
This part of the tutorial deals with 2 ways of extending the default schema presented in previous 
lessons for user specific purposes. It will be followed by a small exercise, aiming at using these 
extensions to add specific data to the XML code written in previous exercises.
Schedule: Timing Topic

20 minutes Lecture
40 minutes Practice
60 minutes Total

Gaudi Framework Tutorial, 2001

4

Extending
Detector Elements

Gaudi Advanced Tutorial 4-2

Lesson Aims
• define specific extensions of the DetectorElement object in C++. This will allow the user to define new 
members and methods.
• make use of the <specific> element in XML. This is the place where the user will add new XML 
elements for his specific data.
• write converters dealing with the new elements found inside the <specific> tag and creating extended 
DetectorElements.

4-2 Gaudi Advanced Tutorial, 2001

Objectives

After completing this lesson, you should 
be able to do the following:
• define your own C++ objects extending 

DetectorElement
• make use of the <specific> element in 

XML
• write the converters creating the 

customized DetectorElements



Gaudi Advanced Tutorial 4-3

When to extend
There are mainly two cases in extending the default schema :

• one needs specific behavior of the DetectorElement object and thus needs to extend it. An example 
of such a case is the implementation of specific reconstruction or simulations customizations.

• one needs to add some specific information in the XML code that is more complex than the 
userParameters and that should be expressed using XML. This means that the user wants to add new 
XML elements and to extend the DTD.

4-3 Gaudi Advanced Tutorial, 2001

When to Extend ?

• Customize C++ DetectorElement object 
with specific behavior (answering 
specific reconstruction/simulation 
questions)

• Add specific information to detector 
elements which is more complex than 
userParameters

full freedom

Gaudi Advanced Tutorial 4-4

Extending DetectorElement
The extension of the DetectorElement class consist in creating a new C++ class, inheriting (directly or not) 
from DetectorElement. This class must have certain specificities :

• it must have a new classID, unique in LHCb and identifying this new type of detector element
• it may have any new member and method
• it must have a constructor with no parameters. This is required by default converters that will create 

the object.
On top of that, the object will inherit the initialize method that is called at the end of the conversion 
mechanism. This method is the place where any initialization of the object that uses specific parameters, 
like userParameters, should be done. For non specific initialization, the constructor can be used as usual.

4-4 Gaudi Advanced Tutorial, 2001

Extending DetectorElement (1)

• new C++ class, with a new ClassID
• must inherit from DetectorElement
• You can add any member
• You can add any method
• It must have a constructor with no parameters
• It has an initialize method

– called after the end of the conversion
– is the only place where the object can be 

initialized according to specific parameters 
(userParameters)



Gaudi Advanced Tutorial 4-5

Extending DetectorElement
Here a an example of the definition of a new DetectorElement, called MyDetElem. It has a new member, 
storing the number of channels and a new method retrieving it. The value of the new member is initialized 
in the initialize method from the value of one of userParameters.
On top of this specific code, note the definition of the default constructors and destructors (empty here) 
and the two methods concerning the classID. These are mandatory when defining a new kind of detector 
element. The definition of the CLID_MyDetElem constant is actually not inside the class but in a separate 
.h file with some #ifdef and #define statements in order to avoid multiple definition of it (especially 
because the .h is included both in the converter and in the object itself).

4-5 Gaudi Advanced Tutorial, 2001

Extending DetectorElement (2)
class MyDetElem :

public DetectorElement {

public:
MyDetElem() {};
virtual ~MyDetElem() {};

const CLID& clID() const {
return classID();

}
static const CLID& classID();

virtual StatusCode initialize();
int channelNb ();

private :
int m_channelNb;

};

const CLID&
MyDetElem::classID() {

return CLID_MyDetElem;
}

int
MyDetElem::channelNb(){

return m_channelNb;
}

StatusCode
MyDetElem::initialize() {

m_channelNb =
userParameterAsInt
(“ChannelNb”));

return SUCCESS;
}

Gaudi Advanced Tutorial 4-6

Writing a dummy converter
We have just defined a new kind of DetectorElement. But at this point, no converter is able to create it, so 
we will still get regular DetectorElements out of the XML to C++ conversion. In order to fix that, we have 
to write a “dummy” converter. It is more or less a copy of the regular converter for detector elements, 
except that it creates MyDetElem.
In order to achieve that easily, the templated class XmlUserDetElemCnv was created. The creation of the new 
converter is thus only 4 lines that you can copy from this slide, by replacing MyDetElem by the name of the new 
DetectorElement object.

4-6 Gaudi Advanced Tutorial, 2001

Writing a Dummy Converter

#include “DetDesc/XmlUserDetElemCnv.h”
#include “MyDetElem.h”

static CnvFactory
<XmlUserDetElemCnv<MyDetElem>> s_factory;

const ICnvFactory& XmlMyDetElemCnvFactory = s_factory;

• One must declare a new converter that will 
create MyDetElem instead of DetectorElements

• The templated class called XmlUserDetElemCnv 
may be used



Gaudi Advanced Tutorial 4-7

Full Customization
Up to know, we learnt how to use userParameters and how to extend the DetectorElement object. This 
already allows some customization but does not allow a real extension of the default schema in the sense 
that you have no way to add data to the XML by using new XML elements that were not defined in the 
LHCb DTD.
This possibility exists but it requires some work :

• one should first extend the LHCb DTD to define correctly the new elements
• then this extended DTD should be parsed to retrieved the data. This is done by using a free XML 

parser called xerces
• at last, specialized converters are needed to deal with the new data and store them into dedicated 

DetectorElements
We will now detail every step.

4-7 Gaudi Advanced Tutorial, 2001

Full Customization

• extension of the DTD to define new XML 
elements

• parsing of the new XML code using the 
xerces parser

• “real” converters to initialize C++ objects 
according to XML

Gaudi Advanced Tutorial 4-8

Defining a new DTD
There are actually two ways of extending a DTD, either by defining an internal DTD, or by defining an 
external DTD.
An internal DTD is so called because it is included inside the XML file itself, in the DOCTYPE element. 
This possibility should not be used here because the extension of the DTD can only be used inside the file 
itself. Thus, several file will have several copy of the extended DTD and the synchronization will be hard.
External DTDs are DTDs defined in a separate file. We already presented this kind of DTD in lesson 2. 
The advantage here is that the XML files using this DTD all point to the same instance of the DTD. Thus, 
in you change it, it will be changed for every file.
We won’t detail here how to write the extended DTD, you may just copy and modify the example above, 
which should be pretty clear. The only important thing is not to forget to include the old DTD since it is 
only an extension. This is done by using entities, as show on the example.

4-8 Gaudi Advanced Tutorial, 2001

Defining a New DTD

This is the way to define an external DTD
<?xml version="1.0" encoding="UTF-8"?>

<!-- Include the default DTD -->
<!ENTITY % defaultDTD SYSTEM "../DTD/structure.dtd">
%defaultDTD;

<!– New Elements -->
<!ELEMENT channelSet ((channels)*)>
<!ATTLIST channelSet name CDATA #REQUIRED

description CDATA #REQUIRED>
<!ELEMENT channels EMPTY>
<!ATTLIST channels description CDATA #REQUIRED

nb CDATA #REQUIRED>



Gaudi Advanced Tutorial 4-9

The <specific> element
This slide shows how to use the new elements defined in the extended DTD.
The first point is that the DOCTYPE element should now reference the extended DTD instead of the 
default one.
Then, all new elements must appear as children of a special tag of the default DTD called specific. This is 
the only place where one can insert new elements in the XML code. This element appears as child of the 
detelem element. One can add as many specific tag as he wants to a given detector element.

4-9 Gaudi Advanced Tutorial, 2001

The <Specific> Element
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DDDB SYSTEM “extendedDtd.dtd”>
<DDDB>

<detelem classID="7294" name="Head">
<geometryinfo …/>
<specific>
<channelSet description=“…" name="Controls">
<channels description="Inputs" nb="20"/>
<channels description="Outputs" nb="150"/>

</channelSet>
<channelSet description=“…" name="Data">
<channels description="head" nb="2000"/>

</channelSet>
</specific>

</detelem>
</DDDB>

Gaudi Advanced Tutorial 4-10

Writing a real converter
Now that we extended the DTD and we used the new elements in the XML, we have to write a converter 
to deal with this new code. This requires several steps :

• one should first get a representation of the XML in C++ to be able to get the data. This will be given 
by the xerces parser under the form of a DOM Tree.

• one should then deal with expressions and parameters that are used inside XML
• one should at last only write code for the new XML elements. The old one should still be converted 

by the default converters.

4-10 Gaudi Advanced Tutorial, 2001

Writing a Real Converter

One needs :
• to get a C++ representation of the XML 

(DOM tree)
• to deal with expressions and 

parameters
• to reuse existing code (only convert 

specific XML elements) !!!



Gaudi Advanced Tutorial 4-11

Accessing the XML : DOM
DOM is an interface to XML parsers based on tree representation of XML files. This tree, called DOM 
tree, is a one to one map of the XML file, where nodes correspond to XMl elements and links to inclusion 
of elements inside another element.
The nodes of the tree are all DOM::Node objects but there exist different specializations of them :

• DOM_Document : this is the root of the tree, containing the DOCTYPE statement and the reference 
to the DTD

• DOM_Element : this is a regular XML element, with a name, attributes and sub elements
• DOM_Text : this is a text node, typically the value of one element, given as plain text in XML
• Comments, attributes and some other. These are not really needed for our purpose.

4-11 Gaudi Advanced Tutorial, 2001

Accessing the XML : DOM

• DOM is an interface to XML parsers 
based on tree representation of XML 
files

• This tree is essentially made of :
– DOM_Document : the root of the tree
– DOM_Element : the xml elements
– DOM_Text : the bunches of text in XML
– Comments, Attributes, ...

Gaudi Advanced Tutorial 4-12

DOM Tree
Here is a simple and stupid example of a DOM tree. You can see how similar the XML file and the tree 
are. This makes the DOM tree very easy to browse inside converters to parse the specific parts.

4-12 Gaudi Advanced Tutorial, 2001

DOM Tree

XML File DOM Tree

Document
A (Element)
B1 (Element)
C (Element)

"blabla" (Text)
B2 (Element)

<A>
<B1>
<C/>

</B1>
blabla
<B2/>

</A>

easy to browse



Gaudi Advanced Tutorial 4-13

4-13 Gaudi Advanced Tutorial, 2001

• DOMString DOM_Element.getNodeName ()
• DOMString DOM_Element.getAttribute (DOMString)
• DOMString DOM_Element.getNodeValue ()
• DOM_NodeList DOM_Element.getChildNodes ()
• DOM_NodeList 

DOM_Element.getElementsByTagName (string)
• unsigned int DOM_NodeList.getLength ()
• DOM_Node DOM_NodeList.item (unsigned int)

Some DOM Methods

Some DOM methods
This is part of the DOM API together with a short explanation of each method :

• DOMString DOM_Element.getNodeName () : returns the name of an element, ie the name of the 
tag. E.g., it returns “specific” for the <specific> tag.

• DOMString DOM_Element.getAttribute (DOMString) : returns the value of a given attribute or an 
empty string if the attribute does not exist. This value is the exact string that is inside the XML file.

• DOMString DOM_Element.getNodeValue () : returns the value of an element, ie the plain text 
between its opening and its closing.

• DOM_NodeList DOM_Element.getChildNodes () : returns a list of the children of an element.
• DOM_NodeList DOM_Element.getElementsByTagName (string) : returns a list of the children of 

an element with a given name.
• unsigned int DOM_NodeList.getLength () : return the length of a list of elements.
• DOM_Node DOM_NodeList.item (unsigned int) : returns an element of the list by index. This 

method returns a DOM_Node. One should cast it to get a DOM_Element.

Gaudi Advanced Tutorial 4-14

Some useful features
The previous slide gave some ideas of the DOM interface. Still, there are two small problems :

• all strings are DOMString instead of regular std::string
• the attribute values are only strings without any possibility of evaluating them to numeric types.

These problems are solved as follow :
• the method std::string dom2Std (DOMString) present on any converter allows to convert 

DOMString to std::string.
• the XmlCnvSvc has an eval method that compute a value of any expression and returns a double. It 

takes all parameters, constants and functions into consideration. This method can be either called 
with a single string parameter or with two parameters, the second one being a boolean. In this case, 
the boolean tells whether the method should check for the presence of a unit in the expression. The 
default value (when one parameter only) is true.

• on any converter, you can get a pointer to the XmlCnvSvc by calling xmlSvc().

4-14 Gaudi Advanced Tutorial, 2001

Some Useful Features

• DOMString is DOM specific
! call std::string dom2Std (DOMString) on the 

converter class to get a regular string
• Attribute have string value

! double XmlCnvSvc::eval (std::string, boolean) 
must be called to get a double

! the boolean tells whether to check for units or 
not. It can be omitted if true

! call xmlSvc () on the converter to get the 
XmlCnvSvc service



Gaudi Advanced Tutorial 4-15

Implementing a converter
• Implementing a converter is pretty simple if one uses the templated class 

XmlUserDetElemCnv<DeType>, where DeType should be replaced by the name of the 
DetectorElement to be created. It is just a matter of filling a single method called i_fillSpecificObj.

• The i_fillSpecificObj method is automatically called during the parsing of the XML file for every 
XML element that is a direct child of the <specific> element. All other elements are parsed 
automatically but these may be new and are the responsibility of the user. This method is given the 
DOM_Element corresponding to the element found and the DetectorElement being currently built. 
This one was created but still need to be initialized, using the data contained in the DOM_Element.

4-15 Gaudi Advanced Tutorial, 2001

Implementing the Converter
Real converter =
1. extension of XmlUserDetElemCnv<DeType>
2. implementation of method

StatusCode i_fillSpecificObj (DOM_Element, DeType*)

• i_fillSpecificObj is called once per direct child 
of <specific>

• the DOM_Element is given, the DeType object was 
created and must be populated

• all other elements (not inside <specific>) are 
automatically converted

Gaudi Advanced Tutorial 4-16

Converter example
This is an example of a converter implementation. There is not distinction here between .h and .cpp.
Several points need to be stressed :

• a constructor and a destructor must be defined, as shown here. One may add something inside but 
one must not forget to call the ancestor's constructor inside the new one.

• a factory must be declared, pretty identical to what we did in lesson 2.

4-16 Gaudi Advanced Tutorial, 2001

Converter Example (1)
class XmlMyDetElemCnv :

public XmlUserDetElemCnv<MyDetElem> {

public:
XmlMyDetElemCnv (ISvcLocator* svc);
~XmlMyDetElemCnv() {}

protected:
virtual StatusCode i_fillSpecificObj
(DOM_Element childElement,
MyDetElem* dataObj);

};

static CnvFactory<XmlMyDetElemCnv> s_Factory;
const ICnvFactory& XmlMyDetElemCnvFactory = s_Factory;

XmlMyDetElemCnv::XmlMyDetElemCnv(ISvcLocator* svc) :
XmlUserDetElemCnv<MyDetElem> (svc) {

}



Gaudi Advanced Tutorial 4-17

Converter example (end)
Some more remarks :

• the only method to implement is I_fillSpecificObj.
• the usual way to implement it is to retrieve the element name first and to make a big if on it
• once the element is identified, one may retrieve some attribute values or even loop on the children 

elements. The data are then stored in the dataObj parameter, of type MyDetElem here.

4-17 Gaudi Advanced Tutorial, 2001

Converter Example (2)

StatusCode XmlMyDetElemCnv::i_fillSpecificObj
(DOM_Element childElement, MyDetElem* dataObj) {

std::string elementName =
dom2Std (childElement.getNodeName());

if ("channelSet" == elementName) {
const std::string name = dom2Std
(childElement.getAttribute ("name"));

const std::string description = dom2Std
(childElement.getAttribute ("description"));

dataObj->addChannelSet(name, description);
…

} else {
…

}

Gaudi Advanced Tutorial 4-18

4-18 Gaudi Advanced Tutorial, 2001

Exercise 3



Gaudi Advanced Tutorial 4-19

Exercise goal
The goal of the last exercise is to describe a bit more precisely the channels of the detector elements. This 
description will be stored in XML and handled inside DetectorElement objects. A new converter will be 
needed in order to use this new description inside the AccessGeoAlgorithm.

4-19 Gaudi Advanced Tutorial, 2001

Exercise Goal

• Use <specific> element to describe channels 
with a distinction between different channel 
sets

• Write a specific DetectorElement handling 
channel sets

• Write the corresponding converter
• Modify the algorithm to use the new 

DetectorElement

Gaudi Advanced Tutorial 4-20

How to start
This is what you have to do in order to start working on this second exercise :

• if you did not succeed in the second exercise, you should start with a valid geometry by copying the 
data/DDDBSolution2 directory into data/DDDB :

mv data/DDDB data/myDDDB2
cp –r data/DDDBSolution2 data/DDDB

• You must then copy the new DTD, called structure.dtd and provided in data to data/DDDB/mySubDet :
cp data/structure.dtd data/DDDB/mySubDet/

You also need to edit mySubDet/structure.xml by hand (I mean with emacs, not with XmlEditor) in order 
to use this new DTD. The only modification is to change the DOCTYPE line and to put “structure.dtd” 
instead of “../dtd/structure.dtd”.
• at last, you must copy the src3 directory into src :

mv src mysrc
cp –r src3 src

Don’t try here to reuse you old code many files will be missing. The new directory provides empty files 
for the AccessGeoAlgorithm, as well as for the converter and for the new DetectorElement called 
MyDetElem. As in the previous exercise, you may just fill the blanks.

4-20 Gaudi Advanced Tutorial, 2001

How to Start

• If you did not succeed in the last exercise, 
copy data/DDDBSolution2 into data/DDDB

• Copy structure.dtd to data/DDDB/mySubDet
and modify by hand structure.dtd to use it

• copy the src3 directory into src
– it includes empty files for the new 

DetectorElement (MyDetElem), the converter 
(XmlMyDetElemCnv) and the algorithm 
(AccessGeoAlgorithm)



Gaudi Advanced Tutorial 4-21

Hints for XML
The point is to describe more precisely the channels of a given detector element by dividing them into 
channel sets. As you can see on the DTD presented on slide 8, the DTD defines two new elements :

• channelSet is a set of channels. It may contain several channels elements. It has a name and a 
description attribute. Example of such sets are Control or Data.

• channels represents several channels of the same kind. It has no child but a description and a 
number of channels. The distinction between several channels objects inside a given channel set 
allows, for example, to distinguish between input and output channels inside a given set.

Note that slide 9 gives you a good idea of what you should do !

4-21 Gaudi Advanced Tutorial, 2001

Hints for XML
• The point is to describe more precisely the channels 

of a given detector element by dividing them into 
channel sets

• The DTD defines 2 new elements
– channelSet with 2 attributes : name & description
– channels with 2 attributes : nb & description

• A channelSet has many channels for children, 
channels has no children

• Examples of sets are Control and Data
• Examples of sub sets are Input and Output

Gaudi Advanced Tutorial 4-22

Hints for MyDetElem
MyDetElem is the new DetectorElement created to store all the list of channelSets and channels. This will 
be achieved via members of the object. One should use the std::vector object to store lists and iterators to 
retrieve them. Slide 8 in lesson 3 gives an example of the use of an iterator.
New methods should also be added to the MyDetElem object in order to retrieve the number of channels 
on the element itself, on a given set or even on a channels base. Note that one may only implement the 
retrieval of the number of channels for a given set as a first try.

4-22 Gaudi Advanced Tutorial, 2001

Hints for MyDetElem

• MyDetElem should store the list of channel sets 
and for each of them the list of channels

• std::vector<…> should be used for list 
management and structs should be used for the 
definition of sets and channels

• The main two functionalities needed are
– being able to get the number of channels of a 

given set from its name
– being able to get the number of channels of 

channels objects from the name of the set and 
their index in the set



Gaudi Advanced Tutorial 4-23

Some more Hints
Concerning the converter, just remember that you only need to fill I_fillSpecifcObj (and there is already a 
beginning) and that all useful methods are given in slides 13 and 14.
Concerning the algorithm, you get now a MyDetElem object from the transient store. You can thus use 
the methods you have just defined on it.
Good luck !

4-23 Gaudi Advanced Tutorial, 2001

Some More Hints

Concerning the converter
• The only thing to do is to implement 

i_fillSpecificObj
• All methods that you need are given in these 

slides
Concerning the algorithm
• you should now retrieve a MyDetElem, so just 

use the methods you defined


