
Schedule: Timing Topic
20 minutes Lecture
0 minutes Practice
20 minutes Total

Gaudi Framework Tutorial, 2001

5
Algorithm Tools: Overview

Gaudi Tutorial: Introduction 1-2

1-2 Gaudi Framework Tutorial, 2001

Lesson Goals

Introduce the concept of Algorithm Tool
• Separation of roles: Algorithm & Data
• Understanding the differences between

Services, Algorithms and Tools
Design Issues
• Use cases
• Some examples

Goals
The goal of this first lesson in Algorithm tools is to introduce this new concept. Understanding the
differences between with other components of the framework (Services, Algorithms) is important for
making consistent designs across the experiment.
Some cases and examples will be studied in this lesson.

Gaudi Tutorial: Introduction 1-3

1-3 Gaudi Framework Tutorial, 2001

Algorithms

Algorithm
A

Algorithm
B

Algorithm
C

Transient Event
Data Store

Data T1

Data T2, T3

Data T2

Data T3, T4

Data T4

Data T5

Data T1Data T1

Data T5

Real dataflow

Apparent dataflow

Algorithm communication and execution scheduling
This is to remind that the only way to communicate input and output data to the Algorithms is always
achieved by accessing by themselves the transient data store. Input data is located in the transient store
and when the algorithm has finished processing it registers in the stone new data that can then be used by
other algorithms. Scheduling the algorithms in the adequate order we can obtain the desired data flow.
This communication and scheduling is very simplistic but it allows to minimize the coupling between
algorithms, the transient data store acts a “black-board” between algorithms. An Algorithm does not need
to know from where the data has been produced, it only knows what data it requires and what data will be
producing.

Gaudi Tutorial: Introduction 1-4

1-4 Gaudi Framework Tutorial, 2001

Algorithm Interface

IAlgorithm
• initialize()
• execute()
• finalize()Algorithm

Concrete
Algorithm

IProperty
• setProperty()
• getProperty()

Algorithm Interfaces
Two interfaces are implemented in all algorithms. These interfaces are quite simple but they are sufficient
for incorporating any implementing them into any Gaudi application (Brunel, DaVinci, etc.).

• The IAlgorithm interface allows the framework to control the execution of the different algorithm.
The methods in this interface not have any argument, therefore any input or output data has to be
given to the algorithm by transient stores (event, detector, statistics, etc.)

• The IProperty interface allows the framework to configure the algorithm with any property value. In
particular, the JobOptions service that reads the joboptions files at the start of a job sets all the
algorithm properties using that interface. In general, any service or algorithm of an application can
also set and get properties of any algorithm or service at run-time.

Gaudi Tutorial: Introduction 1-5

1-5 Gaudi Framework Tutorial, 2001

Algorithm Scheduling

Simple and explicit scheduling
• List of Algorithms

– Primarily given by the property
ApplicationMgr.topAlg

Algorithms are executed only once per
event
• Several instances of the same algorithm

class are possible

Algorithm Scheduling
On the first approximation the scheduling of Algorithms is controlled by the property “topAlg” of the
Application Manager. This property is list of the “top” level Algorithms. They will be executed by the
Application Manager (EventLoopMgr) in the order they have been declared.
The execution of Algorithm is done by calling the “execute()” method once per event.

Gaudi Tutorial: Introduction 1-6

1-6 Gaudi Framework Tutorial, 2001

Algorithm Hierarchies

An Algorithm can have
Sub-Algorithms
• Parent Algorithm is

responsible for
– Creation
– Execution

• Framework does
initialization and
finalization

Main
Algorithm

Sub
Algorithm2

Sub
Algorithm1

Algorithms Hierarchies
Algorithms can be organized in hierarchies to allow more complex implicit scheduling. Any algorithm
can have sub-algorithms associated. These sub-algorithms are created by the “parent” Algorithm
(eventually controlled by job options) and they are executed under the control of the parent algorithm.
The Framework takes care of the initialization and finalization of sub-algorithms.

Gaudi Tutorial: Introduction 1-7

1-7 Gaudi Framework Tutorial, 2001

Sequences

Event
Input/Output Algorithm

Filter
Decision

Single
Instances

Sequences of
Algorithms
• Avoid re-calling

same algorithm on
same event

• Different instances of
the same algorithm
possible

Event filtering
• Avoid passing all the

events through all
the processing chain

Sequences & Filters
A physics application may wish to execute different algorithms depending on the physics signature of
each event, which might be determined at run-time as a result of some reconstruction. This capability is
supported in Gaudi through sequences, branches and filters. A sequence is a list of Algorithms. Each
Algorithm may make a filter decision, based on some characteristics of the event, which can either allow
or bypass processing of the downstream algorithms in the sequence. The filter decision may also cause a
branch whereby a different downstream sequence of Algorithms will be executed for events that pass the
filter decision relative to those that fail it. Eventually the particular set of sequences, filters and branches
might be used to determine which of multiple output destinations each event is written to (if at all). This
capability is not yet implemented but is planned for a future release of Gaudi.

Gaudi Tutorial: Introduction 1-8

1-8 Gaudi Framework Tutorial, 2001

Algorithm life-cycle
Algorithms are created by a factory

static const AlgFactory<HelloWorld> Factory;
const IAlgFactory& HelloWorldFactory = Factory;

Run-type configuration
• List of algorithms and their properties

ApplicationMgr.topAlg = {‘HelloWorld’};
HelloWorld.OutputLevel = 4;

Algorithm creation
Algorithms are created using the “factory” design pattern. Using factories, opposite to using the new()
operator directly, the creator of the Algorithm does not need to know the concrete type. Technically this
means that the header file containing the defining of the concrete type no not need to be included in the
creators code.
The way to achieve this is by instantiating a static object that know to create an instance (the factory). The
convention is to use a the templated class AlgFactory<T> for that purpose.
Similarly to what is done with Algorithm, the Algorithms Tools will need to instantiated using factories.

Algorithm configuration
Algorithm are configured using the job options

Gaudi Tutorial: Introduction 1-9

1-9 Gaudi Framework Tutorial, 2001

Services

Are used by Algorithms to help them to
perform their work
Are setup and initialized at the beginning
of a job by the framework and used by
many algorithms as often as necessary
They do not have a “state”

Services
Services are used by Algorithms to help them to perform their work. Services are initialized at the
beginning of the job and are used by many Algorithms. This implies that Services in general can not keep
an state if they are used by several Algorithms.

Gaudi Tutorial: Introduction 1-10

1-10 Gaudi Framework Tutorial, 2001

The Problem

Sometimes in an Algorithm it is necessary
to execute the same operation more than
once per event, only for some events, on
specific non identifiable data objects,
producing new objects that will be put in
the Event Store later

���� Needed to introduce a new concept

The need for Algorithm Tools
When implementing an Algorithm, very often it is necessary to perform some operations or complex
processing for each object in a list (e. tracks in the track collection). Therefore, the concept of sub-
algorithm is not adequate for that purpose. In this kind of operations is more efficient to pass the pass the
data as arguments instead of registering and retrieving from the transient store. In addition, it can be that
the same kind of operation can be re-used in other algorithms.

Gaudi Tutorial: Introduction 1-11

1-11 Gaudi Framework Tutorial, 2001

Algorithm Tools
The concept of Algorithms Tools, being a
sort of simple algorithms callable many
times and with arguments, was introduced
in Gaudi
• Examples

– Vertexing
– Track transport
– Association to truth
– Selection of particles based on a pID CL

Designing for Re-use
Algorithm Tools are useful small algorithms that can be packages in a way that will be easy to re-use
them in other Algorithms. They are callable many times during the execution of an event and the user can
pass arguments.
Examples:

• Vertexing (to produce one or many vertexes from a list of tracks or particle candidates)
• Track transport (to obtain the track parameters on other points of the detector)
• Association to truth (to obtain the Monte Calo information corresponding to a reconstructed object)
• Selection from a container of objects (to reduce the a list ob objects according to some selection

criteria)

Gaudi Tutorial: Introduction 1-12

1-12 Gaudi Framework Tutorial, 2001

Requirements
� An Algorithm requires a Tool on a per need base
� The ToolSvc checks if the requested type of Tool is available and

returns an instance of the requested type after configuring it
� An Algorithm can have a private instance of a Tool that can be

configured according to its need via JobOptions
� An Algorithm can use a Tool “as-it-is”, in this case the ToolSvc will

provide a “common” Tool (shared-Tool)
� An Algorithm should be able to use a Tool without worrying about the

implementation
� The ToolSvc keeps track of the Tools instantiated and if a tool exists it

does not re-create it
� An Algorithm can tell the ToolSvc if it will not need a tool anymore
� The ToolSvc will decide which tools instances can be deleted (always

done at finalization of the Service)
� Not only Algorithms would want to use Tools (also Services …)

Gaudi Tutorial: Introduction 1-13

1-13 Gaudi Framework Tutorial, 2001

ToolSvc

The ToolSvc is the service that manages
Algorithm Tools (private or shared)
• Algorithms ask the ToolSvc for a give

Tool by name
• Manages the life-cycle of Tools
• Keeps track of existing Tools

Tools can be configured using the
JobOptions as Algorithms or Services

The ToolSvc Service
This service is managing Algorithm Tools. It is the service in charge of tools in their life-cycle, it creates
them, configures them and destroys them at the finalize phase of the job.
An Algorithm requests the ToolSvc to obtain a reference to a Tool by its name. Tools can be private or
shared. The idea is that if a Tool requires a fair amount of resources (memory, cpu time for configuration)
does makes sense to share the Tool among the various Algorithms that may require this functionality.
The problem with a shared tool is that is can not keep an state between invocations since it is not
guaranteed that other Algorithms may have used it meanwhile.

Gaudi Tutorial: Introduction 1-14

1-14 Gaudi Framework Tutorial, 2001

Design

IToolFactory

IAlgTool IProperty

ISubTool

Concrete
Algorithm

ToolSvc

IService IToolSvc

ToolFactory
<T>

Concrete
Tool1

AlgTool

Concrete
Tool2

SubTool

Design
The Design following closely the Algorithm one. We have a base class (AlgTool) from which all the
Tools inherits from. This base class ensures that the Tool is manageable and configurable from the
TooSvc service and JobOptions service. Concrete Tools can have their own interface specidif to the tool
or class of tools. Of course, specializations can always be possible by inheritance of concrete tools.
The ToolSvc uses the factory pattern to instantiate concrete tools without known about them using the
generic abstract interface IToolFactory which is implemented by the template class ToolFactory. The
service keeps the list of AlgTools existing in the program.

Gaudi Tutorial: Introduction 1-15

1-15 Gaudi Framework Tutorial, 2001

Tools Interfaces

ToolSvc

IToolSvc

YourTool

IAlgTool

IYourTool

IToolSvc
• retrieveTool(type, name, tool,

parent, createIf)
• retrieveTool(type, tool, parent,

createIf)

IAlgTool
• name(), type(), parent()

IYourTool
• Interface for your tool

Interfaces
•IToolSvc. This is the interface implemented by the TooSvc that allows Algorithms to locate or create
new Tools.
•IAlgTool. Basic interface that any AlgTool implements and is used for bookkeeping purposes of the
ToolSvc.
•IYourTool. This represents the interface (abstract) for this particular tool or class of tools. For example
Associators will have a common interfaces regardless of their implementation. See next slide.

Gaudi Tutorial: Introduction 1-16

1-16 Gaudi Framework Tutorial, 2001

AlgTools life-cycle
AlgTools are created by a factory

static const ToolFactory<VertexSmearer> Factory;
const IAlgFactory& VertexSmearerFactory = Factory;

Run-type configuration
• Convention to name AlgTools

RecPrimaryVertex.VertexSmearer.OutputLevel = 3;
RecPrimaryVertex.VertexSmearer.dxVtx = 0.009;
RecPrimaryVertex.VertexSmearer.dyVtx = 0.009;
RecPrimaryVertex.VertexSmearer.dzVtx = 0.038;

AlgTool creation and Configuration
AlgTools are created and configured the same way as Algorithms

Gaudi Tutorial: Introduction 1-17

1-17 Gaudi Framework Tutorial, 2001

Algorithm Tools Types

Tool Taxonomy
• Similar tools could implement the same

interface
• Different implementations

This could offer a way to evolve and
improve Tools

Tools classification
The idea is to classify tools for their functionality and try to define interfaces that are general enough to be
applicable to a number of them. In this way we can have different implementation ranging from very
simple ones to a more sophisticated ones.

Gaudi Tutorial: Introduction 1-18

1-18 Gaudi Framework Tutorial, 2001

Example: Associator

One possible tool category is an
Associator for relating reconstruction
objects to the “MC” information
• The interface can be very generic

– Input: ContainedObject
– Output: list of ContainedObject

• The actual navigation in the Event
Model and association criteria could be
very specific

Associator Example
The Associator is an example of a class of AlgTools. These kind of tools have the role to associate a given
reconstruction object (track, hit, candidate, etc.) to the Monte Carlo one. This association involves
navigation on the Event Model with various hops in the most general case. In addition, very often the
association is not unique and requires some physics criteria to select the best one. This is an example in
which the definition of a generic abstract interface makes real sense. This interface can be made quite
generic involving base classes like the ContainedObject, which is the class that all the objects that we
have collections of them inherit from.

Gaudi Tutorial: Introduction 1-19

1-19 Gaudi Framework Tutorial, 2001

Summary

AlgTools have been introduced to
overcome some limitations of Algorithms
and with the desire of re-use
Very similar to Algorithms for
configuration and life-cycle

���� Lesson 6: Algorithm Tools in Practice

