
Schedule: Timing Topic
15 minutes Lecture
20 minutes Practice
35 minutes Total

Gaudi Framework Tutorial, 2001

4
Accessing Event Data

Gaudi Tutorial: Accessing Event Data 4-2

Lesson Aim
In the user algorithm, where the actual data processing takes place, these input data must be
retrieved from the transient data store.
Running a Gaudi job usually means to process data from particle collisions. The concept how the
data store delivers data to the user will be explained. You should be aware of the machinery behind
in order to analyze failures.
Typically objects do not have a life on their own, but become powerful through their relationships. A
typical example are generated Monte-Carlo particles which usually have an origin vertex and if they
have finite lifetime also decay vertices. You will learn how to access these relationships.
These input data have to be specified to allow the job to access the requested data sets.

4-2 Gaudi Framework Tutorial, 2001

Objectives

After completing this lesson, you should
be able to:
• Understand how objects are delivered

to user algorithms.
• Retrieve objects from the event data

store within an algorithm.
• Use relationships between objects.
• Specify event data input.

Gaudi Tutorial: Accessing Event Data 4-3

4-3 Gaudi Framework Tutorial, 2001

Event Data Reside In Data Store

Tree - similar to file
system
Identification by path
”/Event/MCEvent/MCEcalHit”

Objects or
Containers of objects
ObjectVector<Type>

Event Data Reside In Data Store
Within Gaudi all event data reside in a data store.

•Data and algorithms are separated.
•Algorithms and data storage mechanisms are separated.

In other words, data have a transient and a persistent representation with not necessarily equal
mapping. Opposite to having a single representation of “persistent capable” objects, this solution
allows for optimisation depending on the demands of the chosen representation:

•Persistent data are optimised in terms of persistent storage allocation, including e.g. data
compression, minimisation of space used by bi-directional links a.s.o.
•Transient data are optimised according to the required performance; this includes e.g.
duplication of links, which are followed very often.

Data either already have a persistent representation or are intended to be written to a persistent
medium reside in a transient data store, which acts like a library storing objects for the use of
clients. These data stores are tree like entities, which can be browsed, just like a normal file
system. Its full path uniquely identifies any transient representation of an object within a store.
This browse capability is used to retrieve collections of objects to be made persistent. Of course
the internals of the data store are not directly exposed to the algorithms, but rather hidden behind
a service, the persistency service. This service acts as a secretary delivering objects to the client -
if the at all possible.

Gaudi Tutorial: Accessing Event Data 4-4

4-4 Gaudi Framework Tutorial, 2001

Containers: ObjectVector<T>

ObjectVector<MCParticle>* p;
...
ObjectVector<MCParticle>::iterator i;
for(i=p->begin(); i != p->end(); i++) {
log << MSG::INFO << (*i)->particleID().id();

}

•Templated class
•What you fill in are pointers to T
•Iteration like STL vector

Gaudi Tutorial: Accessing Event Data 4-5

4-5 Gaudi Framework Tutorial, 2001

Understanding Data Stores: Loading

(5) Register

Data
Service

Algorithm

(1) retrieveObject(…)

Try to access
an object data

(2) Search in Store

Data Store

Unsuccessful if
requested object is

not present

Converter
ConverterConverterConverter

(4) Request creation

(3) Request load

Persistency
Service

Conversion
Service

Request
dispatcher
Objy, SICB,

ROOT,..

Understanding Data Stores: Loading
Whenever client requests an object from the data service the following sequence is invoked:

•The data service searches in the data store wether the transient representation of the
requested objects already exists. If the object exists, a reference is returned and the sequence
ends here.
•Otherwise the request is forwarded to the persistency service. The persistency service
dispatches the request to the appropriate conversion service capable of handling the specified
storage technology. The selected conversion service uses a set of data converters - each
capable of creating the transient representation of the specified object type from its persistent
data.
•The data converter accesses the persistent data store, creates the transient object and returns
it to the conversion service.
•The conversion service registers the object with the data store, the sequence completes and
the object is returned to the client. Once registered with the corresponding data store, the object
knows about its hosting service.

Gaudi Tutorial: Accessing Event Data 4-6

4-6 Gaudi Framework Tutorial, 2001

Caveats
Consider Objects on the store as
READ-ONLY
• Do not modify existing objects!
• Do not destroy existing objects!

Never, never delete an object which is
registered to the store
• It’s not yours!
• It will only screw up others!

Caveats
Once an object is registered to the data store you should no longer consider it as yours. In particular
changing containers is an absolute don’t.
The data store also manages objects. An object created with new uses system memory. Once an
object is registered to the data store, the data store is responsible for calling once and only once the
corresponding delete operator. Deleting objects twice typically results in an access violation.
Although it is possible, you should never unregister an existing object for a simple reason:
•You never know who holds a reference to this object
(and typically there is no way to find this out). All these references will be invalid.

Gaudi Tutorial: Accessing Event Data 4-7

4-7 Gaudi Framework Tutorial, 2001

Data Access In Algorithms

• Objects can be accessed using a
SmartDataPtr<class-type>

• Usage similar to a normal pointer

SmartDataPtr<Event> evt(eventSvc(),“/Event”);

if (!evt) {
!error!

}

Do not forget to check validity

Data Access In Algorithms

The SmartDataPtr class can be thought of as a normal C++ pointer having a constructor. It is used in
the same way as a normal C++ pointer.

The SmartDataPtr is a smart pointers that allow to access objects in the data store. The SmartDataPtr
checks whether the requested object is present in the transient store and loads it if necessary (similar
to the retrieveObject method of IDataProviderSvc). The SmartDataPtr object uses the data service to
get hold of the requested object and deliver it to the user.
There is no magic behind, this object is only a small wrapper to minimize user code, the actual work is
done by the data service.
Like a raw C pointer also a smart pointer may be invalid e.g. if the requested object cannot be
received from the data store. The validity of the pointer must be checked before actually being used.

Gaudi Tutorial: Accessing Event Data 4-8

4-8 Gaudi Framework Tutorial, 2001

SmartDataPtr Ingredients

SmartDataPtr<Event>

evt(eventSvc(), “/Event”);

• Template class type
• Data store manager: Pointer to service
• Item identifier: location of the object

SmartDataPtr Ingredients
The SmartDataPtr is a template class. This means the compiler generates code according to the
template argument.
The standard constructor takes two arguments:
•a reference to the event data service and
•the location on the store where the object is located.

Note:
Before the object is delivered to the user, a type check is performed. This ensures that the type in the
data store actually is the same as specified by the user.

Gaudi Tutorial: Accessing Event Data 4-9

4-9 Gaudi Framework Tutorial, 2001

SmartDataPtr Usage

SmartDataPtr<Event> evt(eventSvc(),“/Event”);

if (evt) {

MsgStream log(msgSvc(), name());

log << MSG::INFO << “Run#:” << evt->run()

<< endreq;

}

This will trigger some action

…this as well

• If invalid the evt->run() will cause
access violation (core dump)

SmartDataPtr Usage
Before anything else the corresponding header file must be included.
A SmartDataPtr has several overloaded operators:
• if (evt) will access the data store and load the corresponding object from the persistent medium.
•evt->xxx will use the loaded object and apply the specified member function.
It is necessary to check the validity of the smart pointer before actually using the smart pointer.
Otherwise an invalid memory location is accessed which on Unix platforms will result in a core dump.

Gaudi Tutorial: Accessing Event Data 4-10

4-10 Gaudi Framework Tutorial, 2001

Relationships Between Objects

• Objects have relationships between
each other

MCParticle MCVertex
0..1 m_originMCVertex

0..n m_decayMCVertices

• Vertices are also connected to particles,
but this we neglect here...

Relationships Between Objects
Objects do not only have a life on their own, but become powerful through their relationships. A
typical example are generated Monte-Carlo particles which usually have an origin vertex and if they
have finite lifetime decay vertices.
The relationships can have different multiplicity: 0, 1 or many. Normally these relationships are
implemented either as pointers or as arrays of pointers. However, this has the disadvantage, that
these pointers cannot be made persistent because the next time the program starts the referred
object could be located in a completely different part of the memory. Where this will be is
unpredictable: it depends on the number of users currently logged in, the number of tasks running
etc.
For this reason Gaudi uses another mechanism, which allows on one hand persistency, but on the
other hand is the usage sufficiently similar to a raw pointer.

Gaudi Tutorial: Accessing Event Data 4-11

4-11 Gaudi Framework Tutorial, 2001

Implementing Relationships

• 0..1 Relationships can be implemented
using a SmartRef<class-type>

• Usage similar to a normal pointer
• 0..n Relationships are implemented

using a SmartRefVector<class-type>
…an array of SmartRef<class-type>

• Allow for late data loading

Implementing Relationships
The (Gaudi-)equivalent of the pointer between objects on the data store are SmartRefs. Similar to the
SmartDataPtr this is as well a template class. When de-referencing (e.g. using the operator -> ()) the
object behind is requested from the datastore and delivered to the user.
0..many relationships are implemented using arrays of these objects, or to be precise a
SmartRefVector. This vector behaves like a std::vector from the STL library.
This allows for late object loading only when the pointer actually is used, but though have a consistent
view.

Gaudi Tutorial: Accessing Event Data 4-12

4-12 Gaudi Framework Tutorial, 2001

Using These Relationships
class MCParticle {

...

SmartRef<MCVertex> m_originVertex;

...

MCVertex* originMCVertex() {

return m_originMCVertex;

}

};

…load data and trigger
conversion

See Doxygen code documentation

Using the Relationships
Ideally the SmartRefs are not visible outside the class.
In the above example the Smartref is automatically converted to the corresponding pointer which
actually is returned to the client. The client only sees the raw C++ pointer. Possible side-effects from
using the SmartRef directly are not propagated.

Gaudi Tutorial: Accessing Event Data 4-13

4-13 Gaudi Framework Tutorial, 2001

Using SmartRef<type>
MCParticle* p = new MCParticle();

SmartRef<MCParticle> ref;

Assignment from raw pointer

Assignment to raw pointer

Usage

HepLorentzVector& mom4 = p->fourMomentum();

HepLorentzVector mom4_2 = ref->fourMomentum();

ref = p;

p = ref;

Using SmartRef<type>
The usage of the SmartRefs and raw pointers is interchangeable. You can assign the pointer to the
smart reference as well as the reverse.
The overloaded “->” operator allows the same usage like a pointer.

Note:
The “&” at the bottom makes a big difference:
HepLorentzVector& mom4 is an alias to the object behind, whereas HepLorentzVector mom4_2 is a
copy of the particle’s 4-momentum. Both is absolutely perfect C++ code. However, not paying
attention to details like this can easily account for very efficiently executing code and very poor
performance. Usually in this case the language is claimed to be “bad”, whereas in practice it’s the
programmers fault.

Gaudi Tutorial: Accessing Event Data 4-14

Specify Event Data Input
Event Data Input is specified in the job options and is a property of the EventSelector. The property
is a vector of qualified strings of the form
“KEY1=‘VALUE1’ … KEY2=‘VALUE2’ “, // Specification of the first input
“ ….” // Next input, etc

Note:
• A key refers to an individual information necessary to open the specified input source.
• A value is the information content corresponding to this key.
• Values are enclosed within single quotes (‘).
• One data input stream is enclosed between double quotes (“). The input stream is specified

through at least one key-value pair.

4-14 Gaudi Framework Tutorial, 2001

Specify Event Data Input

EventSelector.Input = {“FILE=‘sicbmc.dat’”};
[{“Spec-1”, ... ,“Spec-n”}]

• Event data input is specified in the
job options

• “Spec” is an array of qualified strings:
”KEY1=‘VALUE1’ … KEYn=‘VALUEn’”

Gaudi Tutorial: Accessing Event Data 4-15

4-15 Gaudi Framework Tutorial, 2001

Specify SICB Event Input

Input Type KEY VALUE

SICB data file FILE =‘/afs/…/myfile.dat’

SICB data from JOBID JOBID =‘16835’

• Retrieve JobIDs from the bookkeeping
web page.

• Our main data source is SICB output.

Specify SICB Event Data Input
When reading SICB data, we deal with files or JOBIDs.
Files are specified by the key FILE followed by the file name. The file name can be relative or
absolute to the execution directory.
JobIDs request the actual tape the input data is stored on from the ORACLE bookkeeping
database. Like with SICB you can interactively interrogate the bookkeeping database using the
corresponding web page: http://lhcb-comp.web.cern.ch/lhcb-comp/bookkeeping.

Gaudi Tutorial: Accessing Event Data 4-16

4-16 Gaudi Framework Tutorial, 2001

Specify Other Event Input

KEY VALUE EXAMPLE

DATAFILE <file-name> =‘/afs/…/myfile.dat’

TYPE <technology> =‘ROOT’

COLLECTION <tuple-name> =‘MyCollection’

SELECTION <SQL-preselection> =‘NTRACK>50’

FUNCTION <name> =‘MySelector’

Specify Other Event Data Input
The minimum information Gaudi needs to know for other data input are two things:
•the file specification and
•the technology to be used accessing these files.
When reading event collections there are additional specifiers, which we include here only for
completeness. Please refer to the Gaudi users guide for further documentation of these specifiers.

Gaudi Tutorial: Accessing Event Data 4-17

4-17 Gaudi Framework Tutorial, 2001

Hands On: Print B0 Decays

•Use particle property service
– See “User Guide” chapter 12.5

•Retrieve MCParticles from event store
– “/Event/MC/MCParticles”

•Filter out the B0 particles
– Part. member particleID().id() is Geant 3 particle code

•For each B0 Loop over all decay vertices
and print the decay particles

– recursion ?

Hands On: Print B0 Decays
In the following tutorial we will try to extract from the converted ATMC bank the B0 particles and try to
print the entire decay tree. The required actions are the following:
•Filter out all B0 particles.
•For each B0 loop over all decay vertices and print the daughter particles.
•If the daughters have decay vertices themselves, recurse the second step.

Gaudi Tutorial: Accessing Event Data 4-18

4-18 Gaudi Framework Tutorial, 2001

DecayTreeAlgorithm.cpp:
Add Headers

#include "CLHEP/Units/PhysicalConstants.h"

#include "GaudiKernel/IParticlePropertySvc.h"

#include "GaudiKernel/ParticleProperty.h"

#include "GaudiKernel/SmartDataPtr.h"

#include "LHCbEvent/MCParticle.h"

#include "LHCbEvent/MCVertex.h"

Gaudi Tutorial: Accessing Event Data 4-19

4-19 Gaudi Framework Tutorial, 2001

Using IParticlePropertySvc
...DecayTreeAlgorithm.h...

IParticleProperySvc* m_ppSvc;
std::string m_partName;
long m_partID;

...DecayTreeAlgorithm::initialize()...

m_ppSvc = 0;
StatusCode sc = service("ParticlePropertySvc", m_ppSvc);
if(!sc.isSuccess()) { // You have to handle the error!
}

ParticleProperty* partProp = m_ppSvc->find(m_partName);
if (0 == partProp) { // You have to handle the error!
}
m_partID = partProp->geantID();

Gaudi Tutorial: Accessing Event Data 4-20

4-20 Gaudi Framework Tutorial, 2001

Hands On: Retrieve MCParticles

SmartDataPtr<MCParticleVector>
parts(eventSvc(), “/Event/MC/MCParticles”);

if (parts) {

… loop over particles …

}

#include “GaudiKernel/SmartDataPtr.h”

Gaudi Tutorial: Accessing Event Data 4-21

4-21 Gaudi Framework Tutorial, 2001

Hands On: Loop Over MCParticles

MCParticleVector::const_iterator i;

for(i=parts->begin();i != parts->end(); i++) {

if ((*i)->particleID().id() == m_partID){

printDecayTree(*i);

}

}

New member function

Gaudi Tutorial: Accessing Event Data 4-22

4-22 Gaudi Framework Tutorial, 2001

Hands On: Print Decays

For each selected particle:
• Loop over decay vertices
• Print all daughters

– If daughters have decay vertices
– recurse

• If you run out of time, just print some
particle property

Gaudi Tutorial: Accessing Event Data 4-23

4-23 Gaudi Framework Tutorial, 2001

Loop Over Decay Vertices

const SmartRefVector<MCVertex>& decays = mother->decayMCVertices();

SmartRefVector<MCVertex>::const_iterator iv;

for (iv = decays.begin(); iv != decays.end(); iv++) {

const SmartRefVector<MCParticle>& daughters =

(*iv)->daughterMCParticles();

SmartRefVector<MCParticle>::const_iterator idau;

for (idau=daughters.begin(); idau!=daughters.end(); idau++) {

printDecayTree(0, " |", *idau);

}

}

Gaudi Tutorial: Accessing Event Data 4-24

4-24 Gaudi Framework Tutorial, 2001

printDecayTree
void DecayTreeAlgorithm::printDecayTree(long depth,

const std::string& prefix,
const MCParticle* mother) {

MsgStream log(msgSvc(), name());
const SmartRefVector<MCVertex>& decays = mother->decayMCVertices();
ParticleProperty* p = m_ppSvc->find(mother->particleID().id());
log << MSG::INFO << depth << prefix.substr(0, prefix.length()-1)

<< "+--->" << p->particle() << endreq;

if (depth < m_depth) {
SmartRefVector<MCVertex>::const_iterator iv;
for (iv = decays.begin(); iv != decays.end(); iv++) {

const SmartRefVector<MCParticle>& daughters = (*iv)->daughterMCParticles();
SmartRefVector<MCParticle>::const_iterator idau;
for (idau = daughters.begin(); idau != daughters.end(); idau++) {

printDecayTree(depth+1, prefix+" |", *idau);
}

}
}

}

