
Schedule: Timing Topic
20 minutes Lecture
10 minutes Practice
30 minutes Total

Gaudi Framework Tutorial, 2001

2
Configuration and Build

System

Gaudi Tutorial: Configuration and Build System 2-2

1-2 Gaudi Framework Tutorial, 2001

Objectives

After completing this lesson, you should
be able to:
• Understand the LHCb Configuration

Management
• Get a copy of a package from the LHCb

code repository
• Know how to re-build libraries and

programs

Lesson Aim
Understanding and being able of using the basic commands of the configuration and build system is a
pre-requisite for the rest of the Tutorial.
The commands introduced in this lesson would allow us to get a copy of the packages that we are going
to use for the rest of the Tutorial.

Caveat
The tools used in LHCb for configuring and building Gaudi programs are the same as for building Fortran
programs (SICB), therefore people having already experience on those can skip this lesson.

Gaudi Tutorial: Configuration and Build System 2-3

Package Definition
We define a “package” as a collection of related classes and as being the minimal entity that can be
versioned and built. From this definition is clear that the configuration and build system we are using only
deals with “packages” and not with individual classes or subroutines.

1-3 Gaudi Framework Tutorial, 2001

Package

• Package Definition
– Collection of related classes in a

logically cohesive physical unit
– Minimal entity that can be versioned

• Reflects on
– Logical structure of the application
– Organizational structure development

team

Gaudi Tutorial: Configuration and Build System 2-4

1-4 Gaudi Framework Tutorial, 2001

Package: Structure

packA

v1 v1r1 v2

cmt src doc win32 Linuxdbx i386-
linux22packA

$PACKAROOT

Version
number

binariesmanager directory
contains the
requirements file

public include files
#include “packA/xxx.h”

. . .

Package Structure
All packages in LHCb follow the structure shown in the viewgraph.

• Package version name follow the convention “v<version number>r<release number>p<patch
number>” or “v<version number>r<release number>d<date>”. Versions with the same v number
should be considered compatible.

• The /cmt directory is mandatory (see later with CMT)
• The source files are located in /src and the exported header files are in /packA. In that way it is

visible from which package a header is included.
• The /doc directory contains the documentation for the package. It is mandatory to have a file called

“release.notes” where we keep the changes on the package up to date.
• A number of binary (platform & configuration dependent) directories will exists in each package.

Package Groups (Hats)
We have organized the packages in LHCb by putting together all related packages into a package group.
Examples are: Event, Det, SICB, Ex, etc.

Gaudi Tutorial: Configuration and Build System 2-5

Basic Description of CVS
CVS is a system that lets groups of people work simultaneously on groups of files (for instance
packages).
It works by holding a central `repository' of the most recent version of the files. You may at any time
create a personal copy of these files by `checking out' the files from the repository into one of your
directories. If at a later date newer versions of the files are put in the repository, you can `update' your
copy.
You may edit your copy of the files freely. If new versions of the files have been put in the repository in
the meantime, doing an update merges the changes in the central copy into your copy.
When you are satisfied with the changes you have made in your copy of the files, you can `commit' them
into the central repository.

When you are finally done with your personal copy of the files, you can `release' them and then remove
them

1-5 Gaudi Framework Tutorial, 2001

CVS

Version Control System
• Record the history of

your source files
• Helps you if you are

part of a group of
people working on the
same project.

(Repository, Module, File,
Version, Tag)

Gaudi Tutorial: Configuration and Build System 2-6

1-6 Gaudi Framework Tutorial, 2001

CVS: Common Repository

• LHCb Code Repository
– /afs/cern.ch/lhcb/software/CVS

• $CVSROOT
– Using AFS

CVSROOT = /afs/cern.ch/lhcb/software/CVS

– Using CVS SERVER
CVSROOT =

:pserver:cerncvs@lhcbcvs.cern.ch:/local/newlhcbcvs
Password: CERNuser (read only)

CVS Repository
Code Repository Location

The LHCb code repository is located in the AFS volume /afs/cern.ch/lhcb/software/CVS with access
restricted to the LHCb collaboration members.

For systems with direct connection to AFS, the CVSROOT can be defined to directly access to the
repository using your local authentication
CVSROOT = /afs/cern.ch/lhcb/cvs/cvsmaster

Using the CVS server
If AFS is not available in your platform, then the LHCb CVS repository can be accessed using the cvs

server. You have to specify the following option in you cvs command:
CVSROOT = :pserver:cerncvs@lhcbcvs.cern.ch:/local/newlhcbcvs

You have to login to the cvs server first. The server will ask for a password, reply CERNuser. You
can now send all the cvs commands that don't require write access. If you use a command like
commit, you will get an error message. When you have finished, you can logout of the server.

If you require write access to the repository, you will need a personal account and its corresponding
password. Make your request to lhcb-helpdesk@cern.ch.

Gaudi Tutorial: Configuration and Build System 2-7

1-7 Gaudi Framework Tutorial, 2001

CMT

Configuration Management Tool written
by C. Arnault (LAL, Orsay)

• It is based around the notion of Package
• Provides a set of tools for automating

the configuration and building packages
• It has been adopted by LHCb (other

experiments are also using it)

CMT introduction
CMT is an attempt to formalize software production and especially configuration management around a
package-oriented principle. The notion of packages represents hereafter a set of software components
(that may be applications, libraries, documents, tools etc...) that are to be used for producing a system or a
framework. In such an environment, several persons are assumed to participate in the development and
the components themselves are either independent or related to each other.
The environment provides conventions (for naming packages, files, directories and for addressing them)
and tools for automating as much as possible the implementation of these conventions. It permits to
describe the configuration requirements and automatically deduce from the description the effective set of
configuration parameters needed to operate the packages (typically for building them or using them).

Gaudi Tutorial: Configuration and Build System 2-8

1-8 Gaudi Framework Tutorial, 2001

How we use CMT

CMTrequirements

codecodecodecodecode

CVS
repository

•What to build
•How to build
•Package dependencies

makefile
DevStudio files

Building
tools

(compilers,
linkers,
IDEs)

Libraries
&

Executables

How we use CMT
The user interacts mainly with the CMT tools to configure and build the packages. The instructions on
what to build, how to build and dependencies are located in a single text file called requirements. Very
often the user needs to edit this file.
From the requirements, CMT is able to automate the creation of the makefiles (or Visual Studio projects)
required for building the different package constitues (libraries, programs, documentation, etc).

Gaudi Tutorial: Configuration and Build System 2-9

1-9 Gaudi Framework Tutorial, 2001

CMT: Requirements file
package Main
version v4r0
branches doc src job options cmt

use Components v5r0 Tutorial
use GaudiConf v6*
use GaudiSys v9*
use LHCbEvent v12* Event
use DbCnv v5* Event
use GaudiRootDb v5*
use HbookCnv v11*
use SicbCnv v12* SICB
use dbase v234 SICB

#==> Main Program
application Main ../src/GaudiMain.cpp

================== set macros ========
ignore_pattern package_stamps
macro Main_linkopts "$(application_linkopts)"

Some basic keywords
•Package. Defines the name of the package
•Version. Defines the version of the package (version naming conventions)
•Use. Instructs CMT on the dependencies of this package to other CMT packages. The wildcard “*” is
allowed but should be used with care to avoid using incompatible versions, which may make the program
to crash or produce invalid results. The name after the version is the location of the package (package
group).
•Application. Tells CMT that this package is constituted of a program (application) and where to locate
the sources.
•Ignore_pattern. Tells CMT to ignore a “global” pattern (typically a macro definition) that is convenient
to have it defined for most of the packages. In this case this is done because the package is an application
and not a library (majority).
•Macro. Defines a macro. In this case the macro Main_linkopts is used in the link statement for building
the application.

Gaudi Tutorial: Configuration and Build System 2-10

1-10 Gaudi Framework Tutorial, 2001

CMT: Environment Variables

• CMTPATH
– Directories to look for CMT packages

in addition to ones in the “~/.cmtrc”
• CMTSITE

– Defines in which “site” you are. Used
for selecting the adequate
macro/environment variable
depending on the site.

CMT Environment Variables
•CMTPATH
Is the list of top directories to look for CMT packages. In LHCb environment is set at login time to:
/afs/cern.ch/user/<u>/<user>/newmycmt
Eventually you can add the DEV area into the path
/afs/cern.ch/user/<u>/<user>/newmycmt:/afs/cern.ch/lhcb/software/DEV
For the tutorial we will be using:
/afs/cern.ch/user/<u>/<user>/tutorial:/afs/cern.ch/lhcb/software/DEV
•CMTSITE
Used to select definitions of macros or environment variables (sets) according to the user’s site. For
example this is a fragment of the requirements file for ExternalLibs:

set SWROOT "${SITEROOT}/sw"\

NIKHEF "/project"\

CCIN2P3 "${LHCBHOME}/software"\

CPPM "${LHCBHOME}/software"\

LAPE_RIO "${LHCBHOME}/software\

LBNL "/auto/atlas"

•CMTROOT
Location of the CMT installation

Gaudi Tutorial: Configuration and Build System 2-11

1-11 Gaudi Framework Tutorial, 2001

CMT: Basic Commands

• cmt config
– Configures the package
– Sets environment (source setup.csh)

• cmt show uses
– Show dependencies and actual

versions used
• cmt show macro <macro>

– Show the value of a macro for the
current configuration

CMT Primary commands
•configure a package

> cd mycmt/package/v1/cmt
> cmt config
> source setup.csh

•visualize packages and version numbers used by a library or an application.
> cd mycmt/package/v1/cmt
> cmt show uses

•get macro definitions used in makefiles
> cd mycmt/package/v1/cmt
> cmt show macros

•get one specific macro used in makefiles
> cd mycmt/package/v1/cmt
> cmt show macro fflags

Gaudi Tutorial: Configuration and Build System 2-12

1-12 Gaudi Framework Tutorial, 2001

Package Categories
• Program: is a package that contains a main

routine and a list of dependent packages
needed to link it.

• Library: contains a list of classes and the list
of dependent packages needed to compile it.

• Package group: contains a list of other
packages with their version number (e.g.
GaudiSys)

• Interface package: interfacing to packages not
managed with CMT (e.g. CERNLIB, CLHEP,
ROOT,…)

Package Categories
With respect to CMT it is interesting to distinguish the different categories of packages. They are used in
the exactly the same way but their requirement files will show same differences, specially in patterns that
are used.
The concept of interface package is interesting for integrating in the build system packages that have
been developed outside CMT. Basically these packages only defines a number of macros and
environment variables needed for compiling, linking and running with this external packages.
Package group are useful for fixing a set on compatible versions of other packages. In this case the
package using this set of packages needs only to state the version number of the package group.

Gaudi Tutorial: Configuration and Build System 2-13

1-13 Gaudi Framework Tutorial, 2001

Link vs. Component Libraries

• Link libraries are need for linking the
program (static or dynamic)
– Traditional libraries.

• Component libraries are loaded at run-
time (ApplicationMgr.DLLs property)
– Collection of components

(Algorithms, Converters, Services,
etc.)

– Plug-in

Component Libraries
Component libraries are shared libraries that contain standard framework components which implement
abstract interfaces. Such components are Algorithms, Auditors, Services, Tools and Converters. These
libraries do not export their symbols apart from the one which is used by the framework to discover what
components are contained in the library.
The Tutorial will be based on the development of a “component” library that will include all the
Algorithms that we are going to develop during the practical exercises.

Gaudi Tutorial: Configuration and Build System 2-14

1-14 Gaudi Framework Tutorial, 2001

Component Libraries

#include “GaudiKernel/DeclareFactoryEntries.h”
DECLARE_FACTORY_ENTRIES (Components) {

DECLARE_ALGORITH(MyAlgorithm)
DECLARE_SERVICE(MyService)

}

Components_load.cpp

#include “GaudiKernel/LoadFactoryEntries.h”
LOAD_FACTORY_ENTRIES (Components)

Components_dll.cpp

Your components need
to be added here

No change needed

Component Libraries
In order to satisfy the requirements of a component library, two additional files must also be present in the
package. One is used to declare the components, the other to load them. Because of the technical
limitations inherent in the use of shared libraries, it is important that these two files remain separate, and
that no attempt is made to combine their contents into a single file.
<Components>_load.cpp This file contain the declaration of all the components that should be available
in the component library. There have been same macros defined to ease the writing of this file.
<Components>_dll.cpp This file is fixed and needs to be added into the package and do not need to be
updated if new components are added later into the package.

Gaudi Tutorial: Configuration and Build System 2-15

1-15 Gaudi Framework Tutorial, 2001

Getting a package

• The “getpack” command
– Script combining “cvs checkout” +

“cmt config”
– It suggest the latest version of

package

> getpack [hat/]<package> [<version>] [head]

Getting a package
The “getpack” command has been developed to ease the use for getting a copy of a package from the
LHCb cvs repository and putting it in the correct directory structure with the correct version. It also
suggest the user what versions are available for the package in case the user does specify it.
For the tutorial we recommend to get always the “head” revision of the packages.

Gaudi Tutorial: Configuration and Build System 2-16

1-16 Gaudi Framework Tutorial, 2001

Building a package
• Working in the /cmt directory

– <package>/<version>/cmt
• Set correct environment

> gmake [target] [tag=<configuration>] [clean]

configurations: rh61_gcc2952 (default)
rh61_gcc2952dbx (for debug)

• The gmake command

> source setup.csh [-tag=<configuration>]

Building a package
Typically for building (and also running) a package we stay in the /cmt directory. This is convenient for
executing the configuration and build commands.
•Setting the environment. We need to setup the correct environment for the current version of the
package. This environment consists on a set of environment variables (PATH, LD_LIBRARY_PATH,
and others). Setting the environment is done my executing “source setup.csh” in the .cmt directory. This
must be done before running the application always and in some cases also is needed for building the
package. Therefore, we suggest to do it before building the package. You only need to re-do the setting of
the environment if you change the package or the version you are using otherwise the environment stays
valid for the complete session. We suggest for the tutorial to use the “debug” configuration by issuing the
command “source setup.csh –tag=$CMTDEB”
•The gmake command. The “gmake” command is used for building the libraries and/or the programs.
There are various configurations available in form of “tag=<configuration>”. We suggest for the tutorial
to use the “debug” configuration by issuing always the command “gmake tag=$CMTDEB” since the
default is without debug information.

Gaudi Tutorial: Configuration and Build System 2-17

1-17 Gaudi Framework Tutorial, 2001

Tutorial Packages

• Tutorial/Main [v4r0]
– The main program. During the tutorial

will be using the same program.
• Tutorial/Components [v5r0]

– A package consisting of a single
Component library in which we will be
adding all the Algorithms of the
Tutorial

Tutorial/Main
This is the main program. We will use it without modification during the tutorial.

• /cmt/requirements requirements file
• /src/GaudiMain.cpp main program
• /options/jobOptions.opts job options file to be used during the tutorial (everything is commented to

start with)
Tutorial/Components

This is the component library. We will populate the /src directory with new files from other /src.<xxxx>
which contains the solutions to the different exercises of the tutorial.

• /cmt/requirements requirements file
• /options/<exercise>.opts job options “fragments” for the different exercises
• /src/Component_dll.cpp Needed for building a “component library”
• /src/Component_load.cpp Needed for building a “component library”
• /src/DecayTreeAlgorithm.* “Empty” .h and .cpp files for the Decay Tree exercise
• /src/VisibleEnergyAlgorithm.* “Empty” .h and .cpp files for the Visible Energy exercise
• /src/EventSummaryCnv.cpp “Empty” file for the Event Summary exercise
• /src.decaytree/* Directory with solutions for the Decay Tree exercise
• /src.hist_tuple/* Directory with solutions for the Histogram Ntuple exercise
• /src.solution/* Directory with the final solution

Gaudi Tutorial: Configuration and Build System 2-18

1-18 Gaudi Framework Tutorial, 2001

Exercise
• Get both Tutorial Packages [v4r0] and

build them
– Remember to “source

$LHCBHOME/scripts/tutorial.csh
– Remember to build first the

dependent package (Components)
and then the program (Main)

• Execute the Main program
– It should do nothing for the time

being

Gaudi Tutorial: Configuration and Build System 2-19

1-19 Gaudi Framework Tutorial, 2001

Exercise

> source $LHCBHOME/scripts/tutorial.csh
> cd ~/tutorial
> getpack Tutorial/Main v4r0
> getpack Tutorial/Components v5r0

> cd Tutorial/Components/v5r0/cmt
> gmake tag=$CMTDEB

> cd ../../../Main/v4r0/cmt
> source setup.csh –tag=$CMTDEB
> gmake tag=$CMTDEB

> ../$CMTDEB/Main.exe ../options/jobOptions.opts

