
This part of the tutorial deals with XML converters that converts the XML persistent representation
into C++ objects in the transient data store. It will be followed by a small exercise, aiming at
converting the geometry we defined in the previous lesson into C++ and reaching it from an
algorithm. We will also learn how to use userParameters and userParameterVectors to customize a bit
the detector elements.

Schedule: Timing Topic
20 minutes Lecture
40 minutes Practice
60 minutes Total

Gaudi Framework Tutorial, 2001

3

From XML to C++ Objects

Gaudi Advanced Tutorial 3-2

Lesson Aims
• Access the geometry in the C++ objects : the different existing objects in C++ and their interfaces
were actually presented in the first lesson of this tutorial. We only explain here how to get them.
• Use userParameter and userParameterVector to customize detector elements. This is a special
feature that allows the user to define his own set of parameters inside detector elements.

3-2 Gaudi Advanced Tutorial, 2001

Objectives

After completing this lesson, you should be
able to do the following:
• Access the geometry in the C++ algorithms
• Use userParameters(Vector) to customize

detector elements

Gaudi Advanced Tutorial 3-3

Accessing the geometry in C++

As in the whole Gaudi software, you access transient stores by using SmartDataPtr. Once more, you should
test them in order to launch the retrieval of the data (and the conversion from XML into C++ in our case).

3-3 Gaudi Advanced Tutorial, 2001

Accessing the Geometry in C++

• automatic, by defining a SmartDataPtr :

SmartDataPtr<IDetectorElement>
cave(detSvc(),"/dd/Structure/LHCb");

if (!cave) { /* error message */ }

• do not forget to test the pointer, the
conversion is processed at this time

Gaudi Advanced Tutorial 3-4

Reading XML files
In order to build the C++ objects from the transient store, Gaudi provides a set of converters that maps XML
elements into C++ objects.
There is one converter per C++ object type. Some of them are XmlDetectorElementCnv, XmlLVolumeCnv
and XmlMixtureCnv which convert respectively detector elements, logical volumes and materials. Some
more specific converters can be defined when necessary like XmlMuonStationCnv for Muon stations or the
XmlMySubDetCnv that we will define in a further exercise.
As you can see, the converters map XML elements to C++ objects in an almost one to one mapping.

3-4 Gaudi Advanced Tutorial, 2001

Reading XML Files

• Converters used to build C++ objets from XML
• One converter per object type

– XmlDetectorElementCnv
– XmlLVolumeCnv
– XmlMixtureCnv
– XmlMuonStationCnv
– …
– XmlMySubDetCnv

• almost 1 to 1 mapping between XML elements
and C++ objects

Gaudi Advanced Tutorial 3-5

First summary
So far, we are able to describe geometry and reach it from the C++ world, using the standard converters
provided by Gaudi. The use of these converters is actually fully transparent for the user.
The only problem here is that the user has no way to extend the schema and especially to add specific
parameters into detector elements.

3-5 Gaudi Advanced Tutorial, 2001

First Summary

• We are able to reach the geometry description
from the C++ transient world

• Everything is transparent for the C++ user,
there is no need to know it comes from XML

• BUT we have no way to extend the schema
and especially to add specific parameters to a
detector element

Gaudi Advanced Tutorial 3-6

Specializing Detector Elements
There are mainly three ways of specializing detector elements.

1. the first and less complicated one is to add userParameters to the detector element in the XML code.
This will be detailed in the end of this lesson.

2. the second is to extend and specialize the DetectorElement object in C++. This allows to add new
members and methods. The initialization of this new object uses then the userParameters defined
previously. This will be detailed in the next lesson.

3. the last and most complicated way is to extend the XML DTD to allow specific XML elements and
store complex information. This will need to write a dedicated converter and will be detailed in the next
lesson.

3-6 Gaudi Advanced Tutorial, 2001

Specializing Detector Elements

1. adding userParameter(vector)s to default
DetectorElements

2. extending and specializing the
DetectorElement object in C++, using
userParameters in XML

3. extending XML DTD and writing a
dedicated converter

Gaudi Advanced Tutorial 3-7

3-7 Gaudi Advanced Tutorial, 2001

• Two elements :
<userParameter> and <userParameterVector>

• 3 string attributes : name, type and comment
• One value given as text

Specializing by using
userParameter[Vector]

<userParameter
comment=“blablabla”
name=“description”
type=“string”>

Calibration channels
</userParameter>

<userParameterVector
name=“NbChannels”
type=“int”
comment=“blabla”>

530 230
570 270

</userParameterVector>

Specializing by using userParameter and userParameterVector
These are two elements of the LHCb structure DTD that allow the user to add his own parameters to a given
detector element. These elements have three attributes defining the parameter :

• name : this will be the only way to retrieve the parameter in C++
• type : this has no restriction but only int, double and string are recognized. All other types are treated as

strings.
• comment : you are free to put here a small explanation of the meaning and usage of the parameter

The value of the parameter is the value of the element itself, which is the text appearing between the opening
and the closing tag. In the case of a vector, the different values should be separated by spaces and/or carriage
return only. If the type of a parameter is int or double, the value will be computed using the expression
evaluator of the XmlCnvSvc. Thus parameters (I mean the one defined via the element <parameter>, not user
parameters), units and mathematical functions can be safely used.

Gaudi Advanced Tutorial 3-8

C++ API for userParameters
Since the userParameters and userParameterVectors are defined in the LHCb DTD, there are converted by
the default converters and can be retrieved in the C++ world using the following API (these are all methods of
the DetectorElement object, of course) :

! string userParameterAsString (string name) : gets the value of a given parameter, as a string. Actually
returns the exact string that was in the XML code.

! double userParameterAsDouble (string name) : gets the double value of a given parameter. This is
computed from the string value, by calling the expression evaluator. Note that this method only deals
with parameters of type int and double. Thus it will tell you there is no such parameter if it is called for
a parameter of another type.

! int userParameterAsInt (string name) : gets the integer value of a given parameter. This is computed
from the string value, by calling the expression evaluator. Note that this method only deals with
parameters of type int. Thus it will tell you there is no such parameter if it is called for a parameter of
another type.

The equivalent methods exist for userParameterVectors. The only difference is that they return vectors of
strings, doubles or ints. Here are the signatures :

! vector<string> userParameterVectorAsString (string name);
! vector<double> userParameterVectorAsDouble (string name);
! vector<int> userParameterVectorAsInt (string name);

3-8 Gaudi Advanced Tutorial, 2001

C++ API for userParameters (1)
Methods on DetectorElement for userParameters :
! string userParameterAsString (string name)

! double userParameterAsDouble (string name)

! int userParameterAsInt (string name)

The equivalent exist for userParameterVectors

std::string description = elem->userParameterAsString ("description");
std::vector<int> channelNbs = elem->userParameterVectorAsInt ("NbChannels");

log << MSG::INFO << description << " : “;
for (std::vector<int>::iterator it = channelNbs.begin();

it != channelNb.end();
it++)

log << *it;
log << endreq;

Gaudi Advanced Tutorial 3-9

C++ API for userParameters
Here are some more methods that allow to access the type and comment associated with a parameter or the
list of defined parameters :

! double userParameter (string name) : equivalent to userParameterAsDouble.
! vector<string> userParameters() : returns a vector of the defined parameters.
! string userParameterType (string name) : gets the type of a given parameter. Actually returns the exact

string that was given for this attribute in the XML code.
! string userParameterComment (string name) : gets the comment of a given parameter. Actually returns

the exact string that was given for this attribute in the XML code.
The equivalent methods exist for userParameterVectors. Here are the signatures :

! vector<double> userParameterVector (string name);
! vector<string> userParameterVectors();
! string userParameterVectorType (string name);
! string userParameterVectorComment (string name);

3-9 Gaudi Advanced Tutorial, 2001

C++ API for userParameters (2)

More methods :

! double userParameter (string name)
! vector<string> userParameters()
! string userParameterType (string name)
! string userParameterComment (string name)

! vector<double> userParameterVector (string name);
! vector<string> UserParameterVectors();
! string userParameterVectorType (string name);
! string userParameterVectorComment (string name);

Gaudi Advanced Tutorial 3-10

3-10 Gaudi Advanced Tutorial, 2001

Exercise 2

Gaudi Advanced Tutorial 3-11

Exercise goal
The goal of the second exercise is to extend the description of mySubDet we did in the first exercise and to
reach it from the C++ world.
The extension consists in adding information on the number of channels in the XML definition of detector
elements.

3-11 Gaudi Advanced Tutorial, 2001

Exercise Goal

• Add the number of channels of each detector
element together with a short description of
these

• Write an algorithm that is able to display the
geometry we described and the data
concerning the channels in each detector
element

Gaudi Advanced Tutorial 3-12

How to start
This is what you have to do in order to start working on this second exercise :

• if you did not succeed in the first exercise, you should start with a valid geometry by copying the
data/DDDBSolution1 directory into data/DDDB :

mv data/DDDB data/myDDDB
cp –r data/DDDBSolution1 data/DDDB

• then, you must copy the src2 directory into src :
cp –r src2 src

This provides empty files for the AccessGeoAlgorithm you will have to write

3-12 Gaudi Advanced Tutorial, 2001

How to Start

• reuse what you did in the previous exercise or
copy data/DDDBSolution1 into data/DDDB

• copy the src2 directory into src
– it includes empty files for the algorithm

(called AccessGeoAlgorithm)

Gaudi Advanced Tutorial 3-13

Hints for the XML
The only modification to do in the XML you wrote in the first exercise is to add two userParameter elements
per detector elements (maybe not the main one), one called description and the other called NbChannels. Feel
free to change the names, of course.
One trick is that you should define these parameters on one detector element first and copy and paste them in
every other. You can then change the values and the names and comments are already ok.

3-13 Gaudi Advanced Tutorial, 2001

Hints for the XML

• Just define two userParameter per detector
elements :
– one with name “description” and type string
– the other with name “nbChannels” and type int

• Once you define two of them on the first element,
just cut and paste them 4 times and modify the
values

Gaudi Advanced Tutorial 3-14

Hints for the algorithm
The algorithm is called AccessGeoAlgorithm. The .h and .cpp files are given but the interesting parts are
empty and you should fill these blanks.
There are 5 places where code should be added. You can find them easily due to the big comments
explaining what to add, just before each blank. Note that you are not obliged to fill all blanks for your first
try. The display methods can be left empty for a first compilation.
Once you are done, at least with the initialize method, you can type make to compile your algorithm.

3-14 Gaudi Advanced Tutorial, 2001

Hints for the Algorithm

• There are only 5 places where you should add
code in the prepared file, after the big
comments

• Don’t try to do all at once, you should be able
to compile without filling the 3 display
methods

• To compile your algorithm, go to the cmt
directory and issue a make command

Gaudi Advanced Tutorial 3-15

How to run your algorithm
In order to run you algorithm, you need to drive it from an executable. This is provided in tutorials by the
Tutorial/Main package. Thus, here is what you should do :

• if you open a new shell for running
source $LHCBHOME/scripts/tutorial.csh

• then go to the tutorial directory
cd tutorial

• get the Main package, configure it and compile it :
getpack Tutorial/Main v3
cd Tutorial/Main/v3/cmt
uncomment “use Detector …” in the requirements file
cmt config
source setup.csh
make

• run the main program :
../i386_linux22/Main.exe ../../../Detector/v3/options/AccessGeo.opts

3-15 Gaudi Advanced Tutorial, 2001

How to Run Your Algorithm

• source $LHCBHOME/scripts/tutorial.csh (if new shell)
• cd tutorial

• getpack Tutorial/Main v3

• cd Tutorial/Main/v3/cmt

• uncomment “use Detector …” in the requirements file
• cmt config

• source setup.csh

• make

• ../i386_linux22/Main.exe
../../../Detector/v3/options/AccessGeo.opts

