
Schedule: Timing Topic
15 minutes Lecture
20 minutes Practice
35 minutes Total

Gaudi Framework Tutorial, 2001

3
Printing and Job Options

Gaudi Tutorial: Printing and Job Options 3-2

Lesson Aim
Printing obviously helps to understand what is going on inside a program. Although it can never
replace a real debugger it is essential e.g. in batch application to know why certain actions failed.
In the following printing in Gaudi is introduced and the usage is shown.
Any Gaudi job is steered by a setup file called the job options. It will be shown how you can
customize an algorithm with properties. These properties allow you to change the behavior at run-
time and allow for more flexibility.
Also a few standard job options will be introduced.

3-2 Gaudi Framework Tutorial, 2001

Objectives

After completing this lesson, you should
be able to:
• Know how to print.
• Know how to implement job options in

an algorithm.
• Know basic job options.

Gaudi Tutorial: Printing and Job Options 3-3

3-3 Gaudi Framework Tutorial, 2001

Job Options

•Job is steered by “cards” file
•Temporary: Database on the long run
•Options are not directly accessed
•Access through IJobOptionsSvc interface

Job Options
Typically every analysis job is steered by a cards file. Cards historically were real cards, meaning
punch cards used to pass parameters from some input device to the program.
Gaudi for the time being uses the same mechanism. However, in the long run this is seen to be
not sufficient: Typically they are only used to override default values - in the future these options
will likely be stored in a database. This will then allow to access all properties of algorithms e.g.
for official productions.
For this reason the additional options are only accessed using a special service, which exposes
the IJobOptionsSvc interface. Because of this separation it will only be this service, which needs
to be changed.

Gaudi Tutorial: Printing and Job Options 3-4

3-4 Gaudi Framework Tutorial, 2001

Job Options: Data Types

Primitives
– bool, double, long, std::string

Arrays of primitives
– std::vector<bool>,

std::vector<double>...

Job Options: Data Types
Objects like algorithms and services can retrieve options of several data types from the job option
file. These are primitive options like bools, doubles etc. and arrays of those.

Gaudi Tutorial: Printing and Job Options 3-5

3-5 Gaudi Framework Tutorial, 2001

Declare property variable as data member
class DecayTreeAlgorithm : public Algorithm {
private:
std::string m_partName;
...

};

Using Job Options

Declare the property in the Constructor
DecayTreeAlgorithm:: DecayTreeAlgorithm(<args>)
<initialization>
{
declareProperty("DecayParticle", m_partName = "B0");

}

Using Job Options
Optional parameters of an algorithm are part of the algorithm itself. In C++ they are typically
implemented as member variables.
However, the framework must be made aware, that a given algorithm has a certain property and
that the value of this property may be changed.
Property defaults may sometimes be useful. However, if a default value can not ensure proper
behavior, it may be better to require external input.

Gaudi Tutorial: Printing and Job Options 3-6

3-6 Gaudi Framework Tutorial, 2001

Set options in joboptions file
– File path is first argument of executable
– C++ like syntax
– Example

B0_Decays.DecayParticle = “B0”;
D0_Decays.DecayParticle = “D0”;

– Object name (Instance not class)

Set Job Options

– Property name
– Property value

Set Job Options
The job options file itself is passed to the executable as the first argument.
The job options have C++ like syntax. This means in particular
•A property of an algorithm is addressed using the following syntax:

<object-name>.<option-name> = <value>;
•Any option is terminated by a semi-colon (;).
•Strings are encolsed in double quotes (“value”).
•Arrays of options are enclosed in curly brackets. Example: SomeAlg.SomeOpt = {1, 2, 3, 5, 6};
•Job options are assigned to an object according to the name if the instance, not at the level of
the class.

Gaudi Tutorial: Printing and Job Options 3-7

3-7 Gaudi Framework Tutorial, 2001

Job Options: Conventions

Many algorithms need many options
– Options go along with code

– New code release may need different options
– Must be configurable with cmt

– Need for conventions
– Look how Brunel organizes options

Job Options: Conventions
When talking about large applications such as a reconstruction program, it is clear that many
different algorithms are involved. Currently in SICB there is one big area, where all these options
are stored in form of cdf files (dbase). Because of this complete separation this area changes
version very often.
Typically the release of new code goes along with changed options. These options, must be
configurable with cmt. For example if you want to work on a selected package, it is very likely that
you will also change the required options without having to check out yet another package and at
the end worry how your changes will affect existing code. For this reason the same conventions
were adopted.
To have a coherent picture over the organization of job options, the Brunel approach should be
adopted.

Gaudi Tutorial: Printing and Job Options 3-8

3-8 Gaudi Framework Tutorial, 2001

BrunelDigiCALOSeq.Members += { …

"CaloDigitisationAlgorithm/EcalDigi",

"CaloDigitisationAlgorithm/HcalDigi" };

#include "$CALOALGSROOT/options/EcalDigi.opts”

#include "$CALOALGSROOT/options/HcalDigi.opts"

Brunel: Conventions

Brunel will then include the options
according to the detector

– $CALOALGSROOT/options/Brunel.opts

Brunel: Conventions
Brunel - by convention - expects an option file in a directory called “<detector>Algs”; the
corresponding environment variable, which also contains the proper version number is set up by
cmt. The required file name is called Brunel.opts.
Within this option file each subdetector can the set up the assigned sequences for each phase.
An example is given above for the calorimeters.

Gaudi Tutorial: Printing and Job Options 3-9

3-9 Gaudi Framework Tutorial, 2001

#include "$STDOPTS/Common.opts"

ApplicationMgr.EvtMax <integer>

ApplicationMgr.DLLs <Array of string>

ApplicationMgr.TopAlg <Array of string>

• Standard Configuration

Job Options You Must Know

• Maximal number of events to execute
• Component libraries to be loaded
• Top level algorithms: “Type/Name”

“DecayTreeAlgorithm/B0_Decays”
This also defines the execution schedule

Job Options You Must Know
There is a standard set of job options, which must be supplied for every Gaudi task. A set of
standard options, which depends on the Gaudi release for LHCb should always be included.
The others are listed below. During the tutorial other options will be introduced as well, which you
should add to this list to be kept in (brain-)memory.

Gaudi Tutorial: Printing and Job Options 3-10

3-10 Gaudi Framework Tutorial, 2001

Printing

Why not use std::cout, std::cerr, ... ?
• Yes, it prints, but

– Do you always want to print to the log file?
– How can you connect std::cout to the message

window of an event display?
– You may want to switch on/off printing at several

levels just for one given algorithm, service etc.

Printing
Print statements are a very useful way to document checkpoints within a running program.
C++ by itself implements three standard output streams, which in practice all go to the terminal
output:
•std::cout, the standard output destination
•std::cerr, for logging errors
•std::clog, for debugging
These printout destinations however have some disadvantages
•They all go to log files, a more fine grained specification of the destination is not possible.
•Although possible it is e.g. not too obvious how to redirect output properly e.g. to an error logger
display in the online environment.
•You may want to switch on debug printing

•For the algorithm/service you want to debug and you do not want to get flooded by all the
printouts of other algorithms
•You want to globally adjust the level of severity for printout.

To summarize, there are quite some reasons why the standard printing may not be entirely
adequate.

Gaudi Tutorial: Printing and Job Options 3-11

3-11 Gaudi Framework Tutorial, 2001

Printing - MsgStream
Using the MsgStream class
• Usable like std::cout
• Allows for different levels of printing

– MSG::DEBUG (=1)
– MSG::INFO (=2)
– MSG::WARNING (=3)
– MSG::ERROR (=4)
– MSG::FATAL (=5)

• Record oriented
• Allows to define severity level per

object instance

Printing - MsgStream
The alternative to using the default print streams defined by C++ is a Gaudi extension, the
MsgStream. The usage of this class should be the same as for the standard streams. The
MsgStream however, allows to specify more fine grained severity levels:
•Debug, Informational, warning, error and fatal levels.
Secondly, printout of the MsgStream class is record oriented, not line oriented like for the C++
output streams. Standard output streams print whenever a newline character appears. The
MsgStream prints on the occurrence of an end-record specifier. A record may contain several
lines of output.
MsgStream objects allow to define the severity level based on the name of an object instance.
This feature allows to enable printouts for one single algorithm while suppressing extensive
printout for others.

Gaudi Tutorial: Printing and Job Options 3-12

3-12 Gaudi Framework Tutorial, 2001

MsgStream - Usage

Add Header file
#include “GaudiKernel/MsgStream.h”

Create object and print
MsgStream log(msgSvc(), name());
log << MSG::INFO << “Hello world!” << endreq;

Set printlevel in job options
MessageSvc.OutputLevel = 4; // MSG::ERROR
MySvc.OutputLevel = 3; // MSG::WARNING
MyAlgorithm.OutputLevel = 2; // MSG::INFO

MsgStream - Usage
In order to use the MsgStream class you first have to include the appropriate header file.
Then you must create the object for printing. The constructor of a MsgStream object takes two
arguments: a reference to the MessageSvc, and an identifier, which is typically the algorithm’s
name.
For printing itself, you must then first pass the level of the current record, the values to dump and
finally the end-of-record stream modifier.
In the job options you can then specify the output level for your printout. In this example general
printout is only done for messages with a severity ERROR or higher. However, for the service
instance “MySvc” also warning messages will be printed and for the algorithm “MyAlgorithm” even
informational messages.

Note:
•The name specified in the job options and the name of MsgStream object you use must be the
same.
•MsgStream objects should only be used locally, wherever you need them. Do not use them as
member variables etc.

Gaudi Tutorial: Printing and Job Options 3-13

3-13 Gaudi Framework Tutorial, 2001

Hands On: DecayTreeAlgorithm

Introduce a property
– std::string called “DecayParticle”
– long called “DecayDepth”

Print value in DecayTreeAlgorithm using
– MsgStream class
– several severity levels

Add algorithm instance to top alg list
– Name: B0_Decays

Hands On
You will introduce properties to the DecayTreeAlgorithm. This algorithm has an empty
implementation we have already build.
Then these properties will be printed when the algorithm is initialized. This requires that the
algorithm is instantiated, so it must be added to the list of top level algorithms.

Gaudi Tutorial: Printing and Job Options 3-14

3-14 Gaudi Framework Tutorial, 2001

Hands On: DecayTreeAlgorithm.h

class DecayTreeAlgorithm : public Algorithm {

private:

/// Name of the particle to be analysed

std::string m_partName;

/// Integer property to set the depth of printout

long m_depth;

...

};

Gaudi Tutorial: Printing and Job Options 3-15

3-15 Gaudi Framework Tutorial, 2001

Hands On: DecayTreeAlgorithm.cpp

StatusCode DecayTreeAlgorithm::initialize() {
MsgStream log (msgSvc(), name());
log << MSG::DEBUG << “Decay Particle:” << m_partName

<< “Number of daughter generations in printout:”
<< m_depth
<< endreq;

}

DecayTreeAlgorithm::DecayTreeAlgorithm(
const std::string& nam, ISvcLocator* pSvcLocator)

: Algorithm(nam, pSvcLocator)
{

declareProperty("DecayParticle", m_partName = "B0”);
declareProperty("DecayDepth", m_depth = 2);

}

Gaudi Tutorial: Printing and Job Options 3-16

3-16 Gaudi Framework Tutorial, 2001

Hands On: B0DecayTree.opts

// Add B0 decay algorithm to list of top level algorithms

ApplicationMgr.TopAlg += {"DecayTreeAlgorithm/B0_Decays"};

// Setup of B0 decay algorithm

B0_Decays.DecayParticle = "B0";

B0_Decays.DecayDepth = 2;

Gaudi Tutorial: Printing and Job Options 3-17

3-17 Gaudi Framework Tutorial, 2001

Hands On: If you have time left...

Extend for printout of D0 decays
• Re-use the existing implementation

