
Schedule: Timing Topic
20 minutes Lecture
25 minutes Practice
45 minutes Total

Gaudi Framework Tutorial, 2001

6
Creating Objects
and Writing Data

Gaudi Tutorial: Accessing Event Data 6-2

Lesson Aim
For physics data processing it is typically not sufficient to use only existing objects. For example
when building a reconstruction program new objects have to be created, which hold the
reconstruction information such as the result of track fits etc.
The aim of this presentation is to show the few key issues to be considered when designing new
objects. It will also be shown how a simple persistency mechanism can be implemented, which
allows to write small user defined mini-dsts.

6-2 Gaudi Framework Tutorial, 2001

Objectives

After completing this lesson, you should
be able to:
• Design data store objects.
• Implement standard persistency.
• Read and write your own mini-DSTs.

Gaudi Tutorial: Accessing Event Data 6-3

6-3 Gaudi Framework Tutorial, 2001

Two Types Of Objects

Identifiable objects
– Access by name: “/Event”, “/Event/MC” etc.
– ObjectVector<MCParticle>: “/Event/MC/MCParticles”

Non-identifiable objects
– Container is identifiable
– 5th. MCParticle in ObjectVector<MCParticle>

Two Types of Objects
Typically Gaudi itself knows about 2 types of objects:
•Identifiable objects. These are the atomic units known to the data store. They can be individually
retrieved from the data store.
•Non identifiable objects typically are aggregated into containers such as the ObjectVector, which
in turn is identifiable.

Gaudi Tutorial: Accessing Event Data 6-4

6-4 Gaudi Framework Tutorial, 2001

Inherit from DataObject
• Data store objects must

implement a basic
functionality

• Class understood by the
data store

Design of Identifiable Objects

MyObjClass

DataObject

Design of Identifiable Objects
The data requires from each object a certain functionality. The most important one is the ability to
properly delete the object. For this reason each object on the store must inherit from the class
DataObject.
Another functionality of the data object is the capability of browsing the next layer of objects. Like
in a unix file system you can browse the directory without actually touching any of the files.

Gaudi Tutorial: Accessing Event Data 6-5

6-5 Gaudi Framework Tutorial, 2001

Design of Identifiable Objects

Override:
virtual const CLID& clID() const;
static const CLID& classID()

(Persistent type information)

! CLID must be unique !
MyObjClass

DataObject

Data members

Member functions

Design of Identifiable Objects
Since a normal DataObject is not sufficient for physics you have to attach data to it. This is done
in the sub-class. To access these data and/or manipulate the data or present them in the
requested form to the algorithm using this object member functions are needed.
C++ has no intrinsic persistency mechanism. Although there is some run-time type information
(RTTI) available, this information cannot be used for persistency. For this reason a class identifier
was invented, the CLID. Hence each class must override the corresponding access functions.
The CLID is used by Gaudi to decide which converter must be used in order to make the object
persistent and to create an object in memory.
If the class evolves e.g. when you add additional data fields, which cannot be re-calculated from
existing persistent object data, you must use a new CLID.

Gaudi Tutorial: Accessing Event Data 6-6

6-6 Gaudi Framework Tutorial, 2001

Non-Identifiable Objects

Same rules
Replace DataObject with ContainedObject

Override:
virtual const CLID& clID() const;
static const CLID& classID()

(Persistent type information)
MyContdClass

ContainedObject

Data members

Member functions

Non- Identifiable Objects
All requirements of DataObjects are also valid for ContainedObjects. Do not forget to reserve an
unused CLID for the object class.

Gaudi Tutorial: Accessing Event Data 6-7

6-7 Gaudi Framework Tutorial, 2001

Data Persistency

• Data conversion mechanism
– Transient -> Persistent … Persistent -> Transient

• Generic converters
– Object serialization as done by Java, Root, MFC, etc.
– Converters come (nearly) for free

• Specific converters
– Real work
– Allows optimization

• Persistent world: minimize I/O, use DBase features
• Transient world: optimize navigation

Data Persistency
The data conversion mechanism in Gaudi must solve the problem to first write object from
memory to disk and later be able to read these objects back.
There are two possibilities to achieve this:
•A generic conversion mechanism, which uses object serialization as it is known from Java, Root
or the Microsoft foundation class library. This sort of serialization is simple to implement and the
converters come nearly for free. However, this mechanism can only make limited use of
optimization e.g. if the object could easily be recreated from other, redundant data residing in the
transient data store.
•The other possibility is to write a specialized converter. This involves real work, because then the
converter must be written by hand. However, there are benefits:

•A specialized converter allows to better minimize I/O (pack doubles into short by reducing the
dynamic range, recalculate certain redundant data etc.).
•A specialized converter could take advantage of the underlying database engine.
•In the transient world such a converter could also add additional data for improved navigation.

Note:
Generic converters do not create “native” ROOT objects. Interactive access to individual data
members is currently not possible using ROOT.

Gaudi Tutorial: Accessing Event Data 6-8

6-8 Gaudi Framework Tutorial, 2001

Data Serialization

• Data Serialization: Transient->Persistent

Base class

Member data

long m_num;

float m_px, m_py, m_pz;

SmartRef<MCParticle> m_mcTruth;

StreamBuffer& MyObj::serialize(StreamBuffer& s) const {

DataObject::serialize(s);

s << m_num << m_px << m_py << m_pz

<< m_mcTruth(this);

return s;

}

Note: !! Latest now your class needs a unique CLID !!

Data Serialization
When making an object persistent data serialization maps the object’s data to a flat byte stream,
which then can be written to disk. This task is handled by the StreamBuffer object.
Primitive data items such as integers, numbers and the like are very simple to write. The problem
arises when writing pointers. Pointers have the disadvantage that they point to some location of
the machine’s memory. This depends on the machine, the load, the number of tasks etc. This is
also the real application of the SmartRef object: SmartRefs allow in a rather anonymous way to
convert a pointer to an object in the datastore into information which can be written to disk.

Note:
The output is a const member function of the object, because writing data should not change the
object itself!

Gaudi Tutorial: Accessing Event Data 6-9

6-9 Gaudi Framework Tutorial, 2001

Data Serialization

• Data Serialization: Persistent->Transient
• It’s just the reverse

Base class

Member data

StreamBuffer& MyObj::serialize(StreamBuffer& s) {

DataObject::serialize(s);

s >> m_num >> m_px >> m_py >> m_pz

>> m_mcTruth(this);

return s;

}

Data Serialization
When reading objects from disk the reverse actions are performed. After reading the data from
the StreamBuffer, the object should be in the same state as before writing. This is exactly true for
primitive data items. References are not in the same state. Whereas a reference did contain a
pointer to a C++ object in memory, it now only contains the recipe how to get hold of this object
when needed. This however is equivalent.

Gaudi Tutorial: Accessing Event Data 6-10

6-10 Gaudi Framework Tutorial, 2001

Generic Converters

• Declare Converter
• Requires empty constructor
#include "GaudiDb/DbGenericConverter.h”

#include ”MyDataObject.h” // Of type DataObject

_ImplementConverter(MyDataObject)

See: GaudiDb/DbGenericConverter.h what this does

Generic Converter
The last thing needed by Gaudi to read and write data is the converter itself. This converter can
be instantiated using a macro. Because such a converter must create objects of the requested
type when reading back already written objects, one of the object constructors must have an
empty signature:
MyDataObject() {

}

You can have any number of other constructors as well.

Gaudi Tutorial: Accessing Event Data 6-11

6-11 Gaudi Framework Tutorial, 2001

Generic Container Converters

• Declare Container Converter
• Requires empty constructor
#include "GaudiKernel/ObjectVector.h”
#include "GaudiKernel/ObjectList.h”
#include "GaudiDb/DbContainerConverter.h"

#include ”MyContainedObject.h”

_ImplementContainerConverters(MCParticle)

See: GaudiDb/DbContainerConverter.h what this does

Gaudi Tutorial: Accessing Event Data 6-12

6-12 Gaudi Framework Tutorial, 2001

The Remaining Machinery

Setup in the job options
ApplicationMgr.DLLs += { "GaudiDb", "GaudiRootDb" };

ApplicationMgr.ExtSvc += {"DbEventCnvSvc/RootEvtCnvSvc"};

ApplicationMgr.OutStream = { "RootDst" };

EventPersistencySvc.CnvServices += { "RootEvtCnvSvc" };

RootEvtCnvSvc.DbType = "ROOT";

// Setup for ROOT I/O System
RootDst.ItemList = { "/Event#999" };

RootDst.Output = "DATAFILE='RootDst.root' TYP='ROOT'";

The Remaining Machinery
The rest of the job is done in the job options.
•Gaudi must be instructed to load the additional code and create an additional service used to
write root objects.
•A output stream must be defined, which takes care of writing a specified list of objects to the
output destination.
•The output destination must be defined.
The two non highlighted statements must be added for the internal setup.

Gaudi Tutorial: Accessing Event Data 6-13

6-13 Gaudi Framework Tutorial, 2001

ApplicationMgr.DLLs += { "GaudiDb", "GaudiRootDb" };

ApplicationMgr.ExtSvc += {"DbEventCnvSvc/RootEvtCnvSvc"};

EventPersistencySvc.CnvServices += { "RootEvtCnvSvc" };

RootEvtCnvSvc.DbType = "ROOT";

// Setup data source
EventSelector.Input =

{"DATAFILE='RootDst.root' TYP='ROOT' OPT='READ'" };

Reading Objects

Setup in the job options

Reading Objects
For reading most of the previously described options remain.
Different is the definition of the input file.

Gaudi Tutorial: Accessing Event Data 6-14

6-14 Gaudi Framework Tutorial, 2001

Hands On

• Create an EventSummary
– contains e.g. #of MC particles
– highest Pt
– ...

• Register it on the store /Event/Summary
• Write the object to a ROOT file

Hands On
In this exercise we try to invent a new object where we intend to store event summary informaton.
This could contain e.g. the number of MC particles and the maximal transverse momentum. This
object must then be registered to the data store.
Once registered the object should be written to a root file.

Gaudi Tutorial: Accessing Event Data 6-15

6-15 Gaudi Framework Tutorial, 2001

EventSummary.h
static const CLID& CLID_EventSummary = 199;

class EventSummary : public DataObject {
public:

EventSummary() : m_ptMax(0.0) {}
virtual ~EventSummary() {}

// methods to access m_px etc.
float ptMax() { return m_ptMax; }
void setPtMax(float pt) {…}

virtual const CLID& clID() const;
+ classID(), serialize()

private:
float m_ptMax;

};

Gaudi Tutorial: Accessing Event Data 6-16

6-16 Gaudi Framework Tutorial, 2001

#include "GaudiDb/DbGenericConverter.h”

#include ”EventSummary.h”

_ImplementConverter(EventSummary)

Implement Converter

EventSummaryCnv.cpp
– Don’t forget to declare the factory in xxx_load.cpp

Gaudi Tutorial: Accessing Event Data 6-17

6-17 Gaudi Framework Tutorial, 2001

#include "GaudiKernel/IDataProviderSvc.h”
#include ”EventSummary.h”

StatusCode VisibleEnergyAlgorithm::execute() {
EventSummary* summary = new EventSummary();
… fill in data …
status = eventSvc()->registerObject(

“/Event/Summary”, summary);

if (!status.isSuccess()) { ! Error !
delete summary; error message etc.

}
}

Register The Object
VisibleEnergyAlgorithm.cpp

Gaudi Tutorial: Accessing Event Data 6-18

6-18 Gaudi Framework Tutorial, 2001

ApplicationMgr.DLLs += {"GaudiDb", "GaudiRootDb" };

ApplicationMgr.ExtSvc += {"DbEventCnvSvc/RootEvtCnvSvc"};

ApplicationMgr.OutStream = {"RootDst" };

RootEvtCnvSvc.DbType = "ROOT";

EventPersistencySvc.CnvServices += { "RootEvtCnvSvc" };

// Setup for ROOT I/O System
RootDst.ItemList = {"/Event#1","/Event/EventSummary#1"};

RootDst.Output = "DATAFILE='RootDst.root' TYP='ROOT'";

Update Job Options

