Objectives

After completing this lesson, you should be
able to do the following:

» Access the geometry in the C**algorithms

From XML to C++ ObjeCtS » Use userParameters(Vector) to customize

detector elements

Gaudi Framework Tutorial, 2001 3-2 Gaudi Advanced Tutorial, 2001

This part of the tutorial deals with XML converters that converts the XML persistent representation Lesson Aims
into C** objectsin the transient data store. It will be followed by asmall exercise, aiming at « Access the geometry in the C** objects : the different existing objects in C** and their interfaces
converting the geometry we defined in the previous lesson into C** and reaching it from an were actually presented in the first lesson of this tutorial. We only explain here how to get them.
algorithm. We will also learn how to use userParameters and userParameterV ectors to customize a bit « Use userParameter and userParameterVector to customize detector elements. This is a special
the detector elements. feature that allows the user to define his own set of parameters inside detector elements.
Schedule: Timing Topic

20 minutes Lecture

40 minutes Practice

60 minutes Tota

Gaudi Advanced Tutorial 3-2

Accessing the Geometry in C**

e automatic, by defining a SmartDataPtr :
Smar t Dat aPt r <| Det ect or El enent >

cave(det Svc(),"/dd/ Structure/ LHCh");
if ('cave) { /* error nessage */ }

» do not forget to test the pointer, the
conversion is processed at this time

3-3 Gaudi Advanced Tutorial, 2001

Reading XML Files

e Converters used to build C** objets from XML

* One converter per object type
— XmiDetectorElementCnv
— XmiLVolumeCnv

XmIMixtureCnv

— XmlMuonStationCnv

— XmIMySubDetCnv

e almost 1 to 1 mapping between XML elements
and C** objects

3-4 Gaudi Advanced Tutorial, 2001

Accessing the geometry in C**

Asin the whole Gaudi software, you access transient stores by using SmartDataPtr. Once more, you should
test them in order to launch the retrieval of the data (and the conversion from XML into C** in our case).

Gaudi Advanced Tutorial 3-3

Reading XML files

In order to build the C** objects from the transient store, Gaudi provides a set of converters that maps XML

elementsinto C** objects.

Thereis one converter per C* object type. Some of them are XmlDetectorElementCnv, XmILV olumeCnv
and XmIMixtureCnv which convert respectively detector elements, logical volumes and materials. Some
more specific converters can be defined when necessary like XmIMuonStationCnv for Muon stations or the

XmIMySubDetCnv that we will define in afurther exercise.
Asyou can see, the converters map XML elements to C** objects in an amost one to one mapping.

Gaudi Advanced Tutorial 3-4

First Summary

* We are able to reach the geometry description
from the C** transient world

« Everything is transparent for the C** user,
there is no need to know it comes from XML

*« BUT we have no way to extend the schema
and especially to add specific parameters to a
detector element

35 Gaudi Advanced Tutorial, 2001

First summary

So far, we are able to describe geometry and reach it from the C+* world, using the standard converters
provided by Gaudi. The use of these convertersis actually fully transparent for the user.

The only problem here is that the user has no way to extend the schema and especially to add specific
parameters into detector elements.

Gaudi Advanced Tutorial 3-5

Specializing Detector Elements

1. adding userParameter(vector)s to default
DetectorElements

2. extending and specializing the
DetectorElement object in C**, using
userParameters in XML

3. extending XML DTD and writing a
dedicated converter

3-6 Gaudi Advanced Tutorial, 2001

Specializing Detector Elements
There are mainly three ways of specializing detector elements.

1. thefirst and less complicated oneisto add userParameters to the detector element in the XML code.
Thiswill be detailed in the end of thislesson.

2. the second isto extend and specidize the DetectorElement object in C**. This allows to add new
members and methods. The initiaization of this new object uses then the userParameters defined
previously. Thiswill be detailed in the next lesson.

3. thelast and most complicated way isto extend the XML DTD to allow specific XML elements and
store complex information. This will need to write a dedicated converter and will be detailed in the next
lesson.

Gaudi Advanced Tutorial 3-6

Specializing by using
userParameter[Vector]

- Two elements :

<userParameter> and <userParameterVector>
- 3 string attributes : name, type and comment
» One value given as text

<userParameterV ector
<userParameter name="NbChannels’
comment="blablabla’ type=“int’

name="description” comment=*blabla’>

type="string”> 530 230
Calibration channels 570 270
</userParameter> </userParameterV ector>
3-7 Gaudi Advanced Tutorial, 2001

Specializing by using userParameter and userParameterVector

These are two elements of the LHCb structure DTD that allow the user to add his own parametersto agiven
detector element. These elements have three attributes defining the parameter :

« name: thiswill be the only way to retrieve the parameter in C++

e type: this has no restriction but only int, double and string are recognized. All other types are treated as

strings.

« comment : you are free to put here asmall explanation of the meaning and usage of the parameter
The value of the parameter is the value of the element itself, which isthe text appearing between the opening
and the closing tag. In the case of a vector, the different values should be separated by spaces and/or carriage
return only. If the type of a parameter isint or double, the value will be computed using the expression
evaluator of the XmlCnvSvc. Thus parameters (I mean the one defined via the element <parameter>, not user
parameters), units and mathematical functions can be safely used.

Gaudi Advanced Tutorial 3-7

C** API for userParameters (1)

Methods on DetectorElement for userParameters :
= string userParaneterAsString (string name)

= doubl e user Par anet er AsDoubl e (string name)

= int userParanmeterAsint (string nane)

The equivalent exist for userParameterVectors

std::string description = elem->userParameterAsString ("description™);
std::vector<int> channelNbs = elem->userParameterV ectorAsint ("NbChannels");

log << MSG::INFO << description << " : “;
for (std::vector<int>::iterator it = channelNbs.begin();
it = channelNb.end();
it++)
log << *it;
log << endreq;

3-8 Gaudi Advanced Tutorial, 2001

C* API for userParameters

Since the userParameters and userParameterV ectors are defined in the LHCb DTD, there are converted by
the default converters and can be retrieved in the C+ world using the following API (these are all methods of
the DetectorElement object, of course) :

= gtring userParameterAsString (string name) : gets the value of a given parameter, as astring. Actually
returns the exact string that was in the XML code.
= double userParameterAsDouble (string name) : gets the double value of a given parameter. Thisis
computed from the string value, by calling the expression evaluator. Note that this method only deals
with parameters of typeint and double. Thusit will tell you thereis no such parameter if it is caled for
a parameter of another type.
= int userParameterAslnt (string name) : gets the integer value of a given parameter. Thisis computed
from the string value, by calling the expression evaluator. Note that this method only deals with
parameters of typeint. Thusit will tell you thereis no such parameter if it is called for a parameter of
another type.
The equivalent methods exist for userParameterV ectors. The only difference is that they return vectors of
strings, doubles or ints. Here are the signatures :
= vector<string> userParameterV ectorAsString (string name);
= vector<double> userParameterV ectorAsDouble (string name);

= vector<int> userParameterV ectorAsint (string name);

Gaudi Advanced Tutorial 3-8

C** APl for userParameters (2)

More methods :

doubl e userParaneter (string nane)
vector<string> userParaneters()

string userParaneterType (string name)
string userParaneterConment (string nane)

vect or <doubl e> user Par anet er Vector (string nane);
vect or<string> User Paranet er Vectors();

string userParaneterVectorType (string nane);
string user ParaneterVect or Corment (string name);

39 Gaudi Advanced Tutorial, 2001

C* API for userParameters

Here are some more methods that allow to access the type and comment associated with a parameter or the
list of defined parameters :

double userParameter (string name) : equivaent to userParameterAsDouble.

vector<string> userParameters() : returns a vector of the defined parameters.

string userParameterType (string name) : gets the type of a given parameter. Actualy returns the exact
string that was given for this attribute in the XML code.

string userParameterComment (string name) : gets the comment of a given parameter. Actually returns
the exact string that was given for this attribute in the XML code.

The equivalent methods exist for userParameterVectors. Here are the signatures :

vector<double> userParameterV ector (string name);
vector<string> userParameterV ectors();

string userParameterV ectorType (string name);
string userParameterV ectorComment (string name);

Gaudi Advanced Tutorial 3-9

3-10

Exercise 2

Gaudi Advanced Tutorial, 2001

Gaudi Advanced Tutorial 3-10

Exercise Goal

* Add the number of channels of each detector
element together with a short description of
these

« Write an algorithm that is able to display the
geometry we described and the data
concerning the channels in each detector
element

311 Gaudi Advanced Tutorial, 2001

Exercise goal

The goal of the second exercise is to extend the description of mySubDet we did in the first exercise and to

reach it from the C+* world.

The extension consists in adding information on the number of channelsin the XML definition of detector

elements.

Gaudi Advanced Tutorial 3-11

How to Start

» reuse what you did in the previous exercise or
copy data/DDDBSolutionl into data/DDDB

e copy the src2 directory into src

— itincludes empty files for the algorithm
(called AccessGeoAlgorithm)

3-12 Gaudi Advanced Tutorial, 2001

How to start
Thisiswhat you have to do in order to start working on this second exercise :

if you did not succeed in the first exercise, you should start with a valid geometry by copying the
datayDDDBSolutionl directory into data’/DDDB :

mv data/DDDB dataymyDDDB

cp —t data’yDDDBSolutionl data/DDDB
then, you must copy the src2 directory into src :

cp— src2 src

This provides empty files for the AccessGeoAlgorithm you will have to write

Gaudi Advanced Tutorial 3-12

Hints for the XML Hints for the Algorithm

« Just define two userParameter per detector e There are only 5 places where you should add
elements : code in the prepared file, after the big
comments

— one with name “description” and type string

— the other with name “nbChannels” and type int » Don’t try to do all at once, you should be able

to compile without filling the 3 display

« Once you define two of them on the first element, methods
values directory and issue a nake command
3-13 Gaudi Advanced Tutorial, 2001 3-14 Gaudi Advanced Tutorial, 2001
Hints for the XML Hints for the algorithm

The only modification to do in the XML you wrote in the first exercise is to add two userParameter elements The algorithmis called AccessGeoAlgorithm. The .h and .cpp files are given but the interesting parts are
per detector elements (maybe not the main one), one called description and the other called NbChannels. Feel empty and you should fill these blanks.
freeto change the names, of course. There are 5 places where code should be added. Y ou can find them easily due to the big comments
Onetrick isthat you should define these parameters on one detector element first and copy and paste themin explaining what to add, just before each blank. Note that you are not obliged to fill all blanks for your first
every other. Y ou can then change the values and the names and comments are already ok. try. The display methods can be |eft empty for afirst compilation.

Once you are done, at least with the initialize method, you can type make to compile your algorithm.

Gaudi Advanced Tutorial 3-13 Gaudi Advanced Tutorial 3-14

How to Run Your Algorithm

* source $LHCBHOVE/ scripts/tutorial.csh (if new shell)
e cd tutorial

* getpack Tutorial/Min v3

e cd Tutorial/Min/v3/cnt

» uncomment “use Detector ...” in therequirementsfile

e cnt config

e source setup.csh

* make

e ../i386_linux22/ Main. exe
./../../Detector/v3/ options/AccessCeo. opts

3-15 Gaudi Advanced Tutorial, 2001

How to run your algorithm

In order to run you algorithm, you need to drive it from an executable. Thisis provided in tutorials by the
Tutorial/Main package. Thus, hereiswhat you should do :

« if you open anew shell for running
source $LHCBHOM E/scripts/tutorial.csh
» then goto thetutorial directory
cd tutorial
« get the Main package, configure it and compileit :
getpack Tutorial/Main v3
cd Tutoria/Main/v3/cmt
uncomment “use Detector ...” in the requirements file
cmt config
source setup.csh
make
¢ runthemain program:
./i386_linux22/Main.exe ../../../Detector/v3/options/A ccessGeo.opts

Gaudi Advanced Tutorial 3-15

