12 Tools and ToolSvc Version/Issue: 9/0
implemented in the example, to show how an Algorithm can use such a method. In the
AxPart2MCParticleAsct example the inverse table is kept locally and both the
buildInverse() and flushCache() methods are overridden. In the example the choice has
been made to implement an additional method buildDirect() to retrieve the direct
navigational information on a first request per event basis.

Listing 12.12 shows how a monitoring Algorithm can get an associator from the ToolSvc and
use it to retrieve associated objects through the template interfaces.

Listing 12.12 Extracted code from the AsctExampleAlgorithm

1: #include "GaudiTools/IAssociator.h"

2: // Example of retrieving an associator
3: IAssociator
4: StatusCode sc = toolsvc()->retrieveTool("AxPart2MCParticleAsct",

m_pAsct);
5: if(sc.isFailure()) {
6: log << MSG::FATAL << "Unable to create Associator tool" << endreq;
7: return sc;
8: }
9: // Example of retrieving inverse one-to-one information from an
10: // associator
11: SmartDataPtr<MCParticleVector> vmcparts (evt,"/MC/MCParticles");
12: for(MCParticleVector::iterator itm = vmcparts->begin();

vmcparts->end() != itm; itm++) {
13: AxPartCandidate* mptry = 0;
14: StatusCode sc = m_pAsct->retrieveInverse(*itm, mptry);
15: if(sc.isSuccess()) {...}
16: else {...}
17: }
18: // Example of retrieving direct one-to-many information from an
19: // associator
20: SmartDataPtr<AxPartCandidateVector> candidates(evt,

"/Anal/AxPartCandidates");
21: std::vector<ContainedObject*> pptry;
22: AxPartCandidate* itP = *(candidates->begin());
23: StatusCode sa =

m_pAsct->retrieveDirect(itP, pptry, MCParticle::classID());
24: if(sa.isFailure()) {...}
25: else {
26: for (std::vector<ContainedObject*>::iterator it = pptry.begin();

 pptry.end() != it; it++) {
27: MCParticle* imc = dynamic_cast<MCParticle*>(*it);
28: }
29: }
 page 151

Gaudi Users Guide
Chapter 12 Tools and ToolSvc Version/Issue: 9/0
page 152

Gaudi Users Guide
Chapter 13 Converters Version/Issue: 9/0
Chapter 13

Converters

13.1 Overview

Consider a small piece of detector; a silicon wafer for example. This “object” will appear in
many contexts: it may be drawn in an event display, it may be traversed by particles in a
Geant4 simulation, its position and orientation may be stored in a database, the layout of its
strips may be queried in an analysis program, etc. All of these uses or views of the silicon
wafer will require code.

One of the key issues in the design of the framework was how to encompass the need for
these different views within Gaudi. In this chapter we outline the design adopted for the
framework and look at how the conversion process works. This is followed by sections which
deal with the technicalities of writing converters for reading SICB data and writing to ROOT
files.

13.2 Persistency converters

Gaudi gives the possibility to read event data from either ZEBRA (SICB) or ROOT files, and to
write data back to ROOT files. The use of ODBC compliant databases is also possible.

Figure 13.1 is a schematic illustrating how converters fit into the transient-persistent
translation of event data. We will not discuss in detail how the transient data store (e.g. the
event data service) or the persistency service work, but simply look at the flow of data in
order to understand how converters are used. An introduction to the persistency mechanism
of Gaudi can be found in reference [12].

One of the issues considered when designing the Gaudi framework was the capability for
users to “create their own data types and save objects of those types along with references to
already existing objects”. A related issue was the possibility of having links between objects
 page 153

Gaudi Users Guide
Chapter 13 Converters Version/Issue: 9/0
which reside in different stores (i.e. files and databases) and even between objects in different
types of store.

Figure 13.1 shows that data may be read from an ODBC database and/or ROOT files into the
transient event data store and that data may be written out again to the same media. It is the
job of the persistency service to orchestrate this transfer of data between memory and disk.

The figure shows two “slave” services: the ODBC conversion service and the ROOT I/O
service. These services are responsible for managing the conversion of objects between their
transient and persistent representations. Each one has a number of converter objects which
are actually responsible for the conversion itself. As illustrated by the figure a particular
converter object converts between the transient representation and one other form, here either
MS Access or ROOT. The mechanism is identical when reading data from a SICB data file, via
the SicbCnv conversion service.

13.3 Collaborators in the conversion process

In general the conversion process occurs between the transient representation of an object and
some other representation. In this chapter we will be using persistent forms, but it should be
borne in mind that this could be any other “transient” form such as those required for
visualisation or those which serve as input into other packages (e.g. Geant4).

Figure 13.2 shows the interfaces (classes whose name begins with "I") which must be
implemented in order for the conversion process to function.

The conversion process is essentially a collaboration between the following types:

• IConversionSvc

• IConverter

Figure 13.1 Persistency conversion services in Gaudi

RC

Transient
Data Store

MS
Access

ROOT

OC
OC
OC

ROOT
I/O

RC
RC

OC

RC

ODBC converter

ROOT converter

ODBC

Persistency service
page 154

Gaudi Users Guide
Chapter 13 Converters Version/Issue: 9/0
• IOpaqueAddress

For each persistent technology, or “non-transient” representation, a specific conversion
service is required. This is illustrated in the figure by the class AConversionSvc which
implements the IConversionSvc interface.

A given conversion service will have at its disposal a set of converters. These converters are
both type and technology specific. In other words a converter knows how to convert a single
transient type (e.g. MuonHit) into a single persistent type (e.g. RootMuonHit) and vice versa.
Specific converters implement the IConverter interface, possibly by extending an existing
converter base class.

A third collaborator in this process are the opaque address objects. A concrete opaque address
class must implement the IOpaqueAddress interface. This interface allows the address to be
passed around between the transient data service, the persistency service, and the conversion
services without any of them being able to actually decode the address. Opaque address
objects are also technology specific. The internals of an OdbcAddress object are different
from those of a RootAddress object.

Only the converters themselves know how to decode an opaque address. In other words only
converters are permitted to invoke those methods of an opaque address object which do not
form a part of the IOpaqueAddress interface.

Figure 13.2 The classes (and interfaces) collaborating in the conversion process.

AConversionSvc

Converter

IConverter

createObj()
updateObj()
fillObjRefs()

AConverter1

AConverter2

AConverter3

 IConversionSvc

AOpaqueAddress

IOpaqueAddress

clID()
svcType()
 page 155

Gaudi Users Guide
Chapter 13 Converters Version/Issue: 9/0
Converter objects must be “registered” with the conversion service in order to be usable. For
the “standard” converters this will be done automatically. For user defined converters (for
user defined types) this registration must be done at initialisation time (see Section 6.10).

13.4 The conversion process

As an example (see Figure 13.3) we consider a request from the event data service to the
persistency service for an object to be loaded from a data file.

As we saw previously, the persistency service has one conversion service slave for each
persistent technology in use. The persistency service receives the request in the form of an
opaque address object. The svcType() method of the IOpaqueAddress interface is

Figure 13.3 A trace of the creation of a new transient object.

createObj(OA)

AConversionSvc AOpaqueAddress AConverter DB/File

clID()

createObj(OA)

DataObject

"unpack"

Id

"access(es)"

pointers into
persistent file/DB

data to build
transient object

new

return reference to DataObject

DataObject

setX()

setY()
page 156

Gaudi Users Guide
Chapter 13 Converters Version/Issue: 9/0
invoked to decide which conversion service the request should be passed onto. This returns a
“technology identifier” which allows the persistency service to choose a conversion service.

The request to load an object (or objects) is then passed onto a specific conversion service. This
service then invokes another method of the IOpaqueAddress interface, clID(), in order to
decide which converter will actually perform the conversion. The opaque address is then
passed onto the concrete converter who knows how to decode it and create the appropriate
transient object.

The converter is specific to a specific type, thus it may immediately create an object of that
type with the new operator. The converter must now “unpack” the opaque address, i.e. make
use of accessor methods specific to the address type in order to get the necessary information
from the persistent store.

For example, a SICB converter might get the name of a bank from the address and use that to
locate the required information in the ZEBRA common block. On the other hand a ROOT
converter may extract a file name, the names of a ROOT TTree and an index from the address
and use these to load an object from a ROOT file. The converter would then use the accessor
methods of this “persistent” object in order to extract the information necessary to build the
transient object.

We can see that the detailed steps performed within a converter depend very much on the
nature of the non-transient data and (to a lesser extent) on the type of the object being built.

If all transient objects were independent, i.e. if there were no references between objects then
the job would be finished. However in general objects in the transient store do contain
references to other objects.

These references can be of two kinds:

i. “Macroscopic” references appear as separate “leaves” in the data store. They have to
be registered with a separate opaque address structure in the data directory of the
object being converted. This must be done after the object was registered in the data
store in the method fillObjRefs().

ii. Internal references must be handled differently. There are two possibilities for
resolving internal references:

1. Load on demand. If the object the reference points to should only be loaded
when accessed, the pointer must no longer be a raw C++ pointer, but rather a
smart pointer object containing itself the information for later resolution of
the reference. This is the preferred solution for references to objects within
the same data store (e.g. references from Monte-Carlo tracks to Monte-Carlo
vertices) and is generated by the Object Description Tools when a relation
tag is found in the XML class description (see Section 6.9).

2. Filling of raw C++ pointers. This is only necessary if the object points to an
object in another store, e.g. the detector data store, and should be avoided in
classes foreseen to be made persistent. To resolve the reference a converter
has to retrieve the other object and set the raw pointer. These references
should be set in the fillObjRefs() method. This of course is more
complicated, because it must be ensured that both objects are present at the
time the reference is accessed (i.e. when the pointer is actually used).
 page 157

Gaudi Users Guide
Chapter 13 Converters Version/Issue: 9/0
13.5 Converter implementation - general considerations

After covering the ground work in the preceding sections, let us look exactly what needs to be
implemented in a specific converter class. The starting point is the Converter base class
from which a user converter should be derived.

The converter shown in Listing 13.1 is responsible for the conversion of UDO type objects into
objects that may be stored into an Objectivity database and vice-versa. The UDOCnv
constructor calls the Converter base class constructor with arguments which contain this
information. These are the values CLID_UDO, defined in the UDO class, and
Objectivity_StorageType which is also defined elsewhere. The first two extern
statements simply state that these two identifiers are defined elsewhere.

All of the “book-keeping” can now be done by the Converter base class. It only remains to
fill in the guts of the converter. If objects of type UDO have no links to other objects, then it
suffices to implement the methods createRep() for conversion from the transient form (to
Objectivity in this case) and createObj() for the conversion to the transient form.

If the object contains links to other objects then it is also necessary to implement the methods
fillRepRefs() and fillObjRefs().

13.6 Storing Data using the ROOT I/O Engine

One possibility for storing data is to use the ROOT I/O engine to write ROOT files. Although
ROOT by itself is not an object oriented database, with modest effort a structure can be built
on top to allow the Converters to emulate this behaviour. In particular, the issue of object
linking had to be solved in order to resolve pointers in the transient world.

Listing 13.1 An example converter class

// Converter for class UDO.
extern const CLID& CLID_UDO;
extern unsigned char OBJY_StorageType;

static CnvFactory<UDOCnv> s_factory;
const ICnvFactory& UDOCnvFactory = s_factory;

class UDOCnv : public Converter {
public:

UDOCnv(ISvcLocator* svcLoc) :
Converter(Objectivity_StorageType, CLID_UDO, svcLoc) { }

createRep(DataObject* pO, IOpaqueAddress*& a); // transient->persistent
createObj(IOpaqueAddress* pa, DataObject*& pO); // persistent->transient

fillObjRefs(...); // transient->persistent
fillRepRefs(...); // persistent->transient

}

page 158

Gaudi Users Guide
Chapter 13 Converters Version/Issue: 9/0
The concept of ROOT supporting paged tuples called trees and branches is adequate for
storing bulk event data. Trees split into one or several branches containing individual leaves
with data.

The data structure within the Gaudi data store is also tree like. In the transient world Gaudi
objects are sub-class instances of the “DataObject”. The DataObject offers some basic
functionality like the implicit data directory which allows e.g. to browse a data store. This tree
structure will be mapped to a flat structure in the ROOT file resulting in a separate tree
representing each leaf of the data store. Each data tree contains a single branch containing
objects of the same type. The Gaudi tree is split up into individual ROOT trees in order to give
easy access to individual items represented in the transient model without the need of loading
complete events from the root file i.e. to allow for selective data retrieval. The feature of ROOT
supporting selective data reading using split trees did not seem too attractive since, generally,
complete nodes in the transient store should be made available in one go.

However, ROOT expects “ROOT” objects, they must inherit from TObject. Therefore the
objects from the transient store have to be converted to objects understandable by ROOT.

The following sections are an introduction to the machinery provided by the Gaudi
framework to achieve the migration of transient objects to persistent objects. The ROOT
specific aspects are not discussed here; the ROOT I/O engine is documetned on the ROOT
web site http://root.cern.ch). Note that Gaudi only uses the I/O engine, not all ROOT classes are
available. Within Gaudi the ROOT I/O engine is implemented in the GaudiRootDb package.

13.7 The Conversion from Transient Objects to ROOT Objects

As for any conversion of data from one representation to another within the Gaudi
framework, conversion to/from ROOT objects is based on Converters. The support of a
“generic” Converter accesses pre-defined entry points in each object. The transient object
converts itself to an abstract byte stream. However, for specialized objects specific converters
must be built.

Whenever objects must change their representation within Gaudi, data converters are
involved. For the ROOT case, the converters must have some knowledge of ROOT internals
and of the service finally used to migrate ROOT objects (->TObject) to a file. They must be
able to translate the functionality of the DataObject component to/from the ROOT storage.
Within ROOT itself the object is stored as a Binary Large Object (BLOB).

The generic data conversion mechanism relies on two functionalities, which must be present:

• When writing or reading objects, the object’s data must be "serializable". The
corresponding persistent type is of a generic type, the data are stored as a machine
independent byte stream. This method is implemented automatically if the class is
described using the Gaudi Object Description tools (described in Section 6.7 on
page 53). Some examples of classes implemented automatically in this way can be
found in the Event/LHCbEvent package.
 page 159

http://root.cern.ch

Gaudi Users Guide
Chapter 13 Converters Version/Issue: 9/0
• When reading objects, an empty object must be created before any de-serialization
can take place. The constructor must be called. This functionality does not imply any
knowledge of the conversion mechanism itself and hence can be encapsulated into an
object factory simply returning a DataObject. These data object factories are
distinguished within Gaudi through the persistent data type information, the class
ID. For this reason the class ID of objects, which are written must only depend on the
object type, i.e. every class needs it's own class ID. The instantiation of the
appropriate factory is done by a macro. Please see the RootIO example for details
how to instantiate the factory.

13.8 Storing Data using other I/O Engines

Once objects are stored as BLOBs, it is possible to adopt any storage technology supporting
this datatype. This is the case not only for ROOT, but also for

• Objectivity/DB

• most relational databases, which support an ODBC interface like

• Microsoft Access,

• Microsoft SQL Server,

• MySQL,

• ORACLE and others.

Note that although storing objects using these technologies is possible, there is currently no
experiment wide policy on how to use Objectivity or other client server based technologies.
For this reason only the example to store data using Microsoft Access is described in the
example RootIOExample. All other technologies are currenly not supported. If you
desperately want to use SQL Server, MySQL or Objectivity, please contact Markus Frank
(Markus.Frank@cern.ch).
page 160

mailto:Markus.Frank@cern.ch

Gaudi Users Guide
Chapter 14 Scripting and Interactivity Version/Issue: 9/0
Chapter 14

Scripting and Interactivity

14.1 Overview

A scripting capability has been added to the Gaudi framework. The current functionality is
likely to change rapidly, so users should check with the latest release notes for changes or new
functionality that might not be documented here.

In keeping with the design philosophy of the Gaudi architecture, scripting is defined by an
abstract scripting service interface, with the possibility of there being several different
implementations. The first implementation available is based on Python, a public-domain
programming language. Python is ideal both as a scripting interface for modern systems, and
as a standalone rapid-development language. Its object-oriented nature mixes well with
frameworks written in C++.

The Python scripting language will not be described in detail here. There are many Python
books available, among them we recommend:

• Learning Python, by M. Lutz & D. Ascher, O’Reilly, 1999

• Programming Python (2nd ed.), by M. Lutz, O’Reilly, 2001

14.2 How to enable Python scripting

Three different mechanisms are available for enabling Python scripting.

1. Replace the job options text file by a Python script that is specified on the command
line.

2. Use a job options text file which hands control over to the Python shell once the initial
configuration has been established.

3. Load and start a Gaudi application from a Python shell.
 page 161

Gaudi Users Guide
Chapter 14 Scripting and Interactivity Version/Issue: 9/0
14.2.1 Using a Python script for configuration and control

One can avoid using a job options text file for configuration by specifying a Python script as a
command line argument, as shown in Listing 14.1.

This approach may be used in two modes. The first uses such a script to establish the
configuration, but results in the job being left at the Python shell prompt. This supports
interactive sessions. The second specifies a complete configuration and control sequence and
thus supports a batch style of processing. The particular mode is controlled by the presence or
absence of Gaudi-specific Python commands described in Section 14.3.6.

14.2.2 Using a text JobOptions file and giving control to the Python interactive shell

Python scripting is enabled when using a job options text file for job configuration by adding
the lines shown in Listing 14.2 to the job options file.

Once the initial configuration has been established by the job options text file, control will be
handed over to the Python shell when the startup script, if specified, will be executed. The
user can then issue interactive commands.

14.2.3 Starting a Gaudi application from the Python shell

It is also possible to bootstrap a Gaudi application directly from a Python shell. The user
needs to import the Python extension module called gaudimodule, which allows the interaction
with Gaudi from Python. Listing 14.3 shows a small Python program that instantiates a Gaudi

Listing 14.1 Using a Python script for job configuration

myjob MyPythonScript.py [1]

Note:

1. The file extension .py is used to identify the job options file as a Python script. All
other extensions are assumed to be job options text files.

Listing 14.2 Job Options text file entries to enable Python scripting

ApplicationMgr.DLLs += { "GaudiPython" }; [1]
ApplicationMgr.Runable = "PythonScriptingSvc"; [2]
PythonScriptingSvc.StartupScript = "../options/AnalysisTest.py"; [3]

Notes:

1. This entry specifies the component library that implements Python scripting.

2. This entry specifies that the Python scripting should take the control (runable) of
the application.

3. Optional startup python script.
page 162

Gaudi Users Guide
Chapter 14 Scripting and Interactivity Version/Issue: 9/0
application, configure it and runs for a number of events. This program would work from the
Python shell a long as the environment (LD_LIBRARY_PATH/PATH) is properly set up.

14.3 Current functionality

The current functionality is limited to the following capabilities:

1. The ability to set and get basic properties for all framework components (Algorithms,
Services, Auditors etc.) and the main ApplicationMgr that controls the application.
Arrays of simple properties are mapped into Python Lists.

2. The ability to interact with the transient data stores. Browsing store contents,
registering, unregistering and retrieving objects, getting and setting object data
members (with the help of the IntrospectionSvc) and limited method invocation.

3. The ability to interact with the Histograms (1D and 2D) in the transient store. This
includes booking, filling, dumping contents, etc.

4. The ability to add new services and component libraries and access their capabilities.

5. The ability to control the execution of the application by adding Algorithms into the
list of top level Algorithms, executing single events or a set of events, executing
single Algorithms, etc.

6. The ability to define Python Algorithms that will be managed and scheduled as
normal Gaudi Algorithms.

14.3.1 Property manipulation

An example of the use of the scripting language to display and set component properties is
shown in Listing 14.4:

Listing 14.3 Example of a Python program that executes a Gaudi program

from gaudimodule import *
theApp = AppMgr()
theApp.JobOptionsType = ’NONE’
theApp.EvtSel = ’NONE’
theApp.config()
theApp.Dlls = [’GaudiAlg’]
myseq = theApp.algorithm(’Sequencer/MySeq’)
myseq.Members = [’EventCounter/Count1’, ’EventCounter/Count2’]
theApp.topAlg = [’MySeq’]
theApp.initialize()
theApp.run(10)
theApp.exit()
 page 163

Gaudi Users Guide
Chapter 14 Scripting and Interactivity Version/Issue: 9/0
14.3.2 Creating Algorithms and Services

It is possible to create new Algorithms or Services as a result of a scripting command.
Examples of this are shown in Listing 14.5:

If the specified Algorithm or Service does not exist, it is created. Its properties can
immediately be accessed for read and write. They will be initialized when the application will
start processing events.

Listing 14.4 Property manipulation from the Python interactive shell

>>> theApp [1][2]
<AppMgr object at 00AD22E8>
>>> theApp.ExtSvc [3]
[’IntrospectionSvc’, ’ParticlePropertySvc’]
>>> theApp.ExtSvc = theApp.ExtSvc + [’AnotherSvc’] [4]
>>> theApp.ExtSvc
[’IntrospectionSvc’, ’ParticlePropertySvc’, ’AnotherSvc’]
>>> theApp.EvtMax = 100
>>> theApp.properties() [5]
{’EvtMax’: 100, ’JobOptionsType’: ’NONE’, ’TopAlg’: [’seq1’, ’PhysAnalAlg’],
’Go’: 0, ’Exit’: 0, ’Dlls’: [’GaudiAlg’, ’GaudiIntrospection’],
’JobOptionsPath’: ’..\\home\\test.py’, ’OutStream’: [], ’OutputLevel’: 3,
’EventLoop’: ’EventLoopMgr’, ’HistogramPersistency’: ’NONE’, ’EvtSel’:
’NONE’, ’ExtSvc’: [’IntrospectionSvc’, ’ParticlePropertySvc’, ’AnotherSvc’],
’Runable’: ’PythonScriptingSvc’}
>>> theApp.algorithms() [6]
[’seq1’, ’WriteAlg’, ’PhysAnalAlg’]
>>> alg = Algorithm(’WriteAlg’) [7]
>>> alg.properties()
{’ErrorCount’: 0, ’OutputLevel’: 0, ’AuditExecute’: 1, ’AuditInitialize’: 0,
’Enable’: 1, ’AuditFinalize’: 0, ’ErrorMax’: 1}

Notes:

1. The ">>>" is the Python shell prompt. Typing the name of a variable, Python prints
its value in textual form.

2. The variable theApp is always defined and it represents the ApplicationMgr. An
alias g has also been defined.

3. The name of the property is used as a data member in Python. It returns the correct
type directly.

4. You can use the properties in normal Python expressions

5. The list of all properties (as a Python Dictionary) of a component can be obtained
with the method properties().

6. The list of algorithms can be obtained with the method algorithms().

7. To access an Algorithm by name (creating it if it does not exist) the constructor
Algorithm() is used. Similarly for services with Service().
page 164

Gaudi Users Guide
Chapter 14 Scripting and Interactivity Version/Issue: 9/0
14.3.3 Interaction with Transient Data Stores

It is possible to get the list of data stores and to interact with them. The following commands
are available:

theApp.datastores()

Returns the list of all available data stores (all services that implement the
IDataProviderSvc interface).

theApp.datastore(name)

Returns a generic data store.

theApp.histoSvc()

Returns the standard histogram data service (“HistogramDataSvc”)

theApp.evtSvc()

Returns the standard event data service (“EventDataSvc”)

theApp.detSvc()

Returns the standard detector data service (“DetectorDataSvc”)

theApp.ntupleSvc()

Returns the standard ntuple data service (“NTupleSvc”)

datastore.dump()

Prints the contents of the transient data store (names and types)

datastore.clear()

Clears the contents of the transient data store

datastore.object(name), datastore[name], datastore.retrieve(name)

Retrieves the named object from the transient data store. If the IntrospectionSvc1
is loaded and the dictionaries are available for the requested object then it creates
an object that can be introspected.

datastore.register(name, obj), datastore.unregister(name)

Registers and unregisters an object to/from the data store

Listing 14.5 Examples of Python commands that create new Algorithms or Services

>>> myseq = theApp.algorithm(’Sequencer/MySeq’)
>>> myseq.members = [’HelloWorld’, ’WriteAlg’]
MySeq INFO HelloWorld doesn’t exist - created and
 appended to member list
MySeq INFO WriteAlg already exists - appended to member list
>>> theApp.topAlg = [’MySeq’]
>>> g.run(1)
HelloWorld INFO initializing....
HelloWorld INFO executing....
WriteAlg INFO Generated event 5
StatusCode::SUCCESS

1. See Section 11.11 on page 135
 page 165

Gaudi Users Guide
Chapter 14 Scripting and Interactivity Version/Issue: 9/0
datastore.clear(),datastore.clear(name)

Clears the whole store or a sub-tree.

A complete example of the capabilities on the interaction with the event transient store is
shown in Listing 14.6.

14.3.4 Interaction with Histograms

The data store commands described in the previous section are also available for the
histogram data store. The following histogram specific commands are available in addition:

histosvc.histo(name), histosvc[name]

Retrieves the histogram from the histogram data store. It returns either an 1D or
2D histogram.

histosvc.book(id, title, xbin, xmin, xmax [,ybin, ymin, ymax])

Books 1D or 2D histogram and registers it in the histogram store.

histo.title(), dim(), mean(), rms(), maxbin(), minbin()

Returns the title, dimensions, mean, rms, maximum bin contents, minimum bin
contents of the histogram

histo.fill(x [,y,w]), histo.reset()

Fills 1D or 2D histogram, resets the contents

histo.heights(), entries(), errors(), edges()

Returns in a Python list the heights, entries, errors and edges of the 1D histogram

histo.projections()

Returns X and Y projections (tuple) of a 2D histogram

14.3.5 Interaction with Data Objects

If the dictionaries of the classes have been loaded by the object introspection service, then it is
possible to browse and interact with the data objects in the transient store. Loading the
dictionaries is done by configuring the application as it is shown in Listing 14.7

Listing 14.6 Example of interaction with the event transient store taken from LHCb

evt = theApp.evtSvc()
evt.dump()
parts = evt[’/Event/MC/MCParticles’]
for p in parts :
 print p.particleID.id

Listing 14.7 Configuring the Gaudi Introspection Service using the JobOptions text file

ApplicationMgr.DLLs += { "GaudiIntrospection"};
ApplicationMgr.ExtSvc += { "IntrospectionSvc" };
IntrospectionSvc.Dictionaries = { "LHCbEventDict", "PhysEventDict" };
page 166

Gaudi Users Guide
Chapter 14 Scripting and Interactivity Version/Issue: 9/0
The following commands are currently available:

obj.<attribute>

Returns the value of the attribute for the object. If the attribute is of a complex
type it returns a reference to it, such that it can be browsed recursively.

obj.<attribute> = value

Sets the value of attribute for the object if this is a simple type.

obj.<method>()

Invokes the class method. This is currently only available for methods without
arguments.

obj.values()

Returns a Python dictionary with all the attributes and their values.

obj.names()

Returns a Python list with all the available attribute names.

obj.desc()

Prints the description of the class of the object.

obj.type()

Returns the object type (C++ class)

14.3.6 Controlling job execution

There exist a few commands to control the job execution interactively:

theApp.run(number)

The control is returned from the Python shell to the Gaudi environment with this
command. The argument is the number (-1 for infinite) of events to be processed,
after which control will be returned to the Python shell.

theApp.exit()

Typing Ctrl-D (or Ctrl-Z in Windows) at the Python shell prompt will cause an
orderly termination of the job. Alternatively, this command will also cause an
orderly application termination.

14.4 Physics Analysis Environment

It is possible to declare an Algorithm in Python that can be declared to the list of top level
algorithms to be executed for each event by the ApplicationMgr. This can be useful for
constructing an interactive physics analysis environment. An example is shown in Listing
14.8.
 page 167

Gaudi Users Guide
Chapter 14 Scripting and Interactivity Version/Issue: 9/0
Listing 14.8 Example Analysis

-- User analysis algortihm class
class PhysAnalAlg(PyAlgorithm): [1]
def initialize(self):
 global h1
 h1 = his.book(’h1’,’Histogram Test’, 10, 0., 10.)
 print '....User Analysis Initialized'
 return 1
def finalize(self):
 print 'Finalizing User Analysis...'
 return 1
def execute(self)
 cands = evt['Anal/AxPartCandidates']
 print 'Found '+ `len(cands)` + ' candidates'
 for c in cands :
 h1.fill(c.momentum)
 return 1

-- Initialization and Configuration
his = theApp.histoSvc() [2]
evt = theApp.evtSvc()
det = theApp.detSvc()
pdt = PartSvc()
physalg = PhysAnalAlg(theApp,'PhysAnalAlg') [3]
theApp.topAlg = theApp.topAlg + ['PhysAnalAlg']

Notes:

1. The analysis algorithm must inherit from the class PyAlgorithm

2. Useful variables to avoid long typing

3. An instance of the new class needs to be instantiated and declared in the list of top
level algorithms.
page 168

Gaudi Users Guide
Chapter 15 Visualization Facilities Version/Issue: 9/0
Chapter 15

Visualization Facilities

15.1 Overview

In this chapter we describe how visualization facilities are provided to the applications based
on the Gaudi framework. We present how we interface the physics event data objects, detector
components or statistical objects to their graphical representation. One example of an
application that uses the visualization services is an event display program. With this
program we display graphically the event data from files or being acquired by the data
acquisition. Another example could be an interactive analysis program that combines in the
same application histogramming or manipulation of statistical entities, event display, and full
interactive control by the end user of the data objects and algorithms of the application.

In the current release we have implemented the mechanism of converting event and detector
objects into their graphical representation and built an event display application (Panoramix).
This application can be used to help in the development of physics algorithms (e.g. pattern
recognition) or in the verification of the detector geometry.

15.2 The data visualization model

The Gaudi architecture envisaged implementing data visualization using a similar pattern to
data persistency. We do not want to implement visualization methods in each data object. In
other words, we do not want to tell an object to “draw” itself. Instead we would implement
converters as separate entities that are able to create specific graphical representations for each
type of data object and for each graphical package that we would like to use. In that way, as
for the persistency case, we decouple the definition and behaviour of the data objects from the
various technologies for graphics. We could configure at run time to have 2D or 3D graphics
depending on the needs of the end-user at that moment.

Figure 15.1 illustrates the components that need to be included in an application to make it
capable of visualizing data objects. The interactive user interface is a Service which allows the
 page 169

Gaudi Users Guide
Chapter 15 Visualization Facilities Version/Issue: 9/0
end-user to interact with all the components of the application. The user could select which
objects to display, which algorithms to run, what properties of which algorithm to inspect and
modify, etc. This interaction can be implemented using a graphical user interface or by using a
scripting language.

The User interface service is also in charge of managing one or more GUI windows where
views of the graphical representations are going to be displayed.

The other main component is a Conversion Service that handles the conversion of objects into
their graphical representation. This service requires the help of a number of specialized
converters, one for each type of data object that needs to be graphically displayed. The
transient store of graphical representations is shared by the conversion service, together with
the converters, and the user interface component. The form of this transient store depends on
the choice of graphics package. Typically it is the user interface component that would trigger
the conversion service to start the conversion of a number of objects (next event), but this
service can also be triggered by any algorithm that would like to display some objects.

15.3 VisSys - the Gaudi visualisation services

15.3.1 Design layout

The Gaudi Visualisation service (OnXSvc) uses the OnX(ML) package to drive interactivity.
From an XML description of the graphical user interface (GUI), OnX creates an application
GUI by using various "toolkits" like Motif, Win32, GTK+. It permits also to handle various
scripting languages (currently tcl, CINT, KUIP) in the GUI XML files, to describe the
behaviour of the GUI pieces.

The graphics are handled by Open Inventor. The Inventor "viewers", being part of the GUI,
are created by OnX from a placement in the application GUI XML files.

Figure 15.1 Components for visualization

[[/DE6YF

6R&QY6YF
7UDQVLHQW

(YHQW�'DWD

6R;;&QY6R;;&QY6R;;&QY6R;;&QY

7UDQVLHQW
'HWHFWRU�'DWD

*UDSKLFDO
6FHQH

,QWHUDFWLYH

8VHU�,QWHUIDFH
page 170

Gaudi Users Guide
Chapter 15 Visualization Facilities Version/Issue: 9/0
Connection to Gaudi is done through the wrapping of Gaudi C++ code to scripting languages
(Panoramix package).

Inventor modeling of the LHCb detector and event data uses Gaudi Inventor converters (the
So<xxx>Cnv classes, SoLHCb package) to produce Inventor scene graphs.

The SoDetElemCnv and SoLVolumeCnv build the Inventor scene graph for the detector.
Others (such as SoMCParticleCnv) build Inventor scene graphs for event data.

15.3.2 Writing graphic converters

The role of each converter So<xxx>Cnv is to produce an Open Inventor node that represents
the object. The following fragment of code shows how this is done for the geometry of a
detector element.The code has been simplified to be more illustrative. The 3D graphical
objects that are created are standard OpenInventor objects (in bold).

Listing 15.1 Fragment of SoDetectorElementCnv

30: StatusCode SoDetElemCnv::createRep(DataObject* aObject,IOpaqueAddress&*)
31: {
32: DetectorElement* de = dynamic_cast<DetectorElement*>(aObject);
33: ILVolume* lv = de->geometry()->lvolume();
34: SolidBox* box = dynamic_cast<SolidBox*>(lv->solid()->coverTop());
35:
36: SoSeparator* separator = new SoSeparator;
37: SoDrawStyle* drawStyle = new SoDrawStyle;
38: SoMaterial* material = new SoMaterial;
39: separator->addChild(drawStyle);
40: separator->addChild(material);
41: // set drawing styles
42: drawStyle->style.setValue(SoDrawStyle::LINES);
43: drawStyle->linePattern.setValue(0xFFFF);
44: material->diffuseColor.setValue(SbColor(0.,1.,0.));
45:
46: // Code related to the transformation
47: SoTransform* trans = new SoTransform;
48: ...
49: separator->addChild(trans);
50:
51: SoCube* cube = new SoCube();
52: cube->width = box->xHalfLength() * 2;
53: cube->height = box->yHalfLength() * 2;
54: cube->depth = box->zHalfLength() * 2;
55:
56: separator->addChild(cube);
57: m_pSo->addNode(separator);
58: return StatusCode::SUCCESS;
59: }
 page 171

Gaudi Users Guide
Chapter 15 Visualization Facilities Version/Issue: 9/0
15.4 Panoramix - the LHCb event display

Panoramix is the association of the three packages Vis/OnXSvc, Vis/SoLHCb,
Vis/Panoramix, and of sub-detector converter packages (Vis/So<Det>) to produce an
interactive event and geometry display for LHCb. Detailed instructions for its installation and
use can be found in the Visualisation pages of the LHCb web, at
http://cern.ch/lhcb-comp/Frameworks/Visualization/.
page 172

http://cern.ch/lhcb-comp/Frameworks/Visualization/

Gaudi Users Guide
Chapter 16 Framework packages, interfaces and libraries Version/Issue: 9/0
Chapter 16

Framework packages, interfaces and
libraries

16.1 Overview

It is clearly important to decompose large software systems into hierarchies of smaller and
more manageable entities. This decomposition can have important consequences for
implementation related issues, such as compile-time and link dependencies, configuration
management, etc. A package is the grouping of related components into a cohesive physical
entity. A package is also the minimal unit of software release.

In this chapter we describe the Gaudi package structure, and how these packages are
implemented in libraries. We also discuss abstract inerfaces, which are one of the main design
features of Gaudi

16.2 Gaudi Package Structure

The Gaudi software is decomposed into the packages shown in Figure 16.1.

At the lower level we find GaudiKernel, which is the framework itself, and whose only
dependency is on the GaudiPolicy package, which contains the various flags defining the
CMT [7] configuration management environment needed to build the Gaudi software. At the
next level are the packages containing standard framework components (GaudiSvc,
GaudiDb, GaudiTools, GaudiAlg, GaudiAud,GaudiIntrospection), which depend on
the framework and on widely available foundation libraries such as CLHEP and HTL. These
external libraries are accessed via CMT interface packages which use environment variables
defined in the ExternalLibs package, which should be tailored to the software installation
at a given site. All the above packages are grouped into the GaudiSys set of packages which
are the minimal set required for a complete Gaudi installation
 page 173

Gaudi Users Guide
Chapter 16 Framework packages, interfaces and libraries Version/Issue: 9/0
The remaining packages are optional packages which can be used according to the specific
technology choices for a given application. In this distribution, there are two specific
implementations of the histogram persistency service, based on HBOOK (HbookCnv) and
ROOT (RootHistCnv) and two implementations of the event data persistency service
(GaudiRootDb and GaudiODBCDb) which understand ROOT and ODBC compliant
databases respecively. There is also a scripting service (GaudiPython) depending on the
Python scripting language and a data description service (GaudiObjDesc) based on the
Xerces XML parser. Finally, at the top level we find the applications (GaudiExamples) which
depend on GaudiSys and the scripting and persistency services.

In addition to the Gaudi packages, there are a number of LHCb specific packages built on top
of Gaudi, as shown in Figure 16.2. DetDesc gives access to the detector description data
stored in XML files in the XmlDDDB package; these files can be edited with the XmlEditor.
DetCond is a prototype implementation of a conditions database based on Objectivity. The
LHCbEvent package contains the LHCb event data model. The event data is populated from
SICB files via converters (SicbCnv package). The SicbCnv converters depend on some of the
Fortran packages of SICB (in particular Futio and Finclude) and give access to certain
SICB facilities, such as the magnetic field. The GiGa package interfaces Gaudi to GEANT4.
Finally, there is a large number of examples, each of which has its own package.

Figure 16.1 Package structure of the Gaudi software

*DXGL�)UDPHZRUNExternal package

Gaudi Package dependency
External Package dependency

Gaudi package *DXGL([DPSOHV
�DSSOLFDWLRQV�

*DXGL6\V

*DXGL
5RRW'E

�SHUVLVWHQF\�

*DXGL
.HUQHO

�IRXQGDWLRQV�

+7/&/+(3*DXGL3ROLF\
�FRQILJXUDWLRQ�

([WHUQDO/LEV �FRQILJXUDWLRQ�

5227

5RRW+LVW
&QY

�FRQYHUWHUV�2'%&

*DXGL
2'%&'E
�SHUVLVWHQF\�

&HUQ/LE

+ERRN&QY
�FRQYHUWHUV�

*DXGL
3\WKRQ
�VFULSWLQJ�

3\WKRQ

%RRVW

*DXGL
,QWURVSHFWLRQ
�GDWD�GHVFULSWLRQ�

*DXGL2EM'HVF
�GDWD�GHVFULSWLRQ�

;HUFHV

*DXGL$XG
�PRQLWRULQJ�

*DXGL$OJ
�DOJRULWKPV�

*DXGL7RROV
�WRROV�

*DXGL'E
�SHUVLVWHQF\�

$,'$

*DXGL6YF
�VHUYLFHV�
page 174

Gaudi Users Guide
Chapter 16 Framework packages, interfaces and libraries Version/Issue: 9/0
16.2.1 Gaudi Package Layout

Figure 16.3 shows the layout for Gaudi packages. Note that the binaries directories are not in
CVS, they are created by CMT when building a package.

16.2.2 Packaging Guidelines

Packaging is an important architectural issue for the Gaudi framework, but also for the
experiment specific software packages based on Gaudi. Typically, experiment packages
consist of:

• Specific event model

• Specific detector description

• Sets of algorithms (digitisation, reconstruction, etc.)

The packaging should be such as to minimise the dependencies between packages, and must
absolutely avoid cyclic dependencies. The granularity should not be too small or too big. Care
should be taken to identify the external interfaces of packages: if the same interfaces are
shared by many packages, they should be promoted to a more basic package that the others
would then depend on. It is a good idea to discuss your packaging with the librarian and/or
architect.

Figure 16.2 Package structure of the LHCb Gaudi software

/+&E�)UDPHZRUN

;PO(GLWRU
�DSSOLFDWLRQ�

6LFE&QY
�FRQYHUWHUV�

)RUWUDQ*($17�

;PO'''%
�GDWDEDVH�

([DPSOHV �DSSOLFDWLRQV�

'HW'HVF

/+&E(YHQW
�GDWD�PRGHO� *DXGL)UDPHZRUNExternal package

Gaudi Package dependency
External Package dependency

Gaudi package *DXGL([DPSOHV
�DSSOLFDWLRQV�

*DXGL6\V

*DXGL
5RRW'E

�SHUVLVWHQF\�

*DXGL
.HUQHO

�IRXQGDWLRQV�

+7/&/+(3*DXGL3ROLF\
�FRQILJXUDWLRQ�

([WHUQDO/LEV �FRQILJXUDWLRQ�

5227

5RRW+LVW
&QY

�FRQYHUWHUV�2'%&

*DXGL
2'%&'E

�SHUVLVWHQF\�

&HUQ/LE

+ERRN&QY
�FRQYHUWHUV�

*DXGL
3\WKRQ

�VFULSWLQJ�

3\WKRQ

%RRVW

*DXGL
,QWURVSHFWLRQ

�GDWD�GHVFULSWLRQ�

*DXGL2EM'HVF
�GDWD�GHVFULSWLRQ�

;HUFHV

*DXGL$XG
�PRQLWRULQJ�

*DXGL$OJ
�DOJRULWKPV�

*DXGL7RROV
�WRROV�

*DXGL'E
�SHUVLVWHQF\�

$,'$

*DXGL6YF
�VHUYLFHV�

2%-<

*L*D
�VHUYLFHV�

'HW&RQG
 page 175

Gaudi Users Guide
Chapter 16 Framework packages, interfaces and libraries Version/Issue: 9/0
16.3 Interfaces in Gaudi

One of the main design choices at the architecture level in Gaudi was to favour abstract
interfaces when building collaborations of various classes. This is the way we best decouple
the client of a class from its real implementation.

An abstract interface in C++ is a class where all the methods are pure virtual. We have defined
some practical guidelines for defining interfaces. An example is shown in Listing 16.1:

From this example we can make the following observations:

• Interface Naming. The name of the class has to start with capital “I” to denote that it
is an interface.

• Derived from IInterface. We follow the convention that all interfaces should be
derived from a basic interface IInterface. This interface defined 3 methods:
addRef(), release() and queryInterface(). This methods allow the
framework to manage the reference counting of the framework components and the
possibility to obtain a different interface of a component using any interface (see
Section 16.3.2).

Figure 16.3 Layout of Gaudi software packages

SDFN$

Y� Y�U� Y�

FPW VUF GRF UK��BJFF
����GE[

SDFN$

�3$&.$5227

9HUVLRQ
QXPEHU

ELQDULHV
LQWHUQDO�LQFOXGH
ILOHV�DQG�VRXUFH
FRGH��$YRLG�PDQ\
OHYHOV�

H[WHUQDO�LQFOXGH�ILOHV
#include “packA/xxx.h”
$YRLG�PDQ\�OHYHOV�

. . .UK��B
JFF����

:LQ��
'HEXJ
page 176

Gaudi Users Guide
Chapter 16 Framework packages, interfaces and libraries Version/Issue: 9/0
• Pure Abstract Methods. All the methods should be pure abstract (virtual
ReturnType method(...) = 0;) With the exception of the static method
interfaceID() (see later) and some inline templated methods to facilitate the use
of the interface by the end-user.

• Interface ID. Each interface should have a unique identification (see Section 16.3.1)
used by the query interface mechanism.

16.3.1 Interface ID

We needed to introduce an interface ID for identifying interfaces for the queryInterface
functionality. The interface ID is made of a numerical identifier (generated from the interface
name by a hash function) and major and minor version numbers. The version number is used
to decide if the interface the service provider is returning is compatible with the interface the
client is expecting. The rules for deciding if the interface request is compatible are:

• The interface identifier is the same

• The major version is the same

Listing 16.1 Example of an abstract interface (IService)

1: // $Header: $
2: #ifndef GAUDIKERNEL_ISERVICE_H
3: #define GAUDIKERNEL_ISERVICE_H
4:
5: // Include files
6: #include "GaudiKernel/IInterface.h"
7: #include <string>
8:
9: // Declaration of the interface ID. (id, major, minor)
10: static const InterfaceID IID_IService(2, 1, 0);
11:
12: /** @class IService IService.h GaudiKernel/IService.h
13:
14: General service interface definition
15:
16: @author Pere Mato
17: */
18: class IService : virtual public IInterface {
19: public:
20: /// Retrieve name of the service
21: virtual const std::string& name() const = 0;
22: /// Retrieve ID of the Service. Not really used.
23: virtual const IID& type() const = 0;
24: /// Initilize Service
25: virtual StatusCode initialize() = 0;
26: /// Finalize Service
27: virtual StatusCode finalize() = 0;
28: /// Retrieve interface ID
29: static const InterfaceID& interfaceID() { return IID_IService; }
30: };
31:
32: #endif // GAUDIKERNEL_ISERVICE_H
 page 177

Gaudi Users Guide
Chapter 16 Framework packages, interfaces and libraries Version/Issue: 9/0
• The minor version of the client is less than or equal to the one of the service provider.
This allows the service provider to add functionality (incrementing minor version
number) keeping old clients still compatible.

The interface ID is defined in the same header file as the rest of the interface. Care should be
taken of globally allocating the interface identifier (by giving a unique name to the
constructor), and of modifying the version whenever a change of the interface is required,
according to the rules. Of course changes to interfaces should be minimized.

The static method Ixxx::interfaceID() is useful for the implementation of templated
methods and classes using an interface as template parameter. The construct
T::interfaceID() returns the interface ID of interface T.

16.3.2 Query Interface

The method queryInterface() is used to request a reference to an interface implemented
by a component within the Gaudi framework. This method is implemented by each
component class of the framework and allows us to navigate from one interface of a
component to another, as shown for example in Listing 16.2, where we navigate from the
IMessageSvc interface of the message service to its IProperty interface, in order to
discover the value of its "OutputLevel" property.

The implementation of queryInterface() is usually not very visible since it is done in the
base class from which you inherit. A typical implementation is shown in Listing 16.3:

The implementation returns the corresponding interface pointer if there is a match between
the received InterfaceID and the implemented one. The method versionMatch() takes
into account the rules mentioned in Section 16.3.1.

If the requested interface is not recognized at this level (line 9), the call can be forwarded to
the inherited base class or possible sub-components of this component.

static const InterfaceID IID_Ixxx("Ixxx" /*id*/, 1 /*major*/, 0 /*minor*/);

class Ixxx : public IInterface {
 . . .
 static const InterfaceID& interfaceID() { return IID_Ixxx; }
};

Listing 16.2 Example usage of queryInterface to navigate between interfaces

1: IMessageSvc* msgSvc();
2: ...
3: IProperty* msgProp;
4: msgSvc()->queryInterface(IID_IProperty, (void**)&msgProp);
5: std::string dfltLevel;
6: StatusCode scl = msgProp->getProperty("OutputLevel", dfltLevel);
page 178

Gaudi Users Guide
Chapter 16 Framework packages, interfaces and libraries Version/Issue: 9/0
16.4 Libraries in Gaudi

Two different sorts of library can be identified that are relevant to the framework. These are component
libraries, and linker libraries. These libraries are used for different purposes and are built in different
ways.

16.4.1 Component libraries

Component libraries are shared libraries that contain standard framework components which implement
abstract interfaces. Such components are Algorithms, Auditors, Services, Tools or Converters. These
libraries do not export their symbols apart from one which is used by the framework to discover what
components are contained by the library. Thus component libraries should not be linked against, they
are used purely at run-time, being loaded dynamically upon request, the configuration being specified
by the job options file. Changes in the implementation of a component library do not require the
application to be relinked.

Component libraries contain factories for their components, and it is important that the factory entries
are declared and loaded correctly. The following sections describe how this is done.

When a component library is loaded, the framework attempts to locate a single entrypoint, called
getFactoryEntries(). This is expected to declare and load the component factories from the
library. Several macros are available to simplify the declaration and loading of the components via this
function.

Consider a simple package MyComponents, that declares and defines the MyAlgorithm class,
being a subclass of Algorithm, and the MyService class, being a subclass of Service. Thus the
package will contain the header and implementation files for these classes (MyAlgorithm.h,
MyAlgorithm.cpp, MyService.h and MyService.cpp) in addition to whatever other files
are necessary for the correct functioning of these components.

In order to satisfy the requirements of a component library, two additional files must also be present in
the package. One is used to declare the components, the other to load them. Because of the technical

Listing 16.3 Example implementation of queryInterface()

1: StatusCode DataSvc::queryInterface(const InterfaceID& riid,
2: void** ppvInterface) {
3: if (IID_IDataProviderSvc.versionMatch(riid)) {
4: *ppvInterface = (IDataProviderSvc*)this;
5: }
6: else if (IID_IDataManagerSvc.versionMatch(riid)) {
7: *ppvInterface = (IDataManagerSvc*)this;
8: }
9: else {
10: return Service::queryInterface(riid, ppvInterface);
11: }
12: addRef();
13: return SUCCESS;
14: }
 page 179

Gaudi Users Guide
Chapter 16 Framework packages, interfaces and libraries Version/Issue: 9/0
limitations inherent in the use of shared libraries, it is important that these two files remain separate,
and that no attempt is made to combine their contents into a single file.

The names of these files and their contents are described in the following sections.

16.4.1.1 Declaring Components

Components within the component library are declared in a file MyComponents_load.cpp. By
convention, the name of this file is the package name concatenated with _load. The contents of this
file are shown below:

16.4.1.2 Component declaration statements

The complete set of statements that are available for declaring components is given below. They
include those that support C++ classes in different namespaces, as well as for DataObjects or
ContainedObjects using the generic converters.

Listing 16.4 The MyComponents_load.cpp file

#include "GaudiKernel/DeclareFactoryEntries.h"

DECLARE_FACTORY_ENTRIES(MyComponents) { [1]
 DECLARE_ALGORITHM(MyAlgorithm); [2]
 DECLARE_SERVICE (MyService);
}

Notes:

1. The argument to the DECLARE_FACTORY_ENTRIES statement is the name of the
component library.

2. Each component within the library should be declared using one of the DECLARE_XXX
statements discussed in detail in the next Section.

Listing 16.5 The available component declaration statements

DECLARE_ALGORITHM(X)
DECLARE_AUDITOR(X)
DECLARE_CONVERTER(X)
DECLARE_GENERIC_CONVERTER(X) [1]
DECLARE_OBJECT(X)
DECLARE_SERVICE(X)

DECLARE_NAMESPACE_ALGORITHM(N,X) [2]
DECLARE_NAMESPACE_AUDITOR(N,X)
DECLARE_NAMESPACE_CONVERTER(N,X)
DECLARE_NAMESPACE_GENERIC_CONVERTER(N,X)
DECLARE_NAMESPACE_OBJECT(N,X)
DECLARE_NAMESPACE_SERVICE(N,X)
page 180

Gaudi Users Guide
Chapter 16 Framework packages, interfaces and libraries Version/Issue: 9/0
16.4.1.3 Loading Components

Components within the component library are loaded in a file MyComponents_dll.cpp. By
convention, the name of this file is the package name concatenated with _dll. The contents of this file
are shown below:

16.4.1.4 Specifying component libraries at run-time

The fragment of the job options file that specifies the component library at run-time is shown below.

The convention in Gaudi is that component libraries have the same name as the package they
belong to (prefixed by "lib" on Linux). When trying to load a component library, the
framework will look for it in various places following this sequence:

Notes:

1. Declarations of the form DECLARE_GENERIC_CONVERTER(X) are used to declare the
generic converters for DataObject and ContainedObject classes. For
DataObject classes, the argument should be the class name itself (e.g. EventHeader),
whereas for ContainedObject classes, the argument should be the class name
concatenated with either List or Vector (e.g. CellVector) depending on whether the
objects are associated with an ObjectList or ObjectVector.

2. Declarations of this form are used to declare components from explicit C++ namespaces.
The first argument is the namespace (e.g. Atlfast), the second is the class name (e.g.
CellMaker).

Listing 16.5 The available component declaration statements

Listing 16.6 The MyComponents_dll.cpp file

#include "GaudiKernel/LoadFactoryEntries.h"

LOAD_FACTORY_ENTRIES(MyComponents) [1]

Notes:

1. The argument of LOAD_FACTORY_ENTRIES is the name of the component library.

Listing 16.7 Selecting and running the desired tutorial example

ApplicationMgr.DLLs += { "MyComponents" }; [1]

Notes:

1. This is a list property, allowing multiple such libraries to be specified in a single line.

2. It is important to use the “+=” syntax to append the new component library or libraries to
any that might already have been configured.
 page 181

Gaudi Users Guide
Chapter 16 Framework packages, interfaces and libraries Version/Issue: 9/0
— Look for an environment variable with the name of the package, suffixed by "Shr"
(e.g. ${MyComponentsShr}). If it exists, it should translate to the full name of the
library, without the file type suffix (e.g. ${MyComponentsShr}
="$MYSOFT/MyComponents/v1/i386_linux22/libMyComponents").

— Try to locate the file libMyComponents.so using the LD_LIBRARY_PATH (on
Linux), or MyComponents.dll using the PATH (on Windows).

16.4.2 Linker libraries

These are libraries containing implementation classes. For example, libraries containing code
of a number of base classes or specific classes without abstract interfaces, etc. These libraries,
contrary to the component libraries, export all the symbols and are needed during the linking
phase in the application building. These libraries can be linked to the application "statically" or
"dynamically", requiring a different file format. In the first case the code is added physically to
the executable file. In this case, changes in these libraries require the application to be
re-linked, even if these changes do not affect the interfaces. In the second case, the linker only
adds into the executable minimal information required for loading the library and resolving
the symbols at run time. Locating and loading the proper shareable library at run time is done
exclusively using the LD_LIBRARY_PATH for Linux and PATH for Windows. The convention
in Gaudi is that linker libraries have the same name as the package, suffixed by "Lib" (and
prefixed by "lib" on Linux, e.g. libMyComponentsLib.so).

16.4.3 Library strategy and dual purpose libraries

Because component libraries are not designed to be linked against, it is important to separate the
functionalities of these libraries from linker libraries. For example, consider the case of a DataProvider
service that provides DataObjects for clients. It is important that the declarations and definitions of the
DataObjects be handled by a different shared library than that handling the service itself. This implies
the presence of two different packages - one for the component library, the other for the DataObjects.
Clients should only depend on the second of these packages. Obviously the package handling the
component library will in general also depend on the second package.

It is possible to have dual purpose libraries - ones which are simultaneously component and linker
libraries. In general such libraries will contain DataObjects and ContainedObjects, together with their
converters and associated factories. It is recommended that such dual purpose libraries be separated
from single purpose component or linker libraries. Consider the case where several Algorithms share
the use of several DataObjects (e.g. where one Algorithm creates them and registers them with the
transient event store, and another Algorithm locates them), and also share the use of some helper
classes in order to decode and manipulate the contents of the DataObjects. It is recommended that three
different packages be used for this - one pure component package for the Algorithms, one dual-purpose
for the DataObjects, and one pure linker package for the helper classes.
page 182

Gaudi Users Guide
Chapter 16 Framework packages, interfaces and libraries Version/Issue: 9/0
16.4.4 Building and linking with the libraries

Gaudi libraries and applications are built using CMT taking advantage of the CMT macros
defined in the GaudiPolicy package. As an example, the CMT requirements file of the
GaudiTools package is shown in Listing 16.8. The linker and component libraries are
defined on lines 23 and 26 respectively - the linker library is defined first because it must be
built ahead of the component library. Lines 28 and 34 set up the generic linker options and
flags for the linker library, which are suffixed by the package specific flags set up by line 35.
Line 31 tells CMT to generate the symbols needed for the component library, while line 33 sets
up the corresponding linker flags for the component library. Finally, line 30 updates
LD_LIBRARY_PATH (or PATH on Windows) for this package. In packages with only a
component library and no linker library, line 30 could be replaced by "apply_pattern
packageShr", which would create the logical name required to access the component library
by the first of the two methods described in Section 16.4.1.4.

16.4.5 Linking FORTRAN code

Any library containing FORTRAN code (more specifically, code that references COMMON
blocks) must be linked statically. This is because COMMON blocks are, by definition, static
entities. When mixing C++ code with FORTRAN, it is recommended to build separate
libraries for the C++ and FORTRAN, and to write the code in such a way that communication
between the C++ and FORTRAN worlds is done exclusively via wrappers. This makes it
possible to build shareable libraries for the C++ code, even if it calls FORTRAN code
internally. An example of a wrapper is the class SicbFunctions in the file
src/static/SicbFortran.cpp (SICB/SicbCnv package).

Listing 16.8 CMT requirements file for the GaudiTools package

15: package GaudiTools
16: version v1
17:
18: branches GaudiTools cmt doc src
19: use GaudiKernel v8*
20: include_dirs "$(GAUDITOOLSROOT)"
21:
22: #linker library
23: library GaudiToolsLib ../src/Associator.cpp ../src/IInterface.cpp
24:
25: #component library
26: library GaudiTools ../src/GaudiTools_load.cpp ../src/GaudiTools_dll.cpp
27:
28: apply_pattern package_Llinkopts
29:
30: apply_pattern ld_library_path
31: macro_append GaudiTools_stamps "$(GaudiToolsDir)/GaudiToolsLib.stamp"
32:
33: apply_pattern package_Cshlibflags
34: apply_pattern package_Lshlibflags
35: macro_append GaudiToolsLib_shlibflags $(GaudiKernel_linkopts)
 page 183

Gaudi Users Guide
Chapter 16 Framework packages, interfaces and libraries Version/Issue: 9/0
In cases where the FORTRAN calls are confined to a few well identified C++ algorithms, it
may be more convenient to include the algorithms in the static library, removing the need for
the wrapper class. A good example of this is the SICB/CaloSicbCnv package. The /src
directory contains two subdirectories: /static for code going in the static library (including
all FORTRAN code), and /component for code going in the C++ component library. Note
that in the /cmt/requirements file, the link options explicitly request static linking of the
CaloSicbBackCnv_LoadRef file, in order to statically link the CaloSicbBackCnv
algorithm and all the FORTRAN functions which it calls.
page 184

Gaudi Users Guide
Chapter 17 Analysis utilities Version/Issue: 9/0
Chapter 17

Analysis utilities

17.1 Overview

In this chapter we give pointers to some of the third party software libraries that we use
within Gaudi or recommend for use by algorithms implemented in Gaudi.

17.2 CLHEP

CLHEP (“Class Library for High Energy Physics”) is a set of HEP-specific foundation and
utility classes such as random generators, physics vectors, geometry and linear algebra. It is
structured in a set of packages independent of any external package. The documentation for
CLHEP can be found on WWW at http://wwwinfo.cern.ch/asd/lhc++/clhep/index.html

CLHEP is used extensively inside Gaudi, in the GaudiSvc, GaudiDb and LHCbEvent
packages.

17.3 HTL

HTL ("Histogram Template Library") is used internally in Gaudi (GaudiSvc package) to
provide histogramming functionality. It is accessed through its abstract AIDA[13] compliant
interfaces. Gaudi uses only the transient part of HTL. Histogram persistency is available with
ROOT or HBOOK.

The documentation on HTL is available at http:cern.ch/anaphe/documentation.html.
 page 185

http:cern.ch/anaphe/documentation.html
http://wwwinfo.cern.ch/asd/lhc++/clhep/index.html

Gaudi Users Guide
Chapter 17 Analysis utilities Version/Issue: 9/0
17.4 NAG C

The NAG C library is a commercial mathematical library providing a similar functionality to
the FORTRAN mathlib (part of CERNLIB). It is organised into chapters, each chapter devoted
to a branch of numerical or statistical computation. A full list of the functions is available at
http://cern.ch/anaphe/documentation/Nag_C/NAGdoc/cl/html/mark6.html

NAG C is not explicitly used in the Gaudi framework, but developers are encouraged to use it
for mathematical computations. Instructions for linking NAG C with Gaudi can be found at
http://cern.ch/lhcb-comp/Support/NagC/nagC.html

Some NAG C functions print error messages to stdout by default, without any information
about the calling algorithm and without filtering on severity level. A facility is provided by
Gaudi to redirect these messages to the Gaudi MessageSvc. This is documented at
http://cern.ch/lhcb-comp/Support/NagC/GaudiNagC.html

17.5 ROOT

ROOT is used by Gaudi for I/O and as a persistency solution for event data, histograms and
n-tuples. In addition, it can be used for interactive analysis, as discussed in Chapter 10.
Information about ROOT can be found at http://root.cern.ch/
page 186

http://cern.ch/anaphe/documentation/Nag_C/NAGdoc/cl/html/mark6.html
http://cern.ch/lhcb-comp/Support/NagC/nagC.html
http://cern.ch/lhcb-comp/Support/NagC/GaudiNagC.html
http://root.cern.ch/

Gaudi Users Guide
Chapter 18 Accessing SICB facilities Version/Issue: 9/0
Chapter 18

Accessing SICB facilities

18.1 Overview

In order to facilitate the transition towards C++ based code we have implemented a number
of features into the Gaudi framework whose purpose is to allow access to certain SICB
facilities. Gaudi can read data from SICB ZEBRA banks.

In this chapter we cover: staging data from tapes, converting SICB data for use by Gaudi
algorithms, accessing the magnetic field map, accessing the SICB geometry description, the
use of the SUINIT, SUANAL and SULAST routines from within the Gaudi framework and
handling event pileup and spillover in Gaudi. We also explain how to modify the size of the
ZEBRA COMMON block.

When using the geometry and magnetic field descriptions described here, remember that they
are a temporary solution for backwards compatibility with SICB. Gaudi includes the
machinery to provide any algorithm with the detector data stored in XML format. Investing
some time now to describe your detector in XML may be, in many cases, more convenient
than using the old SICB routines to access detector description data. If you do use the old
tools, use them only to populate some pre-defined class which can then be used in your
algorithms. In this way, when you will move to the new detector description tools in Gaudi,
the required changes in your code will be confined to the parts which access the geometry.

18.2 Reading tapes

There are three ways to specify a SICB input data file in the Gaudi job options:
 page 187

Gaudi Users Guide
Chapter 18 Accessing SICB facilities Version/Issue: 9/0
1. Specify one or more file names. The name can be either the complete path on disk, or
a "Castor file name" as returned by the book-keeping database. Using the Castor file
name is the recommended method

2. Specify a data set by giving the job identification numbers (JOBIDs), as was done in
SICB. The framework will make an http query to the book-keeping database in order
to find the corresponding dataset, and then issue a stage request. This database query
can be avoided by using Castor names instead of JOBIDs, as recommended above.:

3. Specify explicitly a tape and file sequence number. This option is available just for
completeness, tapes should never be accessed directly, use Castor instead.

The format is <Volume serial number of the tape>-<File sequence number>

When a Gaudi job requires to stage more than one file, the program waits for the first file to be
staged. The rest of the required files are staged while the first file is processed. Once the
program ends reading the first file, it will check if the next file is ready before continuing. If
the file is not staged yet the program writes a message and waits until the file is in the staging
disk pools.

Skipping events When reading SICB data, one may wish to skip some events. This can be
done by setting the property EventSelector.FirstEvent. For example, with the
following job option, the algorithms will only start processing at event 109:

Note that Gaudi will take a few seconds to reach the requested event as it has to read all the
records in the Zebra file before the one requested.

18.3 Populating the GAUDI transient data store: SICB Converters

18.3.1 General considerations

Access to the SICB data sets is basically via wrappers to the FORTRAN code. A complete
event is read into the Zebra common block, and then the conversion to transient objects is
done on request by specialised converters.

EventSelector.Input = {"FILE = ’C:/data/mydata.dst,
/castor/cern.ch/lhcb/mc/L251367’"};

EventSelector.Input = { "JOBID=’16434, 16435’" };

EventSelector.Input = {"TAPE=’Y21221-7, Y21223-24’";

EventSelector.FirstEvent = 109;
page 188

Gaudi Users Guide
Chapter 18 Accessing SICB facilities Version/Issue: 9/0
As mentioned in Chapter 13, a converter must implement the IConverter interface, by
deriving from a specific base class. In this way any actions which are in common to all
converters of a specific technology may be implemented in a single place.

In the following section we give detailed instructions on how to implement converters within
the SicbCnv package. These are intended primarily for Gaudi developers themselves.

18.3.2 Implementing converters in the SicbCnv package

SICB converters are available for reading most SICB banks, the full list of converted banks is
available at http://cern.ch/lhcb-comp/Support/html/ConvertedSICBBanks.htm. Writing back into
persistent storage (ZEBRA files) is possible for a few banks.

Typically, GAUDI DataObjects can be of two types:

• Simple classes, which contain the data of a single SICB bank. These classes are of type
DataObject. An example is the Event class containing the data of the PASS bank.

• Container classes, which contain data from multiple SICB banks. An example is the
ObjectVector<MCParticle>, which contains Monte-Carlo particles with data
from the ATMC bank.

Template files exist in the directory $LHCBSOFT/SicbCnv/<version>/doc for both types
of converters, to ease the creation of user converters:

• SicbCnv.Class.Template.cpp and SicbCnv.Class.Template.h to be used
when writing a converter for a single class.

• SicbCnv.Class.Container.cpp and SicbCnv.Container.Template.h to be
used when writing a container of an object container.

If you intend to write your own SICB converter, follow the instructions below:

• Copy SicbCnv.xxxx.Template.h to Sicb<your-class>Cnv.h, where
<your-class> is the name of your persistent class.

• Copy SicbCnv.xxxx.Template.cpp to Sicb<your-class>Cnv.cpp

• Now customize the header and the implementation file

• Follow TODO instructions in Sicb<your-class>Cnv.h

• Follow TODO instructions in Sicb<your-class>Cnv.cpp

• The converter factory must be made known to the system. This in fact depends on the
linking mechanism: If the converter is linked into the executable as an object file, no
action is necessary. However, usually the converter code resides in a shared or
archive library. In this case the library must have an initialisation routine which
creates an artificial reference to the created converter and forces the linker to include
the code in the executable. An example of creating such a reference can be found in
the file
$LHCBSOFT/SicbCnv/<version>/SicbCnv/SicbCnvDll/SicbCnv_load.cpp.
The convention for these initialization files is the following: for any other package
replace the string “SicbCnv” with “OtherPackage”.
 page 189

http://cern.ch/lhcb-comp/Support/html/ConvertedSICBBanks.htm

Gaudi Users Guide
Chapter 18 Accessing SICB facilities Version/Issue: 9/0
• Compile link, debug

• Once the converter works, remove unnecessary TODO comments.

18.3.3 Back Converters

In some cases it may be necessary to convert event data from the Gaudi Transient Event Data
store back to SICB banks in the ZEBRA COMMON block, to make this data available to
FORTRAN algorithms. This "back" conversion is done by dedicated converter algorithms. An
example is the CaloDigitToSicbConverter algorithm in the SICB/CaloSicbCnv
package

18.4 Access to the Magnetic Field

The magnetic field map will be accessible in the future via the transient detector store. For the
time being, as this is not implemented and as access to the magnetic field has been requested,
we have provided a magnetic field service. Again this is effectively just a wrapper which uses
SICB routines to read the information from a .cdf file.

The location of the field.cdf file is provided by the standard.stream file which is read
in by a SICB routine called from Gaudi. This file is in the data base area,
$LHCBDBASE/standard.stream in AFS. For every version the file used in the production
is read in. The location of the standard.stream file will be taken from an environment
variable as per normal SICB operation.

To use the Magnetic field service one should modify the jobOptions.txt file to include the
following:

Any algorithm which requires the use of the service makes a request via the service()
method of the Algorithm base class:

The service provides a method:

which gives a magnetic field vector at a given point in space, for example:

The magnetic field service uses a new version of the SICB routine GUFLD. In this new version
the best possible description of the magnet geometry and the field are assumed in order to
eliminate dependencies with other parts of SICB. Technically in SICB this corresponds to:

ApplicationMgr.ExtSvc += { "MagneticFieldSvc"};

IMagneticFieldSvc* pIMF= 0;
StatusCode sc = service("MagneticFieldSvc", pIMF);

StatusCode fieldVector(HepPoint3D& Pos, HepVector3D& field)
page 190

Gaudi Users Guide
Chapter 18 Accessing SICB facilities Version/Issue: 9/0
These two parameters have been fixed to 4 in the production since a few months before the
Technical Proposal: version 111 of SICB. Thus this seems to be a reasonable restriction until the
field map is provided in the detector description database.

For an example of the use of this service see the sub-algorithm readMagField in the
example FieldGeom distributed with the release.

18.5 Accessing the SICB detector Geometry from Gaudi

As discussed previously, the detector geometry will be included along with the field map in
the XML detector description database. Currently only a part of the LHCb detector is in the
new database. However, the detector geometry used in the production of the data can be
accessed by calling a function in the SicbFortran name space (this function is just a
wrapper for the FORTRAN function of similar name):

nParam should be set to the number of data words required and on return from the function
will contain the number of data words actually copied into the array: data. The first string
contains the name of the sub detector whose geometry is being requested and the second
string is a list of options:

’V’- version;
’G’ - geometry description parameters (default);
’C’ - calculated geometry (not in *.cdf);
’H’ - hit description parameters;
’D’ - digitization parameters;
’R’ - reconstruction parameters;
’F’ - floating point parameters (default);
’I’ - integer parameters;
’N’ - take parameters from the *.cdf file
’L’ - ZEBRA pointer to the beginning of the parameters storage is returned in
IARRAY(1)

An algorithm requiring this access should include the header file:

HepPoint3D P(10.*cm, 10.*cm, 120.*cm);
HepVector3D B;
pIMF->fieldVector(P, B);

IMAGLEV = IUVERS(’GEOM’,’MAGN’) = 4
IFLDLEV = IUVERS(’GEOM’,’MFLD’) = 4

void SicbFortran::utdget(const std::string& a1, const std::string& a2,
int& nParam, int* data);

#include "SicbCnv/TopLevel/SicbFortran.h"
 page 191

Gaudi Users Guide
Chapter 18 Accessing SICB facilities Version/Issue: 9/0
and call it so:

Note that the data returned by the function is written into an integer array. However we can
also read floating point numbers as in the code fragment above by casting a float array.

One should notice that the geometry returned by this function is that which was used in the
production of the data and not that which is in the current version of the .cdf files. Only if
the option ’N’ is specified are the .cdf files read in from the standard location. In order to be
able to use the array of parameters returned one has to know in advance the organization of
these data in the cdf file since the data are stored in an array and not in a common block with
named variables.

The sub-algorithm readTRackerGeom in the example FieldGeom extracts and writes out
some digitization and geometry parameters of the outer tracker.

18.6 Using FORTRAN code in Gaudi

Existing FORTRAN code can be used within a Gaudi application by using the
FortranAlgorithm class.This is a standard Gaudi algorithm which calls the FORTRAN
routines: SUINIT in the initialize() method, SUANAL in the execute() method for each
event, and SULAST in finalize(). Implementing these three routines allows you to write
code in FORTRAN and have it called from within Gaudi, in particular to import routines
already written in SICB.

Note, however that there are some points that should be kept in mind when importing SICB
code into Gaudi. The following list is far from being complete but we hope that it will help
anyone using the FortranAlgorithm. It may be updated in the future with the user’s
experiences and our own findings.

• Gaudi is linked with only two sub-packages of SICB: Finclude and Futio. This
means that taking some code from SICB and running it successfully in Gaudi will not
always be straight forward. Every case will have to be studied separately. In some
cases you may find that the effort required to make the code compatible with Gaudi
is comparable to writing it directly in C++. For some pieces of code the integration
into Gaudi may be very simple. The difficulties will come mainly from dependencies
of the code you want to include on other parts of SICB. For instance there may be
common blocks which your code needs but which are never initialized.

• As most of SICB is not executed, you will have either to include and execute the
required initialization or to try to eliminate those dependencies.

float rpar[300];

SicbFortran::utdget("WDRF","D",mpar, (int *) rpar);
log << MSG::INFO << " wdpar(" << j << ") = " << vf[j] << endreq;
page 192

Gaudi Users Guide
Chapter 18 Accessing SICB facilities Version/Issue: 9/0
• Gaudi uses SICB to access the data in the DST’s, to extract the information from the
banks and to convert the data into the appropriate classes. This needs some
initialization but not every SICB initialization step is followed. The standard.stream
file and setup.cdf are read in from the standard locations. The program will have
access to the data in the cdf files which were used to produce the DST.

• Sicb.dat is not read in. If you need to change the running conditions of your program
do it using the jobOptions.txt file or write your own cards file and read it in SUINIT.

• In Finclude you will find all the NAME_BANK.INC and NAME_FUNC.INC
include files. This means that you have access to the bank data with the usual utilities
provided by SICB. For example, to access the momentum of the reconstructed track
one can use (as in SICB):

• Futio includes most of the UT* and UB routines which can therefore be used by
FORTRAN code within Gaudi.

• Initialize the histogram files yourself in SUINIT. Gaudi initializes the histogram
service but this can be accessed only from C++ code.

18.7 Handling pile up in Gaudi.

In this section we explain the pile-up structure implemented in the Gaudi framework (see
Figure 18.1). Please note that this possibility has been rendered somewhat redundant by the
implementation of pile-up at generator level in SICBMC v244.

Pile-up in Gaudi is performed by a pile-up algorithm. An example (PileUpAlg) can be found
in the package SicbCnv. The pile-up algorithm creates a second instance of the event selector
which has to be configured in the job options file. The leading event will be read in from the
EventSelector created by the ApplicationMgr. The piled-up events are read in from the
second instance created by the pile-up algorithm. There are two different iterators, one for
each EventSelector instance, which loop over these two data streams.

When reading the ZEBRA files produced by SICB the events are merged at the level of the
ZEBRA common blocks by a call to the Futio routine REMERGE. Every C++ algorithm
requesting data from one of the converted banks will get the merged data. Every FORTRAN
algorithm using the SICB banks will also read the merged data as SICBDST does.

PileUpAlg must be the first algorithm called (unless spillover is also enabled, in which case
it should be the second algorithm after the spillover algorithm), other algorithms will access
the merged events when they retrieve some data from the store. The pile-up algorithm
controls the number of events which have to be piled-up to every leading event. PileUpAlg
uses a C++ version of the SICB routine RELUMI to get the number of pile-up events as a
function of the luminosity and some other beam parameters. Those parameters are currently
read in from the beam.cdf file. The C++ version of RELUMI uses the random number service
in Gaudi. Other implementations of the algorithm, for instance to return a fix number of
pile-up events every time, may be implemented if they are needed.

P = AXTK$P(NOBJ)
 page 193

Gaudi Users Guide
Chapter 18 Accessing SICB facilities Version/Issue: 9/0
In the future, the two event selectors will use two different data services to access different
data stores. There could be several different pile-up algorithms using a pile-up service
provided in the framework, including all the common functionality needed by the different
pile-up algorithms. The current implementation is very dependent on SICB and does not use
any pile-up service.

The following job options are necessary to instantiate the pile-up structure. First, tell the
ApplicationMgr to create a second EventSelector, called PileUpSelector::

The application manager should know that the pile-up algorithm should be run, and the user
has to configure how this algorithm works. That configuration depends on the concrete
implementation of the algorithm. In the current PileUpAlg the user can select between two
different implementations to get the number of pile-up events for signal and minimum bias
leading events. To select pile-up for signal or minimum bias one can use the pile-up algorithm
property "PileUpMode" which can be set to LUMISIGNAL or LUMIMINBIAS. In both cases
the number of Pile-up events depends on the luminosity..

Finally the property PileUpSelector.Input defines the input data source for the pile-up
events, in the same format as EventSelector.Input, described in section 18.2.:

Figure 18.1 Pile-up in Gaudi

ApplicationMgr.ExtSvc += { "EventSelector/PileUpSelector" };

ApplicationMgr.TopAlg = { "PileUpAlg","Alg1",Alg2,...};
PileUpAlg.PileUpMode = "LUMISIGNAL";

PileUpSelector.Input = {"JOBID=’12933’"};
page 194

Gaudi Users Guide
Chapter 18 Accessing SICB facilities Version/Issue: 9/0
18.8 Handling SpillOver in Gaudi

It is also possible to read in additional (spillover) events. In order to switch on spillover you
should include in your job options the lines shown in Listing 18.1. Note that SpillOverAlg

must be executed ahead of any other algorithm (including ahead of pileup) so Line 1 must
occur in the job options file ahead of any other TopAlg declaration.

In the example shown, spillover is included and enabled, and only one additional event is
read in by default, corresponding to the previous beam crossing. Up to a total of 4 spillover
events can be read in by changing the values of the SpillOverAlg.SpillOverPrev and
SpillOverAlg.SpillOverNext job options. The spillover events are read into additional
branches of the LHCb data model, as described in reference [8]. Note that the events are
merely made available in the transient event data store of Gaudi. None of the event
information is modified, in particular the time of flight information of the hits is not modified:
the labels Prev, Next etc. are for convenience only, it is up to the algorithms using this
infomation to add appropriate timing offsets when required. Only the data specified by the
SpillOverAlg.SpillOverData job option (lines 10 to 15) is actually loaded.

The input data source for the spillover events has to be defined with the
SpillOverSelector.Input property, see line 8. This property has the same format as
EventSelector.Input, described in section 18.2

18.8.1 Limitations

The current implementation of spillover has the following limitations:

• In order to determine the probability of interactions in previous and subsequent
bunch crossings, the spillover algorithm takes the instantaneous luminosity from the
current event (as used to generate PileUp). Based on this probability, it uses a random
number generator to simulate the actual number of interactions in each of the bunch
crossings (let's call this number num_inter). If, in a given bunch crossing,
num_inter is greater than zero, then an event is read into the SpillOver transient

Listing 18.1 Job options for spillover

1: ApplicationMgr.TopAlg = { "SpillOverAlg" };
2: SicbEventCnvSvc.enableSpillover = true;
3: SpillOverAlg.SpillOverMode = "LUMI";
4: // Enable next two lines to modify number of spillover events.
5: // Default is Prev = 1, Next = 0; Maximum is Prev=2, Next=2
6: // SpillOverAlg.SpillOverPrev = 2;
7: // SpillOverAlg.SpillOverNext = 1;
8: SpillOverSelector.Input = {"JOBID=’12933’"};
9: // Data to be loaded
10: SpillOverAlg.SpillOverData = {
11: "MCOuterTrackerHits", "MCInnerTrackerHits",
12: "Prs/Signals", "Prs/SummedSignals",
13: "Spd/Signals", "Spd/SummedSignals",
14: "Ecal/Signals", "Ecal/SummedSignals",
15: "Hcal/Signals", "Hcal/SummedSignals" };
 page 195

Gaudi Users Guide
Chapter 18 Accessing SICB facilities Version/Issue: 9/0
event structure from the SpillOver input file. This approach is an approximation: if
num_inter > 0, the SpillOver algorithm always reads one (and only one) event from
the input file, regardless of the value of num_inter. In theory the event read from
the input file should contain num_inter piled up events; in practice one just reads the
next event. It would be possible to do the correct thing by skipping events until one
with the right PileUp multiplicity is found, or to open several input files, each
containing events with a fixed PileUp multiplicity. Neither of these possibilities is
currently implemented.

• Since SpillOver events will be combined by digitisers into a single Raw event, it is
only foreseen to provide the /MC part of the event. Furthermore, only those parts of
the /MC subevent whose converter foresees SpillOver are available. Listing 18.2 for
example shows how the SICB MCParticles converter has been extended to allow
spillover. Any SICB converter can be extended in a similar way if required

18.9 Increasing the size of the ZEBRA COMMON block

The default Gaudi implementation initializes the ZEBRA COMMON block to a rather small
size (3M words) in order to avoid a large memory overhead for applications that need to
access SICB facilities but not large events. This limited size is however insufficient to read all
but the simplest of events. Data processing applications need to over-ride this size. One way
to do this is to provide a private version of the GETZEBRASIZE routine, to be linked ahead of
the one in the SicbCnv library. An example is shown in Listing 18.3, where the ZEBRA
COMMON size is set to 12M words

Listing 18.2 Adding provision for spillover to a SICB converter

1: // Next line declares path for main event
2: declareObject("/Event/MC/MCParticles", objType(), "ATMC");
3: // Next 4 lines declare path for spillover events
4: declareObject("/Event/Prev/MC/MCParticles", objType(), "ATMC");
5: declareObject("/Event/Next/MC/MCParticles", objType(), "ATMC");
6: declareObject("/Event/PrevPrev/MC/MCParticles", objType(), "ATMC");
7: declareObject("/Event/NextNext/MC/MCParticles", objType(), "ATMC");

Listing 18.3 Code to redefine the size of the ZEBRA COMMON block

1: SUBROUTINE GETZEBRASIZE(size)
2:
3: IMPLICIT NONE
4: #define NWPAW 1000000
5: #define NWGEAN 12000000
6: REAL GSTORE
7: COMMON / GCBANK / GSTORE(NWGEAN)
8: REAL HPAW
9: COMMON / PAWC / HPAW(NWPAW)
10:
11: INTEGER size
12: size = NWGEAN
13:
14: RETURN
15: END
page 196

Gaudi Users Guide
Appendix A References Version/Issue: 9/0
Appendix A

References

1 GAUDI - Architecture Design Report [LHCb 98-064 COMP]

2 GAUDI online code documentation (http://cern.ch/proj-gaudi/Doxygen/v9/)

3 GAUDI - User Requirements Document [LHCb 98-065 COMP]

4 G.Barrand et al., GAUDI - A software architecture and framework for building
LHCb data processing applications, [Proc CHEP 2000, Computer Physics
Communications 140 (2001) 45-55]
(http://cern.ch/lhcb-comp/General/Publications/longpap-a152.pdf)

5 LHCb Physical Units Convention
(http://cern.ch/lhcb-comp/Reconstruction/Conventions/units.pdf)

6 Revised LHCb coding conventions [LHCb 2001-054 COMP]

7 CMT configuration management environment
http://www.lal.in2p3.fr/technique/si/SI/CMT/CMT.htm

8 The new LHCb Event Data Model [LHCb 2001-142 COMP]

9 R.Chytracek et al., The LHCb Detector Description Framework, [Proc CHEP 2000
] http://cern.ch/lhcb-comp/General/Publications/pap-a155.pdf

10 I.Belyaev et al., Integration of GEANT4 with GAUDI, [Proc CHEP 2001]
http://cern.ch/lhcb-doc/presentations/conferencetalks/BelyaevProceedingsCHEP01.pdf

11 GiGa: Geant4 Interface for Gaudi Applications
http://cern.ch/lhcb-comp/Frameworks/Gaudi/Documents/GiGa.pdf

12 M.Frank et al., Data Persistency Solution for LHCb, [Proc CHEP 2000],
http://cern.ch/lhcb-comp/General/Publications/pap-c153.pdf

13 AIDA: Abstract Interfaces for Data Analysis http://aida.freehep.org/
 page 197

http://weblib.cern.ch/abstract?LHCb-98-064@LHBLHB
http://cern.ch/proj-gaudi/Doxygen/v8/
http://cern.ch/lhcb-comp/Reconstruction/Conventions/units.pdf
http://weblib.cern.ch/abstract?LHCb-2001-054@LHBLHB
http://www.lal.in2p3.fr/technique/si/SI/CMT/CMT.htm
http://aida.freehep.org/
http://cern.ch/lhcb-comp/General/Publications/longpap-a152.pdf
http://weblib.cern.ch/abstract?LHCb-98-065@LHBLHB
http://weblib.cern.ch/abstract?LHCb-2001-142@LHBLHB
http://cern.ch/lhcb-doc/presentations/conferencetalks/BelyaevProceedingsCHEP01.pdf
http://cern.ch/lhcb-comp/Frameworks/Gaudi/Documents/GiGa.pdf
http://cern.ch/lhcb-comp/General/Publications/pap-a155.pdf
http://cern.ch/lhcb-comp/General/Publications/pap-c153.pdf

Gaudi Users Guide
Appendix A References Version/Issue: 9/0
page 198

Gaudi Users Guide
Appendix B Options for standard components Version/Issue: 9/0
Appendix B

Options for standard components

The following is a list of options that may be set for the standard components: e.g. data files
for input, print-out level for the message service, etc. The options are listed in tabular form for
each component along with the default value and a short explanation. The component name
is given in the table caption thus: [ComponentName].

Table B.1 Standard Options for the Application manager [ApplicationMgr]

Option name Default value Meaning

EvtSel "" If "NONE", no event inputa

EvtMax -1 Maximum number of events to process. The default is -1
(infinite) unless EvtSel = "NONE"; in which case it is 10.

TopAlg {} List of top level algorithms. Format:
{<Type>/<Name>[, <Type2>/<Name2>,...]};

ExtSvc {} List of external services to be explicitly created by the Applica-
tionMgr (see section 11.2). Format:
{<Type>/<Name>[, <Type2>/<Name2>,...]};

OutStream {} Declares an output stream object for writing data to a persistent
store, e.g. {“DstWriter”}; See also Table B.10

DLLs {} Search list of libraries for dynamic loading. Format:
{<dll1>[,<dll2>,...]};

HistogramPersistency "NONE" Histogram and N-tuple persistency mechanism.
Available options are "HBOOK", "ROOT", "NONE"

Runable "AppMgrRunable" Type of runable object to be created by Application manager

EventLoop "EventLoopMgr" Type of event loop:
"EventLoopMgr" is standard event loop
"MinimalEventLoop" executes algorithms but does not read
events

OutputLevel MSG::INFO Same as MessageSvc.OutputLevel.
See Table B.2 for possible values
 page 199

Gaudi Users Guide
Appendix B Options for standard components Version/Issue: 9/0

The last two options define the source of the job options file and so they cannot be defined in the job
options file itself. There are two possibilities to set these options, the first one is using a environment
variable called JOBOPTPATH or setting the option to the application manager directly from the main
programb. The coded option takes precedence.

JobOptionsType “FILE” Type of file (FILE implies ascii)

JobOptionsPath “jobOptions.txt” Path for job options source

a. A basic DataObject object is created as event root ("/Event")

b. The setting of properties from the main program is discussed in Chapter 4.

Table B.2 Standard Options for the message service [MessageSvc]

Option name Default value Meaning

OutputLevel 0 Verboseness threshold level:
0=NIL,1=VERBOSE, 2=DEBUG, 3=INFO,
4=WARNING, 5=ERROR, 6=FATAL, 7=ALWAYS

Format “% F%18W%S%7W%R%T %0W%M” Format string.

Table B.3 Standard Options for all algorithms [<myAlgorithm>]

Any algorithm derived from the Algorithm base class can override the global Algorithm options thus:

Option name
Default
value Meaning

OutputLevel 0 Message Service Verboseness threshold level. See Table B.2 for possible values

Enable true If false, application manager skips execution of this algorithm

ErrorMax 1 Job stops when this number of errors is reached

ErrorCount 0 Current error count

AuditInitialize false Enable/Disable auditing of Algorithm initialisation

AuditExecute true Enable/Disable auditing of Algorithm execution

AuditFinalize false Enable/Disable auditing of Algorithm finalisation

Table B.4 Standard Options for all services [<myService>]

Any service derived from the Service base class can override the global MessageSvc.OutputLevel thus:

Option
name

Default
value Meaning

OutputLevel 0 Message Service Verboseness threshold level. See Table B.2 for possible values

Table B.1 Standard Options for the Application manager [ApplicationMgr]

Option name Default value Meaning
page 200

Gaudi Users Guide
Appendix B Options for standard components Version/Issue: 9/0

Table B.5 Standard Options for all Tools [<myTool>]

Any tool derived from the AlgTool base class can override the global MessageSvc.OutputLevel thus:

Option
name

Default
value Meaning

OutputLevel 0 Message Service Verboseness threshold level. See Table B.2 for possible values

Table B.6 Standard Options for all Associators [<myAssociator>]

Option name Default value Meaning

FollowLinks true Instruct the associator to follow the links instead of using cached informa-
tion

DataLocation "" Location where to get association information in the data store

Table B.7 Standard Options for Auditor service [AuditorSvc]

Option name
Default
value Meaning

Auditors {}; List of Auditors to be loaded and to be used.
See section 11.7 for list of possible auditors

Table B.8 Standard Options for all Auditors [<myAuditor>]

Any Auditor derived from the Auditor base class can override the global Auditor options thus:

Option name
Default
value Meaning

OutputLevel 0 Message Service Verboseness threshold level. See Table B.2 for possible values

Enable true If false, application manager skips execution of the auditor

Table B.9 Options of Algorithms in GaudiAlg package (see Section 5.5)

Algorithm name Option Name Default value Meaning

EventCounter Frequency 1; Frequency with which number of events
should be reported

Prescaler PercentPass 100.0; Percentage of events that should be passed

Sequencer Members Names of algorithms in the sequence

Sequencer BranchMembers Names of algorithms on the branch

Sequencer StopOverride false; If true, do not stop sequence if a filter fails
 page 201

Gaudi Users Guide
Appendix B Options for standard components Version/Issue: 9/0

Table B.10 Options available for output streams (e.g. DstWriter)

Output stream objects are used for writing user created data into data files or databases. They are cre-
ated and named by setting the option ApplicationMgr.OutStream. For each output stream the fol-
lowing options are available

Option name Default value Meaning

ItemList {} The list of data objects to be written to this stream, e.g.
{“/Event#1”,”Event/MyTracks/#1”};

Preload true; Preload items in ItemList

Output "" Output data stream specification. Format:
{“DATAFILE='mydst.root' TYP='ROOT'”};

OutputFile "" Output file specification - same as DATAFILE in previous option

EvtDataSvc “EventDataSvc” The service from which to retrieve objects.

EvtConversionSvc "EventPersistencySvc" The persistency service to be used

AcceptAlgs {} If any of these algorithms sets filterflag=true; the event is
accepted

RequireAlgs {} If any of these algorthms is not executed, the event is rejected

VetoAlgs {} If any of these algorithms does not set filterflag = true; the event
is rejected

Table B.11 Standard Options for persistency services (e.g. EventPersistencySvc)

Option name Default value Meaning

CnvServices {} Conversion services to be used by the service to load or
store persistent data (e.g. "RootEvtCnvSvc")

Table B.12 Standard Options for conversion services (e.g. RootEvtCnvSvc)

Option name Default value Meaning

DbType "" Persistency technology (e.g. "ROOT")

Table B.13 Standard Options for the histogram service [HistogramPersistencySvc]

Option name Default value Meaning

OutputFile "" Output file for histograms. Histograms not saved if not given.

RowWiseNTuplePolicy "FLOAT_ONLY" Persistent representation of NTuple data types. Other possible
value is "USE_DATA_TYPES". See Section 10.2.3.2 for details

PrintHistos false Print the histograms also to standard output (HBOOK only)
page 202

Gaudi Users Guide
Appendix B Options for standard components Version/Issue: 9/0

Table B.14 Standard Options for the N-tuple service [NTupleSvc] (see Section 10.2.3.2)

Option name Default value Meaning

Input {} Input file(s) for n-tuples. Format:
{“FILE1 DATAFILE='tuple1.typ' OPT='OLD' ”,
[“FILE2 DATAFILE='tuple2.typ' OPT='OLD' ”,...]}

Output {} Output file(s) for n-tuples. Format:
{“FILE1 DATAFILE='tuple1.typ' OPT='NEW'”,
[“FILE2 DATAFILE='tuple2.typ' OPT='NEW’”,...]}

StoreName "/NTUPLES" Name of top level entry

Table B.15 Standard Options for the Event Collection service [TagCollectionSvc] (see Section 10.3.2)

Option name Default value Meaning

Output {} Output file specification. See Section 10.3.2 for details

StoreName "/NTUPLES" Name of top level entry

Table B.16 Standard Options for the standard event selector [EventSelector]

Option name Default value Meaning

Input {} Input data stream specification.
Format: "<tagname> = ’<tagvalue>’ <opt>"

Possible tags are different depending on input data type.
For SICB data, see Section 18.2
For other (e.g. ROOT) Event data, see Section 6.10.2
For Event Collections, see Section 10.3.2

FirstEvent 1 First event to process (allows skipping of preceding events)

PrintFreq 10 Frequency with which event number is reported

Table B.17 Standard Options for Sicb Event Conversion service [SicbEventCnvSvc]

Option name Default value Meaning

enableSpillover “false;“ If true, spillover is enabled. See also Table B.19

Table B.18 Standard Options for Sicb Pileup Algorithm [PileUpAlg]

Option name Default value Meaning

PileUpMode ““ Pileup mode. Possible values:
"LUMISIGNAL" : Luminosity weighted for signal leading event
"LUMIMINBIAS","LUMI" : Luminosity weighted for minimum bias lead-
ing event
 page 203

Gaudi Users Guide
Appendix B Options for standard components Version/Issue: 9/0

Table B.19 Standard Options for Sicb Spillover Algorithm [SpillOverAlg]

Option name Default value Meaning

SpillOverMode “LUMI“ Spillover mode. Possible value:
"LUMI" : Luminosity weighted

SpillOverPrev 1 Number of preceding bunch crossings to be considered for spillover.
Possible values: 0,1,2

SpillOverNext 0 Number of following bunch crossings to be considered for spillover.
Possible values: 0,1,2

SpillOverData "" List of event data containers to be loaded into transient data store for
spillover events.

Table B.20 Event Tag Collection Selector [EventCollectionSelector]

The following options are used internally by the EventCollectionSelector. They should not normally be
used directly by users, who should set them via the "tags" of the EventSelector.Input option

Option name
Corresponding tag of
EventSelector.Input Default value Meaning

CnvService SVC “EvtTupleSvc” Conversion service to be used

Authentication AUTH "" Authentication to be used

Container "B2PiPi" Container name

Item "Address" Item name

Criteria SEL "" Selection criteria

DB DATAFILE "" Database name

DbType TYP "" Database type

Function FUN "NTuple::Selector" Selection function

Table B.21 Standard Options for Python scripting service [PythonSriptingSvc]

Option name Default value Meaning

startupScript ““ Script to be executed after reading the job options file (see Section 14.2.2)

Table B.22 Standard Options for the Introspection service [IntrospectionSvc]

Option name Default value Meaning

Dictionaries ““ Initial list of dictionaries to be loaded
page 204

Gaudi Users Guide
Appendix B Options for standard components Version/Issue: 9/0

Table B.23 Standard Options for Detector Data service [DetDataSvc]

Option name Default value Meaning

DetStorageType 7 Detector database storage type: 7=XML

DetDbLocation “empty” Detector database location (filename,URL). If empty then the envi-
ronment valiable XMLDDDBROOT is used.

DetDbRootName "dd" Name of the root node of the detector transient store

UsePersistency false; If true, load from persistent medium.

Table B.24 Standard Options for XML conversion service [XmlCnvSvc]

Option name Default value Meaning

AllowGenericConversion false; Switch for generic detector element conversiona

a. The XML conversion service allows the possibility to convert user defined detector elements to generic
detector elements. This means that only the generic part of the detector element, and its associated geom-
etry, will be converted but not the user defined detector element data. This feature can be used when the
user defined detector element data are not needed (e.g. visualization) or when the corresponding user
defined XML converters are not available (testing). When this feature is switched ON, the Gaudi appli-
cation will run successfully with an information message saying that this feature is enabled, and will
print out the information about all the detector elements to which this generic conversion is applied. The
limitation of this feature is that after the generic conversion the returned reference points to a Detec-
torElement object and not to the user defined class. This means that SmartDataPtr class can be pa-
rameterized only by DetectorElement class and not by the user defined class.

Table B.25 Standard Options for XML parser service [XmlParserSvc]

Option name Default value Meaning

MaxDocNbInCache 5; Maximum number of cached files

CacheBehavior See Section 8.5.3.3.1 for usage

Table B.26 Standard Options for Random Numbers Generator Service [RndmGenSvc]

Option name Default value Meaning

Engine “HepRndm::Engine<RanluxEngine>” Random number generator engine

Seeds Table of generator seeds

Column 0 Number of columns in seed table -1

Row 1 Number of rows in seed table -1

Luxury 3 Luxury value for the generator

UseTable false Switch to use seeds table
 page 205

Gaudi Users Guide
Appendix B Options for standard components Version/Issue: 9/0

B.1 Obsolete options

The following options are obsolete and should not be used. They are documented here for
completeness and may be removed in a future release.

Table B.27 Standard Options for Particle Property Service [ParticlePropertySvc]

Option name Default value Meaning

ParticlePropertiesFile “($LHCBDBASE)/cdf/particle.cdf” Particle properties database location

Table B.28 Standard Options for Chrono and Stat Service [ChronoStatSvc]

Option name Default value Meaning

ChronoPrintOutTable true Global switch for profiling printout

PrintUserTime true Switch to print User Time

PrintSystemTime false Switch to print System Time

PrintEllapsedTime false Switch to print Elapsed time (Note typo in option name!)

ChronoDestinationCout false If true, printout goes to cout rather than MessageSvc

ChronoPrintLevel 3 Print level for profiling (values as for MessageSvc)

ChronoTableToBeOrdered true Switch to order printed table

StatPrintOutTable true Global switch for statistics printout

StatDestinationCout false If true, printout goes to cout rather than MessageSvc

StatPrintLevel 3 Print level for profiling (values as for MessageSvc)

StatTableToBeOrdered true Switch to order printed table

Table B.29 Obsolete Options

Obsolete Option Replacement

EventSelector.EvtMax ApplicationMgr.EvtMax (Table B.1)
page 206

Gaudi Users Guide
Appendix C Job Options Grammar and Error Codes Version/Issue: 9/0
Appendix C

Job Options Grammar and Error Codes

C.1 The EBNF grammar of the Job Options files

The syntax of the Job-Options-File is defined through the following EBNF-Grammar.

Job-Options-File =

{Statements} .

Statements =

{Include-Statement} | {Assign-Statement} | {Append-Statement} |

{Platform-Dependency} .

AssertableStatements =

{Include-Statement} | {Assign-Statement} | {Append-Statement} .

AssertionStatement =

’#ifdef’ | ’#ifndef’ .

Platform-Dependency =

AssertionStatement ’WIN32’ <AsertableStatements> [#else <Asserta-

bleStatements>] #endif

Include-Statement =

‘#include’ string .

Assign-Statement =

Identifier ‘.’ Identifier ‘=’ value ‘;’ .

Append-Statement =

Identifier ‘.’ Identifier ‘+=’ value ‘;’ .
 page 207

Gaudi Users Guide
Appendix C Job Options Grammar and Error Codes Version/Issue: 9/0
Identifier =

letter {letter | digit} .

value =

boolean | integer | double | string | vector .

vector =

‘{’ vectorvalue { ‘,’ vectorvalue } ‘}’ .

vectorvalue =

boolean | integer | double | string .

boolean =

‘true’ | ‘false’ .

integer =

prefix scientificdigit .

double =

(prefix <digit> ‘.’ [scientificdigit]) |

(prefix ‘.’ scientificdigit) .

string =

‘”’ {char} ‘”’ .

scientificdigit =

< digit> [(‘e’ | ‘E’) < digit>] .

digit =

<figure> .

prefix =

[‘+’ | ‘-’] .

figure =

‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’.

char =

any character from the ASCII-Code

letter =

set of all capital- and non-capital letter
page 208

Gaudi Users Guide
Appendix C Job Options Grammar and Error Codes Version/Issue: 9/0
C.2 Job Options Error Codes and Error Messages

The table below lists the error codes and error messages that the Job Options compiler may
generate, their reason and how to avoid them.

Table 18.1 Possible Error-Codes

Error-Code Reason How to avoid it

Error #000 Internal compiler
error

- This code normally should
never appear. If this code is
shown there is maybe a prob-
lem with your memory, your
disk-space or the prop-
erty-file is corrupted.

Error #001 Included prop-
erty-file does not exists or can
not be opened

* wrong path in
#include-directive
* wrong file or mistyped
filename
* file is exclusively locked by
another application
* no memory available to open
this file

Please check if any of the
listed reasons occured in your
case.

Warning #001 File already
included by another file

The file was already included
by another file and will not be
included a second time.
The compiler will ignore this
#include-directive and will
continue with the next state-
ment.

Remove the #include-directive

Error #002 syntax error: Object
expected

The compiler expected an
object at the given position.

Maybe you mistyped the
name of the object or the
object contains unknown
characters or does not fit the
given rules.

Error #003 syntax error: Miss-
ing dot between Object and
Propertyname

The compiler expect a dot
between the Object and the
Propertyname.

Check if the dot between the
Object and the Propertyname
is missing.

Error #004 syntax error: Iden-
tifier expected

The compiler expected an
identifier at the given posi-
tion.

Maybe you mistyped the
name of the identifier or the
identifier contains unknown
characters or does not fit the
given rules.

Error #005 syntax error: Miss-
ing operator ’+=’ or ’=’

The compiler expected an
operator between the Proper-
tyname and the value.

Check if there is a valid opera-
tor after the Propertyname.
Note that a blank or tab is not
allowed between ’+=’!
 page 209

Gaudi Users Guide
Appendix C Job Options Grammar and Error Codes Version/Issue: 9/0
Error #006 String is not termi-
nated by a “

A string (value) was not ter-
minated by a “.

Check if all your strings are
beginning and ending with “.
Note that the position given
by the compiler can be wrong
because the compiler may
thought that following state-
ments are part of the string!

Error #007 syntax error:
#include-statement is not cor-
rect

The next token after the
#include is not a string.

Make sure that after the
#include-directive there is
specified the file to include.
The file must be defined as a
string!

Error #008 syntax error:
#include does not end with a ;

The include-directive was ter-
minated by a ;

Remove the ; after the
#include-directive.

Error #009 syntax error: Val-
ues must be separated with ’,’

One or more values within a
vector were not separated
with a ’,’ or one ore more val-
ues within a vector are
mistyped.

Check if every value in the
vector is separated by a ’,’. If
so the reason for this message
may result in mistyped val-
ues in the vector (maybe there
is a blank or tab between
numbers).

Error #010 syntax error: Vector
must end with ’}’

The closing bracket is missing
or the vector is not terminated
correctly.

Check, if the vector ends with
a ’}’ and if there is no semico-
lon before the ending-bracket.

Error #011 syntax error: State-
ment must end with a ;

The statement is not termi-
nated correctly.

Check if the statement ends
with a semicolon ’;’.

Runtime-Error #012: Cannot
append to object because it
does not exists

The compiler cannot append
the values to the object.prop-
ertyname because the object
does not exist.

Check if the refered object is
defined in one of the included
files, if so check if you writed
the object-name exactly like in
the include-file.

Runtime-Error #013 Cannot
append to object because
Property does not exists

The compiler cannot append
the values to the object.prop-
ertyname because the prop-
erty does not exist.

Check if there was already
something assigned to the ref-
ered property (in the
include-file or in the current
file). If not then modify the
append-statement into a
assign-statement.
If there was already some-
thing assigned, check if the
object-name and the prop-
erty-name are typed correctly.

Table 18.1 Possible Error-Codes

Error-Code Reason How to avoid it
page 210

Gaudi Users Guide
Appendix C Job Options Grammar and Error Codes Version/Issue: 9/0
Error #014 Elements in the
vector are not of the same type

One or more elements in the
vector have a different type
than the first element in the
vector. All elements must
have the same type like the
first declarated element.

Check declaration of vector,
check the types and check, if
maybe a value is mistyped.

Error #015 Value(s) expected The compiler didn’t find val-
ues to append or assign

Check the statement if there
exists values and if they are
written correctly.
Maybe this error is a result of
a previous error!

Error #016 Specified prop-
erty-file does not exist or can
not be resolved

The compiler was not able to
include a property-file or
didn’t found the file.
A reason can be that the com-
piler was not able to resolve
an environment-variable
which points to the location of
the property-file.

Check if you are using
enviornment-variables to
resolve the file, if they are
mistyped (wether in the sys-
tem or in the #include-direc-
tive) or not set correctly.

Error #017 #ifdef not followed
by an identifier

The #ifdef-statement is not fol-
lowed by the assertion-identi-
fier (WIN32).

Add WIN32 after the
#ifdef-statement.

Error #018 identifier in #ifdef
/ #ifndef not known

The assertion-identifier used
in the #ifdef- /#ifndef-state-
ment is not known. At the
moment there can only be
used WIN32!

Change identifier to WIN32.

Error #019 #ifdef / #ifndef /
#else / #endif doesn’t end
with a ’;’

A semicolon was found after
the #ifdef- / #ifndef- / #else- /
#endif-statement. These state-
ments don’t end with a semi-
colon.

Remove the semicolon after
the #ifdef / #ifndef / #else /
#endif-statement.

Table 18.1 Possible Error-Codes

Error-Code Reason How to avoid it
 page 211

Gaudi Users Guide
Appendix C Job Options Grammar and Error Codes Version/Issue: 9/0
page 212

Gaudi Users Guide
Appendix D Design considerations Version/Issue: 9/0
Appendix D

Design considerations

D.1 Generalities

In this chapter we look at how you might actually go about designing and implementing a
real physics algorithm. It includes points covering various aspects of software development
process and in particular:

• The need for more “thinking before coding” when using an OO language like C++.

• Emphasis on the specification and analysis of an algorithm in mathematical and
natural language, rather than trying to force it into (unnatural?) object orientated
thinking.

• The use of OO in the design phase, i.e. how to map the concepts identified in the
analysis phase into data objects and algorithm objects.

• The identification of classes which are of general use. These could be implemented by
the computing group, thus saving you work!

• The structuring of your code by defining private utility methods within concrete
classes.

When designing and implementing your code we suggest that your priorities should be as
follows: (1) Correctness, (2) Clarity, (3) Efficiency and, very low in the scale, OOness

Tips about specific use of the C++ language can be found in the coding rules document [6] or
specialized literature.

D.2 Designing within the Framework

A physicist designing a real physics algorithm does not start with a white sheet of paper. The
fact that he or she is using a framework imposes some constraints on the possible or allowed
 page 213

http://lhcb.cern.ch/notes/postscript/98notes/98-049.ps

Gaudi Users Guide
Appendix D Design considerations Version/Issue: 9/0
designs. The framework defines some of the basic components of an application and their
interfaces and therefore it also specifies the places where concrete physics algorithms and
concrete data types will fit in with the rest of the program. The consequences of this are: on
one hand, that the physicists designing the algorithms do not have complete freedom in the
way algorithms may be implemented; but on the other hand, neither do they need worry
about some of the basic functionalities, such as getting end-user options, reporting messages,
accessing event and detector data independently of the underlying storage technology, etc. In
other words, the framework imposes some constraints in terms of interfaces to basic services,
and the interfaces the algorithm itself is implementing towards the rest of the application. The
definition of these interfaces establishes the so called “master walls” of the data processing
application in which the concrete physics code will be deployed. Besides some general
services provided by the framework, this approach also guarantees that later integration will
be possible of many small algorithms into a much larger program, for example a
reconstruction program. In any case, there is still a lot of room for design creativity when
developing physics code within the framework and this is what we want to illustrate in the
next sections.

To design a physics algorithm within the framework you need to know very clearly what it
should do (the requirements). In particular you need to know the following:

• What is the input data to the algorithm? What is the relationship of these data to
other data (e.g. event or detector data)?

• What new data is going to be produced by the algorithm?

• What’s the purpose of the algorithm and how is it going function? Document this in
terms of mathematical expressions and plain english.1

• What does the algorithm need in terms of configuration parameters?

• How can the algorithm be partitioned (structured) into smaller “algorithm chunks”
that make it easier to develop (design, code, test) and maintain?

• What data is passed between the different chunks? How do they communicate?

• How do these chunks collaborate together to produce the desired final behaviour? Is
there a controlling object? Are they self-organizing? Are they triggered by the
existence of some data?

• How is the execution of the algorithm and its performance monitored (messages,
histograms, etc.)?

• Who takes the responsibility of bootstrapping the various algorithm chunks.

For didactic purposes we would like to illustrate some of these design considerations using a
hypothetical example. Imagine that we would like to design a tracking algorithm based on a
Kalman-filter algorithm.

1. Catalan is also acceptable.
page 214

Gaudi Users Guide
Appendix D Design considerations Version/Issue: 9/0
D.3 Analysis Phase

As mentioned before we need to understand in detail what the algorithm is supposed to do
before we start designing it and of course before we start producing lines of C++ code. One
old technique for that, is to think in terms of data flow diagrams, as illustrated in Figure A.1,
where we have tried to decompose the tracking algorithm into various processes or steps.

In the analysis phase we identify the data which is needed as input (event data, geometry
data, configuration parameters, etc.) and the data which is produced as output. We also need
to think about the intermediate data. Perhaps this data may need to be saved in the
persistency store to allow us to run a part of the algorithm without starting always from the
beginning.

We need to understand precisely what each of the steps of the algorithm is supposed to do. In
case a step becomes too complex we need to sub-divide it into several ones. Writing in plain
english and using mathematics whenever possible is extremely useful. The more we
understand about what the algorithm has to do the better we are prepared to implement it.

Figure A.1 Hypothetical decomposition of a tracking algorithm based on a Kalman filter using a Data flow Diagram

find seeds

form / refine
track

segment

pad hits

extrapolate
to next
station

seeds

proto-tracks

select/discard
proto-track

proto-tracks

proto-track

station hits

Event Data store

station hits
produce
tracks

proto-tracks

tracks

Geometry store

geometry

geometry

geometry
 page 215

Gaudi Users Guide
Appendix D Design considerations Version/Issue: 9/0
D.4 Design Phase

We now need to decompose our physics algorithm into one or more Algorithms (as framework
components) and define the way in which they will collaborate. After that we need to specify
the data types which will be needed by the various Algorithms and their relationships. Then,
we need to understand if these new data types will be required to be stored in the persistency
store and how they will map to the existing possibilities given by the object persistency
technology. This is done by designing the appropriate set of Converters. Finally, we need to
identify utility classes which will help to implement the various algorithm chunks.

D.4.1 Defining Algorithms

Most of the steps of the algorithm have been identified in the analysis phase. We need at this
moment to see if those steps can be realized as framework Algorithms. Remember that an
Algorithm from the view point of the framework is basically a quite simple interface (initialize,
execute, finalize) with a few facilities to access the basic services. In the case of our
hypothetical algorithm we could decide to have a “master” Algorithm which will orchestrate
the work of a number of sub-Algorithms. This master Algorithm will be also be in charge of
bootstraping them. Then, we could have an Algorithm in charge of finding the tracking seeds,
plus a set of others, each one associated to a different tracking station in charge of propagating
a proto-track to the next station and deciding whether the proto-track needs to be kept or not.
Finally, we could introduce another Algorithm in charge of producing the final tracks from
the surviving proto-tracks.

It is interesting perhaps in this type of algorithm to distribute parts of the calculations
(extrapolations, etc.) to more sophisticated “hits” than just the unintelligent original ones.
This could be done by instantiating new data types (clever hits) for each event having
references to the original hits. For that, it would be required to have another Algorithm whose
role is to prepare these new data objects, see Figure A.2.

The master Algorithm (TrackingAlg) is in charge of setting up the other algorithms and
scheduling their execution. It is the only one that has a global view but it does not need to
know the details of how the different parts of the algorithm have been implemented. The
application manager of the framework only interacts with the master algorithm and does not
need to know that in fact the tracking algorithm is implemented by a collaboration of
Algorithms.

D.4.2 Defining Data Objects

The input, output and intermediate data objects need to be specified. Typically, the input and
output are specified in a more general way (algorithm independent) and basically are pure
data objects. This is because they can be used by a range of different algorithms. We could
have various types of tracking algorithm all using the same data as input and producing
similar data as output. On the contrary, the intermediate data types can be designed to be very
algorithm dependent.
page 216

Gaudi Users Guide
Appendix D Design considerations Version/Issue: 9/0
Figure A.2 Object diagram (a) and class diagram (b) showing how the complete example tracking algorithm could be
decomposed into a set of specific algorithms that collaborate to perform the complete task.

TrackingAlg

HitPreprocessor

Hit

HitSet

Hit
Hit

nHitSet

nHit
nHit

nHit

SeedFinder

StationProcessorStationProcessor
StationProcessor

StationProcessor

Tracker

ProtoTrack
Set

PTrack
PTrack

Track
Set

PTrack
PTrack

PTrackPTrack

Event Data Store

Algorithm

TrackingAlg

HitPreprocessor

SeedFinder

StationProcessor

Tracker

HitSet

DataObject

Hit

nHitSet nHit

TackSet Track

ProtoTack
Set

PTrack

HitSet

Station

IAlgorithm
 page 217

Gaudi Users Guide
Appendix D Design considerations Version/Issue: 9/0
The way we have chosen to communicate between the different Algorithms which constitute
our physics algorithm is by using the transient event data store. This allows us to have low
coupling between them, but other ways could be envisaged. For instance, we could
implement specific methods in the algorithms and allow other “friend” algorithms to use
them directly.

Concerning the relationships between data objects, it is strongly discouraged to have links
from the input data objects to the newly produced ones (i.e. links from hits to tracks). In the
other direction this should not be a problem (i.e from tracks to constituent hits).

For data types that we would like to save permanently we need to implement a specific
Converter. One converter is required for each type of data and each kind of persistency
technology that we wish to use. This is not the case for the data types that are used as
intermediate data, since these data are completely transient.

D.4.3 Mathematics and other utilities

It is clear that to implement any algorithm we will need the help of a series of utility classes.
Some of these classes are very generic and they can be found in common class libraries. For
example the standard template library. Other utilities will be more high energy physics
specific, especially in cases like fitting, error treatment, etc. We envisage making as much use
of these kinds of utility classes as possible.

Some algorithms or algorithm-parts could be designed in a way that allows them to be reused
in other similar physics algorithms. For example, perhaps fitting or clustering algorithms
could be designed in a generic way such that they can be used in various concrete algorithms.
During design is the moment to identify this kind of re-usable component or to identify
existing ones that could be used instead and adapt the design to make possible their usage.
page 218

Gaudi Users Guide
 Index Version/Issue: 9/0
Index

Symbols
, 16, 191

A
AIDA, 185

see Interfaces
Algorithm, 8

Base class, 9, 37
branches, 44
Concrete, 37, 40
Constructor, 39, 40
Declaring properties, 39
Execution, 32, 42
Filters, 44
Finalisation, 32, 43
Initialisation, 31, 39, 41, 43
Nested, 43
sequences, 44
Setting properties, 39

Algorithms
EventCounter, 45, 113
Prescaler, 45
Sequencer, 45

Application Manager, 10
instantiation, 26

ApplicationMgr. See Application Manager
Architecture, 7
Associators, 147

Example, 150

B
Branches, 44

C
Casting

of DataObjects, 49
 page 219

Gaudi Users Guide
 Index Version/Issue: 9/0
Changes
in the new release, 16
incompatible in release v7, 18
incompatible in release v8, 17
incompatible in release v9, 16
see also Deprecated Features

Checklist
for implementing algorithms, 43

Class
identifier (CLID), 54

CLHEP, 185
Units, 2

CMT
Building libraries with, 183

CMTPATH
to get development version of packages, 22

Component, 7, 179
libraries, 179, 181

Condition objects, 89
Creation of, 91
update of, 91

Conditions data
Accessing from Detector Element, 66

Conditions Database, 72
Persistency solution, 87

ContainedObject, 50
Conventions, 2

Coding, 4
Naming, 4
Units, 2
used in this this document, 4

Converters, 153
Graphic (for visualisation), 171
SICB Back Converters, 190
SICB Converters, 188
XML, 83

CVS
password, 19

D
Data

Reading, 187
Data Store, 47

Detector Data, 63
Detector data, 63
finding objects in, 48, 55
Histograms, 93
registering objects into, 49

DataObject, 9, 47, 49, 50
Defining, 53
ownership, 50
page 220

Gaudi Users Guide
 Index Version/Issue: 9/0
DECLARE_ALGORITHM, 180
DECLARE_FACTORY_ENTRIES, 180
Deprecated Features, 18
Detector

Geometry, 69
Materials, 72
Structure, 69

Detector Data
Accessing, 64

Detector Description, 61
Conditions, 72
DTD, 76
General features, 69
Job options for accessing, 68
See also Geometry

DetectorElement
Customizing the, 84
Extending the, 67
Using the, 65

DTD
of LHCb detector description, 76

E
endreq, MsgStream manipulator, 122
Event Collections, 102

Filling, 104
Reading Events with, 106
Writing, 103

Event Data Model, 59
Event Display

Panoramix, 172
EventCounter algorithm. See Algorithms
Example Application

Main program, 26
Trace of execution, 27

Examples
Associator, 150
distributed with Gaudi, 34
HelloWorld, 30
Simple Analysis, 36

Exception
when casting, 49

F
Factory

for a concrete algorithm, 40
Filters, 44
FORTRAN, 8

and shareable libraries, 183
How to use in Gaudi, 192
 page 221

Gaudi Users Guide
 Index Version/Issue: 9/0
G
GEANT4

interfacing to. See GiGa
units, 2

Geometry
from SICB, 191
Solids, 71
Surfaces, 71

getFactoryEntries, 179
GiGa, 135
Guidelines

for software packaging, 175

H
HBOOK

Constraints on histograms, 94
For histogram persistency, 95
Limitations on N-tuples, 98, 99, 102

Histograms
data service, 93
HTL, 185
Naming convention for, 4
Persistency service, 95

HTL, 185

I
Inheritance, 37
Installation

of the framework, 13
Outside CERN, 22

Interactive Analysis
of N-tuples, 107

Interface, 7
and multiple inheritance, 11
Identifier, 11, 177
In C++, 11
page 222

Gaudi Users Guide
 Index Version/Issue: 9/0
Interfaces
AIDA, 93, 185
IAlgorithm, 11, 37, 39, 41
IAlgTool, 142
IAlignment, 66
IAppMgrUI, 27
IAssociator, 148
IAuditor, 130
ICalibration, 66
IConditionInfo, 66
IConversionSvc, 154
IConverter, 154, 189
IDataManagerSvc, 10, 48
IDataProviderSvc, 10, 47, 48, 64, 97
IDataProvideSvc, 93
IDetectorElement, 65
IFastControl, 66
IGeometryInfo, 65
IHistogram1D, 93
IHistogram2D, 93
IHistogramSvc, 10, 47, 93
IIncidentListener, 134
ILVolume, 71
IMessageSvc, 10
in Gaudi, 176
INTupleSvc, 47, 97
INtupleSvc, 10
IOpaqueAddress, 155
IParticlePropertySvc, 123
IProperty, 10, 27, 37
IPVolume, 71
IReadOut, 66
IRunable, 12
ISlowControl, 66
ISolid, 71
ISvcLocator, 39
IToolSvc, 145
IUserParameter, 66
IValidity, 65, 66, 71
IXmlSvc, 87
Navigating between, 178

Introspection, 135

J
Job Options

see also Properties
Job options, 113
 page 223

Gaudi Users Guide
 Index Version/Issue: 9/0
L
Libraries

Building, 183
Building, with CMT, 183
Component, 179, 181
containing FORTRAN code, 183
Linker, 182

Linux, 19
LOAD_FACTORY_ENTRIES, 181

M
Magnetic Field. See Services
Message service, 120
Monitoring

of algorithm calls, with the Auditor service, 129
statistical, using the Chrono&stat service, 127

Monte Carlo truth
navigation using Associators, 147

N
NAG C, 186
N-tuples, 97

Booking and declaring tags, 99
filling, 100
Interactive Analysis of, 107
Limitations imposed by HBOOK, 98, 99, 102
persistency, 101, 104
reading, 100
Service, 97

O
Object Container, 50

and STL, 50
ObjectList, 50
ObjectVector, 50
ODBC

For N-Tuple analysis, 108

P
Package, 173

Internal layout, 175
structure of LHCb software, 173

Packages
Dependencies of Gaudi, 173
Guidelines, 175

Panoramix, 172
Parsers

Numerical expressions, 87
page 224

Gaudi Users Guide
 Index Version/Issue: 9/0
PAW
for N-Tuple analysis, 101

Persistency
of histograms, 95
of N-tuples, 101, 104

Persistent store
saving data to, 57

Pile-up, 193
Platform

Available platforms, 19
Platforms

on which Gaudi is supported, 19
Prescaler algorithm. See Algorithms
Problems

Reporting, 5
Profiling

of execution time, using the Chrono&Stat service, 126
of execution time, with the Auditor service, 129
of memory usage, with the Auditor service, 129

Properties
Accessing and Modifying, 115

Python, 161
Python scripts

file extension for, 162

R
Random numbers

generating, 131
Service, 131

Reading Data, 187
Release notes, 13
Reporting problems, 5
Retrieval, 145
ROOT, 186

for histogram persistency, 96
for N-Tuple analysis, 101, 107

S
Saving data, 57
Sequencer algorithm. See Algorithms
Sequences, 44
 page 225

Gaudi Users Guide
 Index Version/Issue: 9/0
Services, 9
Auditor Service, 129
Chrono&Stat service, 126
Histogram data service, 93
Histogram Persistency Services, 95
Incident service, 134
Introspection service, 135
Job Options service, 113
Magnetic Field Service, 190
Message Service, 120
N-tuples Service, 97
Particle Properties Service, 123
Random numbers service, 131
requesting and accessing, 111
ToolSvc, 139, 145
vs. Tools, 139
XmlCnvSvc, 81
XmlParserSvc, 82

SICB
Converters, 188
geometry, 191

SmartDataLocator, 55
SmartDataPtr, 55
SmartRef, 56
SpillOver, 195
Sripting, 161
StatusCode, 42

T
Tapes

Reading, 187
Tools, 139

Associators, 147
provided in Gaudi, 147
vs. Services, 139

ToolSvc, see Services
Tutorials, 1

U
Units, 2

Convention, 2

V
Visualization, 169
Volume

Logical, 71
Physical, 71
page 226

Gaudi Users Guide
 Index Version/Issue: 9/0
W
Windows NT, 19

X
XML

Conversion Service, 81
Converters, 83
introduction to, 73
Parser Service, 82

Z
ZEBRA

COMMON block size, 196
 page 227

	Document Control Sheet
	Document Status Sheet
	Table of Contents
	Chapter 1 Introduction
	1.1 Purpose of the document
	1.2 Conventions
	1.2.1 Units
	1.2.2 Coding Conventions
	1.2.2.1 File extensions

	1.2.3 Naming Conventions
	1.2.4 Conventions of this document

	1.3 Reporting problems
	1.4 Editor’s note

	Chapter 2 The framework architecture
	2.1 Overview
	2.2 Why architecture?
	2.3 Data versus code
	2.4 Main components
	2.5 Controlling and Scheduling
	2.5.1 Application Bootstrapping
	2.5.2 Algorithm Scheduling

	Chapter 3 Release notes and software installation
	3.1 Release History
	3.2 Current Functionality
	3.3 Changes between releases
	3.3.1 Changes between current release (v9) and previous release (v8)
	3.3.1.1 Incompatible changes

	3.3.2 Changes between release v8 and release v7
	3.3.2.1 Incompatible changes

	3.3.3 Changes between release v7 and release v6
	3.3.3.1 Incompatible changes

	3.3.4 Deprecated features

	3.4 Availability
	3.5 Using the framework
	3.5.1 CVS repository
	3.5.2 CMT
	3.5.3 Using the framework on Windows with Developer Studio or Nmake
	3.5.4 Using the framework in Unix

	3.6 Working with development releases
	3.6.1�� The Gaudi common development area
	3.6.2�� The LHCb development release area
	3.6.3�� Using the development version of packages

	3.7 Installation of the framework outside CERN
	3.7.1 Package installation
	3.7.2 Event Data access

	Chapter 4 Getting started
	4.1 Overview
	4.2 Creating a job
	4.3 The main program
	4.4 Configuring the job
	4.4.1 Defining the algorithms to be executed
	4.4.2 Defining the job input
	4.4.3 Defining job output

	4.5 Algorithms
	4.5.1 The HelloWorld.h header file
	4.5.2 The HelloWorld implementation file

	4.6 Job execution
	4.7 Examples distributed with Gaudi
	4.8 Additional LHCb specific examples
	4.8.1 Simple Physics Analysis Example

	Chapter 5 Writing algorithms
	5.1 Overview
	5.2 Algorithm base class
	5.3 Derived algorithm classes
	5.3.1 Creation (and algorithm factories)
	5.3.2 Declaring properties
	5.3.3 Implementing IAlgorithm

	5.4 Nesting algorithms
	5.5 Algorithm sequences, branches and filters
	5.5.1 Filtering example
	5.5.2 Sequence branching

	Chapter 6 Accessing data
	6.1 Overview
	6.2 Using the data stores
	6.3 Using data objects
	6.4 Object containers
	6.5 Using object containers
	6.6 Data access checklist
	6.7 Defining Data Objects
	6.7.1 The class ID

	6.8 The SmartDataPtr/SmartDataLocator utilities
	6.8.1 Using SmartDataPtr/SmartDataLocator objects

	6.9 Smart References and Smart Reference Vectors
	6.10 Persistent storage of data
	6.10.1 Saving event data to a persistent store
	6.10.2 Reading event data from a persistent store

	Chapter 7 Modelling Event Data
	Chapter 8 Detector Description
	8.1 Overview
	8.2 Detector Description Database
	8.3 Detector Data Transient Store
	8.3.1 Structure of the transient store
	8.3.2 Accessing detector data
	8.3.3 Using the DetectorElement class
	8.3.4 Extending the DetectorElement class
	8.3.5 Configuring the Gaudi framework to access the detector description

	8.4 General features of the detector description
	8.4.1 Structure
	8.4.2 Geometry
	8.4.2.1 General considerations
	8.4.2.2 LVolume and PVolume
	8.4.2.3 Solids and surfaces

	8.4.3 Materials
	8.4.4 Alignment, Calibration, Readout, SlowControl, FastControl

	8.5 Persistent representation based on XML files
	8.5.1 Brief introduction to XML
	8.5.1.1 XML Basics
	8.5.1.2 XML components
	8.5.1.3 Document type definitions (DTDs)

	8.5.2 DTD of the LHCb detector description
	8.5.2.1 Some prerequisites
	8.5.2.2 The structure DTD
	8.5.2.3 The geometry DTD
	8.5.2.4 The material DTD

	8.5.3 Conversion to transient representation
	8.5.3.1 Overview
	8.5.3.2 XmlCnvSvc
	8.5.3.3 XmlParserSvc
	8.5.3.3.1 CacheBehavior usage

	8.5.3.4 Converters implementation overview

	8.5.4 Customizing a detector element
	8.5.4.1 UserParameters
	8.5.4.2 Customizing the detector element
	8.5.4.3 Extending the DTD

	8.5.5 Numerical expressions parser
	8.5.6 XML Editor

	8.6 Persistent storage in a Conditions Database
	8.6.1 Generalities on the Conditions Database
	8.6.2 Conditions Database prototype implementation and examples
	8.6.2.1 Relevant CMT packages
	8.6.2.2 Condition objects in the Gaudi store and data blocks in the CondDB
	8.6.2.3 Creation of Condition objects in the ConditionsDBCnvSvc
	8.6.2.4 Update of Condition objects

	Chapter 9 Histogram facilities
	9.1 Overview
	9.2 The Histogram service.
	9.3 Using histograms and the histogram service
	9.4 Persistent storage of histograms
	9.4.1 HBOOK persistency
	9.4.2 ROOT persistency

	Chapter 10 N-tuple and Event Collection facilities
	10.1 Overview
	10.2 N-tuples and the N-tuple Service
	10.2.1 Access to the N-tuple Service from an Algorithm.
	10.2.2 Using the N-tuple Service.
	10.2.2.1 Defining N-tuple tags
	10.2.2.2 Booking and Declaring Tags to the N-tuple
	10.2.2.3 Filling the N-tuple
	10.2.2.4 Reading N-tuples

	10.2.3 N-tuple Persistency
	10.2.3.1 Choice of persistency technology
	10.2.3.2 Input and Output File Specification
	10.2.3.3 Saving row wise N-tuples in HBOOK

	10.3 Event Collections
	10.3.1 Writing Event Collections
	10.3.1.1 Defining the Address Tag
	10.3.1.2 Filling the Event Collection

	10.3.2 Event Collection Persistency
	10.3.2.1 Output File Specification
	10.3.2.2 Writing out the Event Collection
	10.3.2.3 Reading Events using Event Collections

	10.3.3 Interactive Analysis using Event Tag Collections
	10.3.3.1 Interactive Access to Event Tag Collections written with ROOT
	10.3.3.2 Interactive Access to Event Tag Collections written with ODBC

	10.4 Known Problems

	Chapter 11 Framework services
	11.1 Overview
	11.2 Requesting and accessing services
	11.3 The Job Options Service
	11.3.1 Algorithm, Tool and Service Properties
	11.3.1.1 SimpleProperties
	11.3.1.2 CommandProperty

	11.3.2 Accessing and modifiying properties
	11.3.3 Job options file format
	11.3.3.1 Assignment statement
	11.3.3.2 Append Statement
	11.3.3.3 Including other Job Option Files
	11.3.3.4 Platform dependent execution
	11.3.3.5 Switching on/off printing

	11.4 The Standard Message Service
	11.4.1 The MsgStream utility
	User interface

	11.5 The Particle Properties Service
	11.5.1 Initialising and Accessing the Service
	11.5.2 Service Properties
	11.5.3 Service Interface
	11.5.4 Examples

	11.6 The Chrono & Stat service
	11.6.1 Code profiling
	11.6.2 Statistical monitoring
	11.6.3 Chrono and Stat helper classes
	11.6.3.1 Chrono
	11.6.3.2 Stat

	11.6.4 Performance considerations

	11.7 The Auditor Service
	11.7.1 Enabling the Auditor Service and specifying the enabled Auditors
	11.7.2 Overriding the default Algorithm monitoring
	11.7.3 Implementing new Auditors

	11.8 The Random Numbers Service
	11.9 The Incident Service
	11.9.1 Known Incidents

	11.10 The GiGa Service
	11.11 The Gaudi Introspection Service
	11.12 Developing new services
	11.12.1 The Service base class
	11.12.2 Implementation details

	Chapter 12 Tools and ToolSvc
	12.1 Overview
	12.2 Tools and Services
	12.2.1 “Private” and “Shared” Tools
	12.2.2 The Tool classes
	12.2.2.1 The AlgTool base class
	12.2.2.2 Tools identification
	12.2.2.3 Concrete tools classes
	12.2.2.4 Implementation of concrete tools

	12.3 The ToolSvc
	12.3.1 Retrieval of tools via the IToolSvc interface

	12.4 GaudiTools
	12.4.1 Associators
	12.4.1.1 The IAssociator Interface
	12.4.1.2 The Associator base class
	12.4.1.3 A concrete example

	Chapter 13 Converters
	13.1 Overview
	13.2 Persistency converters
	13.3 Collaborators in the conversion process
	13.4 The conversion process
	13.5 Converter implementation - general considerations
	13.6 Storing Data using the ROOT I/O Engine
	13.7 The Conversion from Transient Objects to ROOT Objects
	13.8 Storing Data using other I/O Engines

	Chapter 14 Scripting and Interactivity
	14.1 Overview
	14.2 How to enable Python scripting
	14.2.1 Using a Python script for configuration and control
	14.2.2 Using a text JobOptions file and giving control to the Python interactive shell
	14.2.3 Starting a Gaudi application from the Python shell

	14.3 Current functionality
	14.3.1 Property manipulation
	14.3.2 Creating Algorithms and Services
	14.3.3 Interaction with Transient Data Stores
	14.3.4 Interaction with Histograms
	14.3.5 Interaction with Data Objects
	14.3.6 Controlling job execution

	14.4 Physics Analysis Environment

	Chapter 15 Visualization Facilities
	15.1 Overview
	15.2 The data visualization model
	15.3 VisSys - the Gaudi visualisation services
	15.3.1�� Design layout
	15.3.2�� Writing graphic converters

	15.4 Panoramix - the LHCb event display

	Chapter 16 Framework packages, interfaces and libraries
	16.1 Overview
	16.2 Gaudi Package Structure
	16.2.1 Gaudi Package Layout
	16.2.2 Packaging Guidelines

	16.3 Interfaces in Gaudi
	16.3.1 Interface ID
	16.3.2 Query Interface

	16.4 Libraries in Gaudi
	16.4.1 Component libraries
	16.4.1.1 Declaring Components
	16.4.1.2 Component declaration statements
	16.4.1.3 Loading Components
	16.4.1.4 Specifying component libraries at run-time

	16.4.2 Linker libraries
	16.4.3 Library strategy and dual purpose libraries
	16.4.4 Building and linking with the libraries
	16.4.5 Linking FORTRAN code

	Chapter 17 Analysis utilities
	17.1 Overview
	17.2 CLHEP
	17.3 HTL
	17.4 NAG C
	17.5 ROOT

	Chapter 18 Accessing SICB facilities
	18.1 Overview
	18.2 Reading tapes
	18.3 Populating the GAUDI transient data store: SICB Converters
	18.3.1 General considerations
	18.3.2 Implementing converters in the SicbCnv package
	18.3.3 Back Converters

	18.4 Access to the Magnetic Field
	18.5 Accessing the SICB detector Geometry from Gaudi
	18.6 Using FORTRAN code in Gaudi
	18.7 Handling pile up in Gaudi.
	18.8 Handling SpillOver in Gaudi
	18.8.1 Limitations

	18.9 Increasing the size of the ZEBRA COMMON block

	Appendix A References
	Appendix B Options for standard components
	B.1�� Obsolete options
	Appendix C Job Options Grammar and Error Codes
	C.1�� The EBNF grammar of the Job Options files
	C.2�� Job Options Error Codes and Error Messages
	Appendix D Design considerations
	D.1�� Generalities
	D.2�� Designing within the Framework
	D.3�� Analysis Phase
	D.4�� Design Phase
	Index

